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Preface

There are many books on Elements of Machine Design but none with the unique approach enclosed in
this book. This book has the purpose of creating a unique blend of mechanical engineering analysis and
design using commonly used theories. By no means this book is intended to substitute other textbooks,
rather to complement the existing textbook. Many thanks to Instructor Ezequiel Medici for his inputs
for this book, they were invaluable. Also many thanks to Dr. David Serrano for providing problems for
dynamic loading failure theories.
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Course Syllabus

1. Instructor

1a. Dr. Vijay K. Goyal, Associate Professor of the Mechanical Engineering Department

1b. Office: L-207

1c. Office Hours: M W F: 11:30a - 1:30p; or by appointment

1d. Office Phone: (787) 832-4040 ext. 2111/3659 (Please do not call at home nor at my cell phone)

1e. E-mail: vijay.goyal@upr.edu

2. General Information
2a. Course Number: INME 4011

2b. Course Title: Design of Machine Elements I

2c. Credit-Hours: Three of lecture and computation included

2d. Classroom: L-242A

3. Course Description

Application of the fundamentals of statics, dynamics, strength of material, and material science to
the design of machine members and other mechanical elements.

4. Pre/Co-requisites
4a. Material Sciences (INME 4107)

4b. Mechanics of Materials (INGE 4019)

4c. Mechanism Design (INME 4005)

5. Textbook, Supplies and Other Resources
5a. Class notes are posted on the class website. The official course textbook is the course website:

http://www.me.uprm.edu/vgoyal/inme4011.html

5b. Collins, J. A., Mechanical Design of Machine Elements and Machines, 2003, John Wiley and
Sons, New York, NY.

5c. Hamrock, B. J., Schmid, S. R., and Jacobson, B., Fundamentals of Machine Elements, 2005,
Second Edition, Mc-Graw Hill, New York, NY.

5d. Juvinall, R. C., and Marsheck, K. A., Fundamentals of Machine Component Design, 2000,
John Wiley and Sons, New York, NY.

5e. ∗Mischke, C. R., and Budynas, R, G., Shigley’s Mechanical Engineering Design, 2011, Ninth
Edition, Mc-Graw Hill, New York, NY.

5f. Thomas, G. B., Finney R. L., Weir, M. D., and Giordano F. R., Thomas Calculus, Early
Transcendental Update, 2003, Tenth Edition, Addison-Wesley, Massachusetts.
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∗The topics covered in this course mainly follow the material from this book.

6. Purpose

The purpose of this course is to teach students how to apply the fundamental knowledge acquired
during their mechanical engineering courses, combined with fundamentals of the basic sciences, and
determine the dimensions of the machine elements to sustain the given load so that the composite
machine can function without failure.

7. Course Goals

The course will be divided into seven specific topics divided into chapters. Each unit has the
purpose to help the student understand and grasp the basic concept in mechanical engineering
problems.

7a. Applied Elasticity. After completing this topic students should be able to:

i) Understand what are stresses

ii) Find principal stresses: Eigenvalue

iii) Find principal stresses: Mohr’s circle

iv) identify and solve plane stress problems

v) Derive Octahedral and Von Mises Stresses

vi) Understand what are strains

vii) find the principal strains

viii) identify and solve plane strain problem

ix) Learn the stress-strain relationship for isotropic elastic materials

x) Understand the Saint-Venant’s Principle

xi) Apply concepts of this unit to the most critical location of the most critical machine
element of their course design project.

7b. Material Selection. After completing this topic students should be able to:

i) Use Ranked-ordered table for best material selection

ii) Ashby Charts for best material selection

iii) Apply concepts of this unit to the most critical location of the most critical machine
element of their course design project

7c. Design and Analysis of Beams. After completing this topic students should be able to:

i) Euler-Bernoulli Beam Theory

ii) Stresses for a flexure beam under pure bending

iii) Stresses for a flexure beam under axial load

iv) Stresses for a flexure beam under both pure bending and axial load

v) Sign convention for stress resultants on a beam cross section

vi) Shear, Moment and Load diagrams

vii) Slope and deflection diagrams

viii) Shear stress due to torsional loading

ix) Both combined torsional and shear loading

x) Stress concentration factors

c©2012 by Vijay K. Goyal. All Rights Reserved.
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xi) Apply concepts of this unit to the most critical location of the most critical machine
element of their course design project

7d. Load and Deflection Analysis. After completing this topic students should be able to:

i) Obtain the exact deflection and slope profiles.
ii) Apply Castigliano’s Second Theorem to solve statically determinate problems
iii) Apply Castigliano’s Second Theorem to Solve statically indeterminate problems
iv) Obtain the effective stiffness to obtain load and static deflection relationships.

7e. Uncertainty Analysis. After completing this topic students should be able to:

i) Identify the various uncertainties in designing machine components.
ii) Obtain design safety factors
iii) Understand what is margins of safety, and how it is used
iv) Reliability in engineering design (optional)
v) Apply concepts of this unit to the most critical location of the most critical machine

element of their course design project

7f. Failure theories for Static Loading. After completing this topic students should be able to:

i) Static theories for ductile and brittle materials.
ii) Basics of fracture mechanics
iii) Stability of Beam-Columns
iv) Apply concepts of this unit to the most critical location of the most critical machine

element of their course design project

7g. Failure theories for Dynamic Loading. After completing this topic students should be able to:

i) Free Vibrations: natural frequencies
ii) Impact Loading
iii) Fatigue: Cyclic Loading
iv) Different fatigue theories
v) S-N Diagram
vi) Cumulative Damage

vii) Apply concepts of this unit to the most critical location of the most critical machine
element of their course design project

In addition to the above units, all students will demonstrate the ability to describe the context of
the report (introduction), describe clearly and precisely the procedures used (methodology), report
verbally and visually the findings (results), interpret the findings (analysis of results), justify the
solutions persuasively (conclusions), and propose recommendations. The students will demonstrate
the ability to make effective oral presentations and written reports using appropriate computer
tools.

8. Requirements

8a. Requirements: In order to succeed in the course students are expected to:

• should attend all class sessions and be punctual
• on a daily basis check the class website

c©2012 by Vijay K. Goyal. All Rights Reserved.
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• use a non-programmable calculator

• do all homework

• practice all suggested problems

• take all exams

• submit all work in English

• be ready to ask any questions at the beginning of every class session

• and obtain a minimum of 69.5% in the course

8b. Grading Distribution: Total course points are 100% and are distributed as follows:

Homework and Quizzes 30%

Mid-Term 1 20%

Mid-Term 2 25%

Mid-Term 3 25%

Final Examination 20%

** Final grade will be the sum of all homework, Midterms (I and II) and Final Examination
minus the lowest grade from Mid-terms and Final examination. Students with a grade of “A”
may be waived from the final exam.

Students should take advantage of bonus homework and projects to improve their grade
because there will be no “grade curving” at the end of the semester. Your grade will be
determined by the following fixed grade scale:

A 89.500− 100+

B 79.500− 89.499

C 69.500− 79.499

D 49.500− 69.499

F 0− 49.499

Your final grade will be scaled based on the attendance. For an example, if you miss 3 classes
and your final grade is 100% then your official final grade will be 100 ∗ (42/45) = 93%. (NOT
APPLIED TO OFF-CAMPUS STUDENTS).

8c. Passing Criteria: Students failing to provide a successful, high-standard, computer projects
may not pass the course, as they are entitled to a grade of IF or ID, regardless of their progress
in the mid-term examinations, homework, small projects, among other evaluation criteria. By
successful we mean obtaining a percentage higher than 80% in overall projects. Moreover, a
successful projects do not entitle the student to pass the course either.

8d. Homework and Tests: Only your own handwritten solutions, written legibly on one side of
an 8.5′′×11′′ sheet of paper will be accepted for grading. In the case of computer assignment, a
computer print out is acceptable whenever a copy of the code is included and well documented
by hand. Students are encouraged to work together on the homework, but submissions must
be the students own work. NO LATE HOMEWORK WILL BE ACCEPTED.

9. Laboratory/Field Work (If applicable)
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9a. Cell phones/pagers: All students MUST turn off their cell phones and pagers at the beginning
of each class session. By not doing so it is considered disrespectful and students will be asked
to leave the class. Students who need to have their cell phones or pagers on at all time must
inform the instructor at the beginning of the academic semester.

9b. Smoking: Smoking is not permitted in any area other than those areas designated for smoking.

9c. Electronic Devices: Radios, tape recorders, and other audio or video equipment are not
permitted in the lab or classroom at any time. Students must consult with the professor at
the beginning of the academic semester.

9d. Laptop Computers, Notebooks, PC-Tablets: Students can bring their personal computers
to classroom. However this must not interfere with other student’s work nor with the class
session. Students with their personal computers are responsible for any problems with software
versions or differences with the one available in the classroom.

10. Department/Campus Policies

10a. Class attendance: Class attendance is compulsory. The University of Puerto Rico at Mayagüez
reserves the right to deal at any time with individual cases of non attendance. Professors are
expected to record the absences of their students. Absences affect the final grade, and may
even result in total loss of credits. Arranging to make up work missed because of legitimate
class absence is the responsibility of the student. (Bulletin of Information Graduate Studies)

Students with three unexcused absences or more may be subject to a one or two final grade
letter drop, according to the UPRM Rules and Regulations.

10b. Absence from examinations: Students are required to attend all examinations. If a student
is absent from an examination for a justifiable and acceptable reason to the professor, he or
she will be given a special examination. Otherwise, he or she will receive a grade of zero of
“F” in the examination missed. (Bulletin of Information Graduate Studies)

In short, any student missing a test without prior notice or unexcused absence will be required
to drop the course. There will be no reposition exam. At professor’s judgment, those students
with a genuine excuse will be given an oral 15–20 minutes oral comprehensive final exam and
it will substitute the missed examination(s).

Under no circumstances should the students schedule interviews during previously set dates
for examinations.

10c. Final examinations: Final written examinations must be given in all courses unless, in the
judgment of the Dean, the nature of the subject makes it impracticable. Final examinations
scheduled by arrangements must be given during the examination period prescribed in the
Academic Calendar, including Saturdays. (see Bulletin of Information Graduate Studies).
Final examination in this course is used to substitute any mid-term grade up to 20%.

10d. Partial withdrawals: A student may withdraw from individual courses at any time during the
term, but before the deadline established in the University Academic Calendar. (see Bulletin
of Information Graduate Studies).

10e. Complete withdrawals: A student may completely withdraw from the University of Puerto
Rico, Mayaguüez Campus, at any time up to the last day of classes. (see Bulletin of Infor-
mation Graduate Studies).
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10f. Disabilities: All the reasonable accommodations according to the Americans with Disability
Act (ADA) Law will be coordinated with the Dean of Students and in accordance with the
particular needs of the student.

Those students with special needs must identify themselves at the beginning of the academic
semester (with the professor) so that he/she can make the necessary arrangements according
to the Office of Affairs for the Handicap. (Certification #44)

10g. Ethics: Any academic fraud is subject to the disciplinary sanctions described in article 14
and 16 of the revised General Student Bylaws of the University of Puerto Rico contained
in Certification 018-1997-98 of the Board of Trustees. The professor will follow the norms
established in articles 1-5 of the Bylaws.

The honor code will be strictly enforced in this course. Students are encouraged to review the
honor system policy which has been placed on the class website. All assignments submitted
shall be considered graded work unless otherwise noted. Thus all aspects of the course work
are covered by the honor system. Any suspected violations of the honor code will be promptly
reported to the honor system. Honesty in your academic work will develop into professional
integrity. The faculty and students of UPRM will not tolerate any form of academic dishon-
esty. MUST BE TAKEN SERIOUSLY. Any violation may result in an automatic “F” in the
course and such behavior will be reported to the Dean’s office of the College of Engineering.
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11. General Topics

11a. Exam and Presentation Dates: (These dates may be subject to change)

Mid-Term 1:
Topics 1–3
Review session: Class Time
Exam Date: Posted on class website

Mid-Term 2: Topics 4–5
Review session: Class Time
Exam Date: Posted on class website

Mid-Term 3:
Topics 6–8
Review session: Class Time
Exam Date: Posted on class website

Final Examination:
Comprehensive
Review session: Class Time
Exam Date: Posted on class website

Syllabus is subject to changes
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Chapter 1

Engineering Design

Most of the engineering problems involve design and analysis. Some to a greater extend than others.
Thus here we briefly discuss the difference between design and analysis, followed by a description of the
design process itself. The design process is an event and every event should be planned; thus, we include
a description of how to build and use a Gantt Chart. In the last two section a description on how to
write a proposal and a report is included.

It should be highlighted that design is creative process: Albert Einstein said: “Imagination is more
important than knowledge, for knowledge is finite whereas imagination is infinite.”

1.1 Mechanical Design

The main objective of any engineering design project is the fulfillment of some human need or desire.
Broadly, engineering may be described as a judicious blend of science and art in which natural resources,
including energy sources, are transformed into useful products, structures, or machines that benefit
humankind. Science may be defined as any organized body of knowledge. Art may be thought of as a
skill or set of skills acquired through a combination of study, observation, practice, and experience, or
by intuitive capability or creative insight. Thus engineers utilize or apply scientific knowledge together
with artistic capability and experience to produce products or plans for products.

Mechanical design is creating new devices or improving existing ones in an attempt to provide the
“best”, or “optimum” design consistent with the constraints of time, money, and safety, as dictated by
the application and the market place. In other words, mechanical design may be defined as an iterative
decision-making process that has as its objective the creation and optimization of a new or improved
mechanical engineering system or device for the fulfillment of a human need or desire, with due regard
for conservation of resources and environmental impact.

1.2 Design Process

1.2.1 Design vs. Analysis

Analysis and design, although closely related, are different in nature. The analysis problem is concerned
with determining behavior of an existing system, or trial system being designed for the given task.
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Figure 1.1: Aircraft engine by superior air parts.

Determination of the behavior of the system implies calculations of its response under the specified
inputs. On the other hand, the design problem is concerned in calculating sizes and shapes of various
parts of the system to meet performance requirements.

The design process of any given system can be a trial and error procedure. First we estimate a
design and then analyze it to verify if it performs according to the specifications. If it does, we have a
feasible design (acceptable design). We may still want to change it to improve its performance. If the
trial design does not work, we need to change it to come up with an acceptable system. In both these
cases, we must be able to analyze designs to make further decisions. Thus analyzing capability must be
available in the design process.

1.2.2 Design Levels

There are different levels of challenges that the engineering faces when designing. These stages are
adaptive design, development design, and new design.

(1) Adaptive design is concerned with those design activities that require no special knowledge or skill
because the design is a minor modification to an existing design. The problems presented are easily
solved by a designer with ordinary technical training.

(2) Development design is concerned with those design activities that require considerable scientific
training. The engineer must have a design ability because the design starts from an existing design
but the final outcome may differ markedly from the initial product.

(3) New design is heavily based on innovation because the design is completely new in its nature. Only
a small number of designs are new designs.
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Figure 1.2: Six Stages of the design process

1.2.3 Design Process

The design process usually results in a set of drawings, calculations and reports, and the system can be
built based on these. We shall use a systems engineering model to describe the design process. Fig. 1.2
shows that the design is an iterative process. By iterative we mean analyzing several trial systems in
a sequence before an acceptable design is obtained. Thus designer’s experience, intuition and ingenuity
are required in the design of systems in most fields of engineering. Engineers, usually strive to different
connotations for different systems. The design process should be a well-organized activity and this
process involves nine steps. Here we regroup these nine steps into five major stages.

I. PROJECT DESCRIPTION. The first stage is to define precisely specifications for the system.
Considerable interaction between the engineer and the sponsor is usually necessary to quantify
the system specifications. This stage can be summarized into four steps:

(1) Recognize needs and set goals – what must be done to resolve the need

(2) Perform market analysis – what is already available in the market and what they have to offer

(3) Establish a function analysis – need statement and where the problem/need stands in the
whole system

(4) Identify all specifications and constraints – list of all pertinent data and parameters that tend
to control the design and guide it toward the desired goal.

II. PRELIMINARY DESIGN. The second important stage in the process is to come up with a
preliminary design of the system. Various concepts for the system are studied. Since this must be
done in a relatively short time, highly idealized models are used. Various subsystems are identified
and their preliminary designs estimated. This stage can be summarized as follows:

(5) Brainstorming – Generation of alternative solution to the stated goal. (Brainstorming)

III. ANALYSIS. The third stage in the process is to carry out a detailed design for all subsystems.
Decisions made at this stage generally affect the final appearance and performance of the system.
At the end of the preliminary design phase, a few promising concepts needing further analysis are
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identified. To evaluate various possibilities, this must be done for all the promising concepts iden-
tified in the previous step. Systematic optimization methods can aid the designer in accelerating
the detailed design process. At the end of the process, a description of the system is available in
the form of reports and drawings. This stage can be summarized in in three steps:

(6) Evaluation of alternatives – Through a discussion and evaluation process, the design is se-
lected.

(7) Analysis and Optimization – Test the selected design against the physical laws.

IV. PROTOTYPE. The following stage may or may not be necessary for all systems. These involve
a prototype system fabrication and its testing. The steps are necessary when the system has to be
mass produced or human lives are involved. These may appear to be the final steps in the design
process. However, they are not, because during tests the system may not perform according to
specifications. Therefore, specifications may have to be modified or, other concepts may have to
be studied. In fact, this re-examination may be necessary at any step of the design process.

(8) Experiment and/or Testing – The design on paper is transformed into a physical reality.

The iterative process has to be continued until an acceptable system has evolved. Depending on
the complexity of the system, the process may take anywhere from a few days to several months
or even years.

In most practical problems, the designers play a key role in guiding the process to acceptable
regions. They must be an integral part of the process and use their intuition and judgment in
obtaining the final design.

V. COMMUNICATION. Lastly, we have to be able to communicate our idea. One can come up
with the most outstanding-innovative idea but if we are not able to sell the idea then we have
failed to complete the design process. Thus when the final product is obtained, the last step
consists in:

(9) Marketing – Selling the idea to management or the client.

1.2.4 Problem Description

According to the Webster’s dictionary a problem is a question raised for consideration or solution, a
question or situation that requires further investigation and a reason for conducting the experiment.
According to the Google’s dictionary definition is the act or process of stating a precise meaning or
significance; formulation of a meaning. A definition is designed to settle a thing in its compass and
extent; an explanation is intended to remove some obscurity or misunderstanding, and is therefore more
extended and minute; a description enters into striking particulars with a view to interest or impress
by graphic effect. It is not therefore true, though often said, that description is only an extended
definition. “Logicians distinguish definitions into essential and accidental. An essential definition states
what are regarded as the constituent parts of the essence of that which is to be defined; and an accidental
definition lays down what are regarded as circumstances belonging to it, viz., properties or accidents,
such as causes, effects, etc.”–Whately. According to the Webster’s dictionary description is the act of
describing something; in other words, it is a full and detailed explanation of something.
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Thus a problem description is one of the most important steps in engineering. Here the researcher
should clearly describe the entire project in as much detail as possible. This scope of the project might
be considered to be too broad in nature, and so the researcher may impose limitations or restrictions on
the study.

A good problem description will help the employee to produce what we are interested in the most
efficient time-frame. A poor job could lead to undesirable results. During the formulation of the problem
description one uses the first stage of the design process. This description should include all the necessary
information to complete a given task.

In short, we need to clearly state the “WHAT IS THE PROBLEM”. When formulating the problem
description make sure to keep in mind the following:

1. The engineer is a person who applies scientific knowledge to satisfy humankind’s needs.

2. The first task of the engineer involves determining the real problems.

3. It is necessary to formulate a clear, exact statement of the problem in engineering words and
symbols.

4. Vague statements from the costumer usually result in bad design.

5. Before an engineer can define the problem properly, he or she must recognize all the problems that
exist.

1.2.5 Decision Making

During the design process, one may generate more than one possible design to meet the customer needs.
Many methods exist but the decision matrix method, or Pugh method, is one of the most common ones.
This is a method for concept selection using a scoring matrix. It is implemented by establishing an
evaluation team, and setting up a matrix of evaluation criteria versus alternative embodiments.

For an alternative to be considered it should meet the customer needs and seem feasible to the
engineering group. Should it fail any of the above criteria it must be dropped. Those concepts that pass
this screening process need to be evaluated with respect to each other, using a fixed criteria.

Usually, the options are scored relative to criteria using a symbolic approach (one symbol for better
than, another for neutral, and another for worse than baseline). These get converted into scores and
combined in the matrix to yield scores for each option. Effective for comparing alternative concepts
Scores concepts relative to one another Iterative evaluation method Most effective if each member of a
design team performs it independently and results are compared. Comparison of the scores generated
gives insight into the best alternatives.

Now we shall highlight the steps in constructing the Pugh matrix:

1. Choose or develop the criteria for comparison. It is extremely important to examine the
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customer requirements to generate a list of criteria for comparison. The criteria is a set of engi-
neering requirements and targets and may have different levels of importance. Different weighing
schemes, can be used.

The first method is based on assigning a scale from 0% to 100% to each criteria. Remember each
criteria is assigned a weigh factor that corresponds to its importance relative to other criteria.
However, when the weighing factors are added they should equal to 100%.

The second method is based on assigning an absolute factor, where each criteria is evaluated
individually on a scale from 0 to 10. Other criteria will not interfere with the weigh factor used.

2. Select the Alternatives to be compared. The alternatives are the different ideas developed
during concept generation. All concepts should be compared at the same level of generalization
and in similar language. Some of the alternatives will be dropped because they do not satisfy the
customer demands or they are not feasible. Through initial screening stages try to reduce your
alternatives up to six, whenever possible. Remember all alternatives must be feasible candidates
to enter the final stage.

3. Generate Scores. After careful consideration, the design team chooses a concept to become the
benchmark or datum1 against which all other concepts are rated.

For each comparison, the product should be evaluated as being2 better (+1), the same (0), or
worse (−1) than the datum. A number of variations on scoring Pughs method exist. For example
a seven level scale could be used for a finer scoring system where:

+3 meets criterion extremely better than datum

+2 meets criterion much better than datum

+1 meets criterion better than datum

0 meets criterion as well as datum

−1 meets criterion not as well as datum

−2 meets criterion much worse then the datum

−3 meets criterion far worse than the datum

If it is impossible to make a comparison, more information should be developed.

4. Compute the total score. Four scores will be generated, the number of plus scores, minus
scores, the overall total and the weighted total. The overall total is the number of plus scores
and the number of minus scores. The weighted total is the scores times their respective weighting
factors, added up. The totals should not be treated as absolute in the decision making process but
as guidance only.

If the two top scores are very close or very similar, then they should be examined more closely to
make a more informed decision.

1The datum is something known or assumed, an information from which conclusions can be inferred. Thus, a datum
could be an existing design or one of the same alternatives under consideration. This reference could be an industry
standard, an obvious solution to the problem, the most favorable concept, or a combination of subsystems.

2The matrix can be developed with a spreadsheet like Excel.
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Example 1.1.

Toyota is one of the most popular brand cars in our society today. Prof. Goyal wants to buy
a Toyota Car but has a hard time making-up his mind. Use the Pugh Matrix Method to help
him decide between a Corolla, Prius and MR2 Spyder. Take Toyota Corolla as the Datum,
Prius as the first car, and MR2 Spyder as the second car. Develop as least 15 different
criteria and use both techniques (0%–100% and 0–10) discussed in class. Use criteria in
safety, economy, environment, design, comfort, among others.3

 

 

 
 
 
 
 

(a)

 

 

 
 

 
 
 (b)

 

 

 
 
 

 
(c)

Figure 1.3: Toyota Corolla, Toyota Prius and Toyota MR2 Spyder.

The following are the criteria definitions along with a description used to compare the three
Toyota models on a −2 to +2 scale and the explanation of the nature of the scores given
to each car. These were the parameters used in conjunction with Pugh’s matrix method to
compare the cars and be able to make a justified decision as to which model satisfies best
Professor Goyal’s needs. As a team we have considered the eighteen different criteria and
these are:

1. Fuel economy This criterion is based on the average miles per gallon obtained by each
car, both on the highway and the city. On a scale of 0–10 we gave this criterion a 10
and on a percentage basis we gave it a 20% weight due to the fact that ever increasing

3Solution thanks to Samuel Medina; Jose Borrero; Omar Bravo; and José Ortiz. First course in Machine Design, Fall
2004.
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gas prices demands better technologies that reduce fuel consumption. On this test the
Prius obtained the maximum rating of +2, due to the fact that it offers around 60mpg
on the highway and 51mpg on the city, versus the MR2 Spyder’s 32mpg and 26mpg and
the Corolla’s 38mpg and 29mpg. Since the MR2-S obtained a little bit less miles per
gallon than our datum we gave it a score of −1.

2. Base Price The price category is as obvious as it sounds. Here we compare the three
vehicles based on the price of their basic unit. This is a priority on every consumer’s
lists, except for those who earn in the six or seven figure salary range. On both scales
base price was rated at 8. The Prius because of all of its technological and standard
features it starts out at $20,295, which is about $4,500 more than the base price of the
Corolla. For this reason we gave the Prius a score of −1. Meanwhile the MR2-S starts
at $24,895 which is about $9,000 more than the Corolla, still not that expensive for the
performance you can buy, but expensive enough to drive you away from it and make
you want to drive a Corolla or a Prius, its score was −2.

3. People capacity The people capacity is the amount of passengers than can be accom-
modated in the vehicle at one time without folding any seats. On a scale of 0–10 we
rated this criterion as a 6 and on a percentage basis we assigned to it 5%. This category
does not rate that high because usually when people want to buy a new car all that they
want is a car that can accommodate more than two people, this means no roadsters and
no coupes. Here the Prius tied our datum with a maximum seating capacity of five that
is why it obtained a score of 0, meanwhile the MR2-S only has seating for two so it got
a score of −2.

4. Styling Looks or appearance of the car, consumer appeals. This is a subjective category
which is solely based on our teams opinion of which car we would choose based on
exterior appearance. Here we have to say that roadsters are sexier that anything else
on the road, (well maybe not sexier than a Ferrari) that is why we gave a score of +2
to the MR2-S; on the other hand the Prius looks interesting enough to make you want
to drive it so we gave it a score of +1.

5. Safety (crash testing) This criterion is based on the score given by the National High-
way Traffic and Safety Administration (NHTSA) on the tests performed on the vehicles.
This is a very important category that is most of the time overlooked by car buyers, but
since we are very aware of its importance we gave it a score of 8, both on a scale of 0–10
and percentage wise. The Prius and the Corolla were basically tied in this category,
with excellent protection on the driver and good protection on the passenger, the front
and the rear of the car, for this reason we gave the Prius a score of 0. Meanwhile our
team was not able to find any crash test data from any source for any of the production
years of the MR2-S, so we were unable to compare this car to the other two under this
criterion.

6. Fit and finish This criterion refers to the quality and craftsmanship demonstrated in
the construction of the cars interior. This is one very important aspect that is certainly
overlooked. As a car buyer you do not want to go and buy a vehicle that has poor
quality interior materials, for example: cup holders that can not hold a soda can, a
steering wheel whose color fades after one use, etc. On a scale of 0–10 we rated this
category as a 7 and on a percentage basis as a 5%. One thing I have to say here and it
is that all Toyota’s are very well built and they have superb quality. Here we gave the
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slight edge to the MR2-S due to the fact that it uses materials that look and feel just a
little bit more expensive than those on the Prius and Corolla, this is why we gave the
Prius a 0 and the MR2-S a +1.

7. Comfort (Head room, Leg room, etc) The criterion of comfort is based on the amount
of space available to the driver and passenger’s which makes the ride comfortable to the
average Puerto Rican in height. This test was rated as a 7 in both of the scales, because
you can never sacrifice comfort, unless you are in a race car and were are not evaluating
any. The Prius offered just a little bit more space everywhere than the Corolla, but
when you add little by little it amounts to a lot and that is why it obtained a score of
+2. Meanwhile sports cars are generally a bit uncomfortable and the MR2-S is not the
exception there is just enough space for two here and no space to stretch out, so we
gave it a −2.

8. Suspension type The suspension type of the vehicle not only determines the handling
characteristics of the car but it also determines the ride quality. This criterion is gener-
ally not important to 99% of the car buyers out there, but to us as mechanical engineers
and performance car aficionados it is an important criterion, nonetheless we rate it as
normal people and on a 0–10 scale we rated it as a 5 and on a percentage basis we rated
it as 2%. Here the Prius and the Corolla are tied once again, they both have indepen-
dent front suspension and front are rear sway bars; since there is no improvement from
the Corolla to the Prius we gave it a 0. Meanwhile the MR2-S is a sports car, because of
this it has independent four wheel suspension and well as front and rear sway bars, these
features give this car much better handling characteristics than the other two vehicles,
because of this we gave the MR2-S a score of +2.

9. Power to weight ratio The power to weight ratio measures of the cars ability to ac-
celerate; it is obtained by dividing the cars horsepower by its weight. This criterion is
especially important to people who care a bit about how well their machine stacks up
against other cars in terms of the cars ability to use its power effectively, on a 0–10 scale
we rated is as a 6 and on a percentage basis we rated it as 3%. Surprisingly the Prius
did not fare so well here it scored a -2, because of the fact that it produces just a little
over 110hp and weights almost 2900lbs, while the Corolla produces 130hp and weights
just a bit over 2600lbs. On the other hand the MR2-S produces 138hp and only weights
2200lbs, this earned it a score of +2.

10. Power train The power train category is a comparison between the horsepower and
torque of the engines of the trim level vehicles selected. The car with the better power
train offers more speed and acceleration to its driver. This category is not important to
all car buyers out there, most people just want the power to haul some stuff around or
maybe even go up a hill, this is why it is scored at 7 on a 0–10 scale and as a 3% on the
percentage scale. The MR2-S with its 138hp and 125ft-lbs of torque gets a score of +2,
while the Prius with its 110hp combination (70hp from the gasoline engine and about
40hp from the electric motor) gets a score of +1, because the cvt extracts every bit of
power available of the engines.

11. Performance The performance criterion was based on the average time that it takes
each of the vehicles being evaluated to accelerate from 0-60mph. This category does not
matter much to all people, most car buyers want a car that can get them from point
A to point B, for this reason we gave it a score of 5 on a 0–10 scale and 4% on the
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percentage scale. Once again the MR2-S wins with a time around 7.0 secs. The Corolla
hits 60mph around 9.0 seconds, while the Prius does this around 10.37 seconds. The
score here was +2 for the MR2-S and −1 for the Prius.

12. Braking distance This criterion is based on the amount of feet that it takes the car
to stop from 60-0mph. This aspect is especially important because of safety reasons,
because good brakes always come in handy whenever you have to execute an unexpected
stop we assigned a score of 8 on a 0–10 scale and a score of 2% on a percentage basis.
Since the MR2-S has four wheel disk brakes it outperforms both the Prius and the
Corolla by 12 to 30 feet. The MR2-S stops in 119ft, while the Corolla and the Prius
stop at 150ft and 131.65ft respectively. Because of the facts presented above we gave
the MR2-S a score of +2 and the Prius a score of +1.

13. Turning cycle This category measures the manoeuvrability of the car in tight spaces.
This category was rated at 4 on a 0–10 scale and as a 1% on the percentage scale. Car
buyers certainly do not go into the market looking for the car with the tightest turning
radius but they certainly do not want the turning radius of a Ford F-350. This category
was won by the Toyota Prius which has a turning circle of 34.1ft and the MR2-S came
in second with a turning circle of 34.8ft. The scores here were +2 and +1 respectively.

14. Storage capacity The storage capacity is the space available to carry luggage. This
category was rated as a 5 on a 0–10 scale and as a 3% on the percentage scale, due to
the fact that when people go out there on the market to look for a car they are not
looking for 30 cubic feet of cargo space, instead all that they want is enough space to
haul around the groceries. In spite of its small looking body the Prius offers almost three
more cubic feet of cargo space than the Corolla and almost 15 more than the MR2-S.
The score here was +2 for the Prius and −2 for the MR2-S because of its insignificant
1.9 cubic feet of cargo space.

15. Standard features and technologies This category refers to the amenities you re-
ceive with the purchase of the base model of each one of the cars. On a score of 0–10 we
rated this test as a 7 and on a percentage scale we rated it as a 5%. The Prius just had
tons of standard features that were either optional or not available on the other two cars
such as: audio control on the steering wheel and a continuously variable transmission
among others. The scoring here was Prius +2 and MR2-S 0.

16. Availability of spare parts This criterion refers to the easiness with which you may
find or source parts on the market for any of the three vehicles being compared. It was
rated as a 5 on a 0–10 scale and as a 3% on a percentage scale, because the truth is that
just a tiny fraction of car buyers out take into consideration this aspect whenever they
are searching for a new car. Right now we gave the Prius a score of −2 here because of
the fact that the technologies of the car are relatively new and there are few technicians
and parts that can be replaced without having to take the car to the dealer and leave
it there for a couple of weeks. Meanwhile the MR2-S has been on the market for five
years now and there are enough parts on the market to fix any problem without having
to take it to the dealer, because of this we gave it a score of +2.

17. Warranty This category refers to the basic manufactures warranty offered when you
by the vehicle brand view from an authorized Toyota dealer. The vehicle’s warranty
or for that matter any type of warranty is very important to the consumer, because it
gives you a certain sense of confidence about the product that you are purchasing it
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also serves to tell you how reliable the product will tend to be. On the 0–10 scale we
rated warranty as a 9 and 15% on the percentage scale. All Toyota cars are backed up
by excellent warranties, 3 years or 36,000 miles is their basic warranty; 5 years or 60,000
miles on the drive train and a 5 year unlimited mileage warranty against corrosion. Both
the Prius and the MR2-S got the same score here 0.

Table 1.1: Rank-Ordered
A B DATUM

Criteria Score (0–10) Prius MR2 Spyder Corolla

1. Fuel Economy 10 2 −1 0

2. Base Price 8 −1 −2 0

3. People Capacity 6 0 −2 0

4. Styling 7 1 2 0

5. Safety (Crash Testing) 8 0 0 0

6. Fit & Finish (Quality) 7 0 1 0

7. Comfort 7 2 −2 0

8. Suspension Type 5 0 2 0

9. Power to Weight Ratio 6 −2 2 0

10. Powertrain 7 1 2 0

11. Performance 5 −1 2 0

12. Braking Distance 8 1 2 0

13. Turning Circle 4 2 1 0

14. Storage Capacity 5 2 −1 0

15. Standard Features 7 2 0 0

16. Availability of spare parts 5 −2 1 0

17. Warranty 9 0 0 0

Total 114 7 6 0

Total Positive — 13 15 0

Total Negative — −6 −9 0

Weighted Total — 52 30 0
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Table 1.2: Weighted Method
A B DATUM

Criteria Weight (%) Prius MR2 Spyder Corolla

1. Fuel Economy 20 2 −1 0

2. Base Price 8 −1 −2 0

3. People Capacity 5 0 −2 0

4. Styling 6 1 2 0

5. Safety (Crash Testing) 8 0 0 0

6. Fit & Finish (Quality) 5 0 1 0

7. Comfort 7 2 −2 0

8. Suspension Type 2 0 2 0

9. Power to Weight Ratio 3 −2 2 0

10. Powertrain 3 1 2 0

11. Performance 4 −1 2 0

12. Braking Distance 2 1 2 0

13. Turning Circle 1 2 1 0

14. Storage Capacity 3 2 −1 0

15. Standard Features 5 2 0 0

16. Availability of spare parts 3 −2 1 0

17. Warranty 15 0 0 0

Total 100 7 6 0

Total Positive — 13 15 0

Total Negative — −6 −9 0

Weighted Total — 59 −17 0

According to the results obtained using Pugh’s Matrix Method, the Toyota Prius should be
the car bought by Professor Goyal due to the high score obtained in the test. This car not
only give our outstanding fuel economy but it also offer cutting edge styling and tons of
standard features not available on the other two cars such as traction control and braking
assistance, among others.

End Example �

1.2.6 Scheduling: Gantt Chart

Development of a new product according to the design process is always limited by the time available for
the entire process. Thus for most engineering problems scheduling is an essential part of design. With a
careful planning, deadlines are met and the customer satisfaction increases. Although many techniques
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exist for scheduling, here one of the most common methods will be briefly discuss. The method makes
use of a Gantt Chart.

History

Henry Laurence Gantt (1861–1919) was a mechanical engineer, management consultant and industry
advisor. Henry Laurence Gantt developed Gantt charts in the second decade of the 20th century. Gantt
charts were used as a visual tool to show scheduled and actual progress of projects. Accepted as a
commonplace project management tool today, it was an innovation of world-wide importance in the
1920s. Gantt charts were used on large construction projects like the Hoover Dam started in 1931 and
the interstate highway network started in 1956.

Overview

A Gantt chart is a graphical representation of the duration of a project or tasks against the progression
of time. A project is a set of activities which ends with specific accomplishment and which has (1) Non-
routine tasks, (2) Distinct start/finish dates, and (3) Resource constraints (time/money/people/equipment).

Tasks are activities which must be completed to acheive project goal. Break the project into tasks
and subtasks. Tasks have start and end points, are short relative to the project and are significant (not
going to library, but rather, search literature). Use verb-noun form for naming tasks, e.g. create drawings
or build prototype. Use action verbs such as create, define and gather rather than will be made. Each
task has a duration. Very difficult to estimate durations accurately. Doubling your best guess usually
works well.

Milestones are important checkpoints or interim goals for a project. Can be used to catch scheduling
problems early. Name by noun-verb form, e.g. report due, parts ordered, prototype complete.

Your plan will evolve so be flexible and update on a regular basis. It also helps to identify risk areas
for project, for example, things you don’t know how to do but will have to learn. These are risky because
you may not have a good sense for how long the task will take. Or, you may not know how long it will
take to receive components you purchased for a project.

Basics

Gantt charts are a project planning tool that can be used to represent the timing of tasks required to
complete a project. Because Gantt charts are simple to understand and easy to construct, they are used
by most project managers for all but the most complex projects. Gantt charts are used for planning and
monitoring progress.

The reason to use Gantt charts as a useful tools for planning and scheduling projects is that they
allow to assess how long a project should take, lay out the order in which tasks need to be carried
out, help manage the dependencies between tasks, and determine the resources needed. The reason to
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use Gantt charts when a project is under way is that they monitor progress, can immediately see what
should have been achieved at a point in time, help manage the dependencies between tasks, and allow
to see how remedial action may bring the project back on course.

In a Gantt chart, each task takes up one row. Dates run along the top in increments of days, weeks or
months, depending on the total length of the project. The expected time for each task is represented by
a horizontal bar whose left end marks the expected beginning of the task and whose right end marks the
expected completion date. Tasks may run sequentially, in parallel or overlapping. Some Gantt charts
include two extra columns between the task and the dates: the first column holds the duration of the
activity and the second one which team members are responsible for such task. MS Excel is a good tool
to create Gantt charts.

The first Gantt chart represents the planning of the events. A second one helps to compare the
progress with the scheduled timing. Thus as the project progresses, the chart is updated by filling in
the bars to a length proportional to the fraction of work that has been accomplished on the task. This
way, one can get a quick reading of project progress by drawing a vertical line through the chart at the
current date. Completed tasks lie to the left of the line and are completely filled in. Current tasks cross
the line and are behind schedule if their filled-in section is to the left of the line and ahead of schedule
if the filled-in section stops to the right of the line. Future tasks lie completely to the right of the line.

In constructing a Gantt chart, keep the tasks to a manageable number (no more than 15 or 20) so
that the chart fits on a single page. More complex projects may require subordinate charts which detail
the timing of all the subtasks which make up one of the main tasks. For team projects, it often helps to
have an additional column containing numbers or initials which identify who on the team is responsible
for the task.

Often the project has important events which you would like to appear on the project timeline, but
which are not tasks. For example, you may wish to highlight when a prototype is complete or the date
of a design review. You enter these on a Gantt chart as milestone events and mark them with a special
symbol, often an upside-down triangle.

How to build a Gantt chart?

Basically, there are four steps in preparing a Gantt chart:

1. List all events or milestones in an ordered list, whenever possible.

2. Estimate the time required to establish each event (remember it is an estimate).

3. List the starting time and end time for each event.

4. Represent the information in a bar chart.

A Gantt chart is a matrix and it is:
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(a) Setting up the Gantt chart.
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(b) Using the Gantt chart.

Figure 1.4: Gantt chart in planning.

• constructed with a horizontal axis representing the total time span of the project, broken down
into increments (days, weeks, or months)

• constructed with a vertical axis representing the tasks that make up the project.

• constructed with a graph area which contains horizontal bars for each task connecting the period
start and period ending symbols.

• has variants such as:

– Milestones: important checkpoints or interim goals for a project

– Resources: for team projects, it often helps to have an additional column containing numbers
or initials which identify who on the team is responsible for the task

– Status: the projects progress, the chart is updated by filling in the task’s bar to a length
proportional to the amount of work that has been finished

– Dependencies: an essential concept that some activities are dependent on other activities
being completed first

It is greatly used in all project management groups and here is an example on how to use it. Fig-
ure 1.4(a) shows the planning of a task that starts in the August and ends in December.

For task 1 mark the time period when you will be working on it. Only shade that time interval. For
instance if task one will begin at the end of August and conclude by the third week of September then
represent this using a bar, as shown in Fig. 1.4(b).
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In constructing a Gantt chart, keep the tasks to a manageable number (no more than 15 or 20) so
that the chart fits on a single page. More complex projects may require subordinate charts which detail
the timing of all the subtasks which make up one of the main tasks. For team projects, it often helps to
have an additional column containing numbers or initials which identify who on the team is responsible
for the task.

Often the project has important events which you would like to appear on the project timeline, but
which are not tasks. For example, you may wish to highlight when a prototype is complete or the date
of a design review. You enter these on a Gantt chart as milestone events and mark them with a special
symbol, often an upside-down triangle.

1.3 Technical Communication

Communication is one of the most important skills every engineer should develop. The best idea or
design might never be implemented, or even be considered, unless the designer can communicate the
idea or design to the proper people, in a clear and appropriate way. The quality of your communication,
be either oral or written, does not necessarily determine the quality of your work. However, the quality
of your work is best understood through the communication process.

Mainly two ways exist through which we all communicate: Writing and oral presentations. Let us
first talk about the major steps in the writing process and then we shall discuss about oral presentation
techniques. These techniques are thoroughly discussed in Appendix ??.
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1.5 Suggested Problems

Problem 1.1.

Professor Goyal prefers all the course homework be done by hand, with the exception of simple arithmetic
calculations. Mr. Juan González is taking his Machine Design course this semester and needs to purchase
a calculator. His is on a tight-budget constraint and would pay for what is only necessary for the course.
He is very picky regarding the colors: Juan prefers dark color calculators only. He wants to purchase a
calculator that would last him for the next 20-years at least. In addition, the guarantee will also play a
big role. Using the Pugh’s method help him decide from the following options:

1. HP 48gII graphing calculator

2. HP 30s scientific calculator

3. Texas Instrument TI-92 Plus Graphic Calculator

4. DATUM: Casio FX-250

The following are the criteria definitions used to compare the models: -3 to +3 scale and the explanation
of the nature of the scores given to each car. Use the ranked-order method and compare the results with
those obtained using the weighted method.

�
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Chapter 2

Applied Linear Elasticity

Instructional Objectives of Chapter 2

After completing this chapter, the reader should be able to:

1. Explain and apply the concepts of stress and strain.

2. Determine the principal stresses and strains, and their principal planes.

3. Identify the various stress and strain measures.

4. Understand linear elasticity as applied to aerospace structures.

The stress and strain states at critical locations in a structural component are extremely important
to evaluate the safety of structural components. Most of the concepts covered in this chapter are no
longer solved by hand but with the use of computer software. However, a theoretical understanding how
the state of stress is expressed at a point and state of strain at the neighborhood of the same point may
be crucial and important. Thus, we will begin our discussion with the theory of stresses, followed by the
theory of strains. In the next chapter, we will discuss how both stresses and strains are related.

19
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2.1 Theory of Stresses

The concept of stress began with the study of strength and failure of solids. The state of stress in a solid
body can be defined as a measure of force intensity, at a point, acting within the solid. It has units of:

[Force]
[Length]2

We should handle stress at a point carefully because it is directionally dependent. By directionally
dependent we do not meant stress depends on the direction of the but that it depends on the coordinate
system.
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Figure 2.1: Solid body in equilibrium.

2.1.1 State of Stress at a Point

In order to better understand the concept of stress, let us consider a solid body in equilibrium, loaded
and constrained in an arbitrary fashion, as shown in Fig. 2.1. Let an arbitrary plane cut the solid body
as shown in Fig. 2.2. We define the small element of area of a cutting plane through point P in the solid
be defined as δA. The infinitesimal plane has a unit normal n̂ and encloses the point of interest.

Let us denote δF(n) as the force exerted by the rest of the body on δA of a cutting plane through point
P . Likewise, the couple exerted at point P will be denoted as δM(n). Both δF(n) δM(n) are resultants
loads and are, in general, different in magnitude and orientation from the corresponding resultants acting
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Figure 2.2: Solid body in equilibrium sliced with an arbitrary plane.

on the entire surface of the cut. Now, the average stress vector on this area can be obtained by

T(n)
ave =

δF(n)

δA(n)

(2.1)

As we continuously reduce the small surface area, δA(n), the area becomes an element of infinitesimal
area δA(n) → 0 and we approach the point P . As the small surface becomes a point, the force and couple
acting on the element keep decreasing in magnitude and changing in orientation whereas the normal to
the surface remains the unit vector, n̂ of constant direction in space. This limiting process gives place
to the concept of stress vector, which is defined as

lim
δA(n)→0

δF(n)

δA(n)

= T(n) (2.2)

where T(n) is called the stress vector and in the cartesian coordinate is defined as

T(n) = Tx î + Ty ĵ + Tz k̂ =





Tx

Ty

Tz





(2.3)

The existence of the stress vector is a fundamental assumption of continuum mechanics. In this limiting
process, we assume that the couple becomes smaller and smaller:

lim
δA(n)→0

δM(n)

δA(n)

= 0 (2.4)
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The above is also a logical assumption of continuum mechanics because in the limiting process, both
forces and moment arms become increasingly small. Forces decrease because the area on which they
act decreases, and thus moment arms decrease because the dimensions of the surface decrease. At the
limit, the couple is the product of a differential element of force by a differential element of moment arm,
giving rise to a negligible, second order quantity.

We use the notation T(n) to emphasize the fact that the stress vector at a given point P in the
continuum depends explicitly upon the particular surface, which is represented by the unit normal n̂.
Thus, the superscript (n) refers the normal of the surface where the stress vector is acting. We can obtain
the normal, tangential and resultant components of the stress vector using vector algebra1. Hence we
obtain the normal stress component as follows

σnn = T(n) · n̂ (2.5)

The stress vector in the normal stress component can be found by:

Snn = σnnn̂ (2.6)

The tangential component as follows

σtt =
√∥∥T(n)

∥∥2 − σ2
nn (2.7)

where ∥∥T(n)
∥∥ =

√
T(n) ·T(n) (2.8)

An alternative to the above approach can be to find the stress vector in the tangential directional and
then taking the magnitude of the vector:

Stt = T(n) − Snn → σtt = ‖Stt‖ , ‖Stt‖ =
√

Stt · Stt

For an infinite number of cutting planes through point P, each identified by a specific n̂, there will be
an infinite associated stress vectors T(n) for a given loading of the body. This total pair of the companion
vectors T(n) and n̂ at P define the state of stress at that point.

Now that we have defined the concept of stress, let us proceed to obtain the state of stress for
the cartesian coordinate system: x-y-z. Let the stress vector act on three mutually orthogonal planes
described by the unit base vectors î, ĵ, and k̂. Consider the x-plane (plane normal to the x-axis), with
a differential area δA with the unit normal î. Let δF(x) be the force acting by the rest of the body on

1For a review in vector algebra see Appendix A.
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the enclosing x-plane. Then the stress vector T(x) is

T(x) = lim
δA→0

δF(x)

δA

= lim
δA→0

{
δF (x)

x î + δF (x)
y ĵ + δF (x)

z k̂
δA

}

= lim
δA→0

{
δF (x)

x

δA
î +

δF (x)
y

δA
ĵ +

δF (x)
z

δA
k̂
}

= lim
δA→0

{
δF (x)

x

δA

}
î + lim

δA→0

{
δF (x)

y

δA

}
ĵ + lim

δA→0

{
δF (x)

z

δA

}
k̂

= σxx î + σxy ĵ + σxz k̂

(2.9)

The component σxx is called the normal stress component in the x-direction. The other two components
σxy and σxz act tangential to the plane and are called shear components. Using a similar process, we can
obtain the stress in the y and z directions. Thus, the components of the stresses acting the x, y, and z

direction are
T(x) = = σxx î + σxy ĵ + σxz k̂

T(y) = = σyx î + σyy ĵ + σyz k̂

T(z) = = σzx î + σzy ĵ + σzz k̂

(2.10)

All three stress vectors describe the state of stress at a given point.

Now, we express the unit vector acting on P, for any arbitrary orthogonal planes, as follows:

n̂ = nx î + ny ĵ + nz k̂

Thus, if we want the stresses acting in the x-direction:

Tx = T(x) · n̂ = σxx nx + σxy ny + σxz nz

Similarly, we can obtain the stresses acting in the y and z directions:

Ty = T(y) · n̂ = σyx nx + σyy ny + σyz nz

Tz = T(z) · n̂ = σzx nx + σzy ny + σzz nz

This shows that we need a total of nine stress components to completely describe the state of stress at
a given point. Furthermore, the shear stresses will be expressed using τ instead of σ and σ will be used
for normal stress only.
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Cauchy’s Stress Tensor

We can express the equations of stress quantities in each mutually orthogonal planes in a matrix form
as follows 




Tx

Ty

Tz





=




σxx τxy τxz

τyx σyy τyz

τzx τzy σzz








nx

ny

nz





T = σ · n̂

(2.11)

where σ is called the stress tensor and n̂ is the unit normal to the plane. The stress tensor contains the
nine stress components and we defined it as follows

σ =




σxx τxy τxz

τyx σyy τyz

τzx τzy σzz




(2.12)

As we can see, all normal and shear stress components fully characterize the state of stress at a
point. We will later show that if the stress components acting on three orthogonal faces are known, it
is possible to compute the stress components acting at the same point, on any face with an arbitrary
orientation. Hence, the fact that the state of stress at a point is a complex concept: its complete
definition requires the knowledge of nine stress components acting on three mutually orthogonal faces.
This is quite different form the concept of a force: (i) a force is vector quantity that is characterized by
its magnitude and orientation, (ii) a force can be defined by the three components of the force vector in a
given coordinate system. Thus, the definition of a force requires three quantities, whereas the definition
of the stress state requires nine quantities. In this context, a force is a vector, i.e. a first order tensor,
whereas a state of stress is a second order tensor.

2.1.2 Stress Convention and Signs

We usually classify stresses into normal stresses and shear stresses: Normal stress, σ, are stress perpen-
dicular (normal) to the plane on which they act; and shear stresses, τ , are stresses parallel to the plane
on which they act.

Fig. 2.3 shows the complete definition of the state of stress at a point. Note that the positive direction
of each stress component are given and the gray dashed arrows and numbers are on hidden faces. The
stresses have two subscripts and these are interpreted as follows:

τ[plane where stress acts][direction of the stress]

The first of which indicates the direction of the plane on which it acts and the second of which indicates
the direction of the stress in the plane. For an example, τzx is the shear stress acting on the z-plane
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Figure 2.3: Complete definition of the state of stress at a point.

in the direction of x. In short, the convention we use is such that a stress component, acting on the
x-plane, is positive if acting toward the positive x-axis.

If any stress component is positive the direction of the outer normal will be given as shown in Fig. 2.3.
Based on our convention, if a normal stress is positive in its value then it will be in tension; if it is negative
then it will be in compression. Positive (+) shear stresses act in the direction of an axis whose sign is
the same as the sign of the axis in the direction of the outward drawn normal to the plane on which the
shear stresses act.

2.1.3 Equilibrium

Volume Equilibrium

In general, the state of stress varies throughout the solid body, and hence, it is clear that the stresses
acting on two parallel faces located a small distance apart are not equal. To better understand this,
let us consider a small differential element with only shear stresses acting about the z-axis, as shown in
Fig. 2.4.

In Fig. 2.4, the two faces of a differential volume element that are normal to y-axis. The normal stress
component on the negative face at coordinate y is σyy, but the stress components on the positive face
at coordinate y + dy will be slightly different and we can write it as σyy(y + dy). If σyy(y) is an analytic
function, it is then possible to express σyy(y + dy) in terms of σyy(y) using a Taylor series expansion to
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Figure 2.4: Shear stresses on the faces of an element at a point in an elastic body about the z-axis.

obtain

σyy(y + dy) = σyy

∣∣∣
y+dy

= σyy + dσyy = σyy(y) +
∂σyy

∂y

∣∣∣
y

dy + · · ·+ higher order terms

This expansion is a essential in the deriving the differential equations governing the behavior of a
continuum such as a solid body. Since all differentials are infinitesimally small, we neglect all higher
order terms. Hence, we can write the stress components on the positive face at coordinate y + dy as

σyy(y + dy) = σyy(y) +
∂σyy

∂y

∣∣∣
y

dy

The same series expansion technique can be applied to all other directions and shear stress components.

Force Equilibrium

Let us assume that in addition to the internal loads, the solid is subject to body forces per unit volume,
represented by a vector b acting about its centroid. These body forces can be gravity forces, inertial
forces, or forces of an electric or magnetic origin; the components of this body force vector resolved in
the cartesian coordinate system as

b =





bx
by
bz





The units of the force vector are force per unit volume.

Now, let us consider the differential element of volume subjected to stress components acting on its
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six external faces and to body forces per unit volume. According to Newton’s law, static equilibrium
requires the sum of all the forces acting on this differential element to vanish. Considering all the forces
acting along the direction of x-axis, the equilibrium condition is

−σxx dy dz +
(
σxx +

∂σxx

∂x
dx
)

dy dz− τyx dx dz +
(
τyx +

∂τyx

∂y
dy
)

dx dz+

−τzx dx dy +
(
τzx +

∂τzx
∂z

dz
)

dx dy + bx dx dy dz = 0

The above equation represents an equilibrium of forces. Hence, the stress components must be multiplied
by the surface area on which they act to yield the corresponding force; and the components of the body
force per unit volume must be multiplied by the volume of the differential element, dx dy dz. Now
simplifying the equilibrium condition, we get

(
∂σxx

∂x
dx
)

dy dz +
(
∂τyx

∂y
dy
)

dx dz +
(
∂τzx
∂z

dz
)

dx dy + bx dx dy dz = 0

(
∂σxx

∂x
+
∂τyx

∂y
+
∂τzx
∂z

+ bx

)
dx dy dz = 0

Taking the limit as dx, dy, and dz approach zero (the differential volume approaches to a point)

∂σxx

∂x
+
∂τyx

∂y
+
∂τzx
∂z

+ bx = 0

Similarly reasoning along the y and z axis, we obtain the three equilibrium equations which must be
satisfied at all point inside the body:

∂σxx

∂x
+
∂τyx

∂y
+
∂τzx
∂z

+ bx = 0

∂τxy

∂x
+
∂σyy

∂y
+
∂τzy
∂z

+ by = 0

∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z
+ bz = 0

What the above three equations tell us is that a state of stress within an elastic continuum is statically
admissible if and only if it satisfies the equilibrium equations.
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Example 2.1.

Determine under what conditions the following state of stress within an elastic solid is stat-
ically admissible. Note that A,B,C are constants.

σxx = 2Ax2

σyy = 2C
(
4x2 + y2

)

τxy = −4B xy

τyx = τxy

τxz = τyz = τzx = τzy = σzz = 0

Ignore all body forces.

Any state of stress satisfying the equilibrium equations is statically admissible. Assuming
that body forces are negligible, the equilibrium equations can be written as follows

∂σxx

∂x
+
∂τyx

∂y
+
∂τzx
∂z

= 0

∂τxy

∂x
+
∂σyy

∂y
+
∂τzy
∂z

= 0

∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z
= 0

∂σxx

∂x
+
∂τyx

∂y
+
∂τzx
∂z

=
∂(2Ax2)

∂x
+
∂(−4B xy)

∂y
+
∂(0)
∂z

= 4Ax− 4B x+ 0 = 4x (A−B)

For all possible values of x, the first equilibrium equation is satisfied only if A = B.

∂τxy

∂x
+
∂σyy

∂y
+
∂τzy
∂z

=
∂(−4B xy)

∂x
+
∂(8C x2 + 2C y2)

∂y
+
∂(0)
∂z

= −4B y + 4C y + 0 = 4 y (B − C)

For all possible values of y, the first equilibrium equation is satisfied only if B = C.

∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z
=
∂(0)
∂x

+
∂(0)
∂y

+
∂(0)
∂z

= 0 + 0 + 0

= 0 satisfies third equilibrium equation

Also, note that
τxy = τyx

for moment equilibrium. Hence, if A = B = C, then the state of stress satisfies all three
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equilibrium equations and also τxy = τyx (for moment equilibrium). Under these conditions,
the given stress state is a statically admissible one.

End Example �

Moment Equilibrium

In addition, the requirement of equilibrium of moments implies that the shear stresses on orthogonal
planes at a point are equal in magnitude. To better understand this concept, consider a small differential
element with only shear forces acting about the z-axis, as shown in Fig. 2.5.
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 dx/2 
 dy/2  dy/2 
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 Fyx + dFyx 

S
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 x  Fxy + dFxy 

 Fyx + dFyx

 Fyx  

 Fxy  

TOP VIEW 

 dy/2  dy/2 

 dx/2 

 dx/2  dx 

Figure 2.5: Shear forces on the faces of an element at a point in an elastic body about the z-axis.

Note that when taking moment about the z-axis at a point S in the middle of the differential element,
all normal forces vanish. The small variation in the loads can be obtained as a result of a Taylor’s series
expansion,

Fxy

∣∣∣
x+dx

= Fxy + dFxy = Fxy +
∂Fxy

∂x
dx

Fyx

∣∣∣
y+dy

= Fyx + dFyx = Fyx +
∂Fyx

∂y
dy
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Now, the moment about the z-axis at a point S in the middle of the differential element gives:

{
Fxy

} dx
2

+
{
Fxy + dFxy

} dx
2
−
{
Fyx

} dy
2
−
{
Fyx + dFxy

} dy
2

= 0

{
τxy dz dy

} dx
2

+
{
τxy dz dy +

∂τxy

∂x
dx dz dy

} dx
2

−
{
τyx dz dx

} dy
2
−
{
τyx dz dx +

∂τyx

∂y
dy dz dx

} dy
2

= 0

Regrouping and simplifying,

{
τxy +

∂τxy

∂x
dx
}

dx dy dz−
{
τyx +

∂τyx

∂y
dy
}

dx dy dz = 0

{
τxy +

∂τxy

∂x
dx− τyx −

∂τyx

∂y
dy
}

dx dy dz = 0

For all differential volume (dVol = dx dy dz) different from zero,

τxy +
∂τxy

∂x
dx− τyx −

∂τyx

∂y
dy = 0

Taking the limit as dx, dy, and dz approach zero (the differential volume approaches to a point)

τxy − τyx = 0 → τxy = τyx (2.13)

Similarly, moment equilibrium about the y- and x-axis leads to

τzx = τxz τzy = τyz (2.14)

Hence, this lead to a symmetric stress tensor, known as the stress tensor,

σ =




σxx τxy τxz

τyx σyy τyz

τzx τzy σzz




=




σxx τxy τxz

τxy σyy τyz

τxz τyz σzz




(2.15)

The implication of these equalities is summarized by the principal of reciprocity of shearing stresses:

The shearing stresses acting in the direction normal to the common edge of two orthogonal
faces must be equal in magnitude and be simultaneously oriented toward or away from the
common edge.
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2.1.4 Surface Equilibrium: Cauchy’s Stress Relation

We use the Cauchy’s stress relation to relate the surface tractions at a point on the surface of the body
to the inner stresses, or to determine the stress boundary conditions which must be satisfied at those
points on the boundary where the tractions or surface forces are specified. Cauchy’s relationship can be
expressed as, 




Tx

Ty

Tz





=




σxx τxy τxz

τxy σyy τyz

τxz τyz σzz








nx

ny

nz





T(s) = σ · n̂(s) (2.16)

where n̂(s) is the unit normal to the plane s, σ the stress tensor at the point in the plane s, and T(s) the
total stress acting on n̂(s). It should be clear that T(s) does not necessarily act in the direction of n̂(s).
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Example 2.2.

The state of stress at a point in a structural component is given as




40 40 0
40 50 −60
0 −60 40


 MPa

(a) Show this state of stress on a differential element.

σ =



σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


 =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




40 40 0
40 50 −60
0 −60 40


 MPa

Must work in the following convention:

 

 z 

 x 

 y 

 yy  

 xx  

 yx   yz  

 xy  

 xz  

 zy  

 zx  

 xx  

 zz  

 xy  

 xz  

 yy  

 yz  

 yx  

 zy  

 zz  
 zx  

(a)

 

 

 
 

 z, [MPa] 

 x, [MPa] 

 y, [MPa] 

 50  

 40  
40  

 40  

60  

 40  

 60  

40   60  

40  

 40  

 50  60  

 40  

(b)

Figure 2.6: This is an infinitesimal element representing the state of stress for the given problem (NOTE:
Units are part of the answer)

(b) Determine the stress vectors acting on the mutually orthogonal face OAC, OCB, OBA.
Use both static equilibrium of stresses and Cauchy’s relation (Cauchy’s formula).

METHOD ONE: Using static equilibrium

The infinitesimal element in Fig. 2.6 is in equilibrium. Therefore, the sum of all forces
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 z

 5060

 40

 x

 y

 C

 B

 O

 A

 2

 

  3

40

40

 60  40 

should be zero:

A(j) T(j) +A(−j) T(−j) = 0 → A(j) T(−j) = −A(−j) T(j)

where j represents the direction

Since the area A(−j) = A(j),

T(−j) = −T(j) where j represents the direction

Stress vector on face OAC

T(-z) = −T(z) = −σ n̂(z) = −




40 40 0
40 50 −60
0 −60 40








0

0

1





T(OAC) = −τxz î− τyz ĵ− σzz k̂

= −(0) î− (−60) ĵ− (40) k̂

= 60 ĵ− 40 k̂ MPa
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Stress vector on face OBA

T(-x) = −T(x) = −σ n̂(x) = −




40 40 0
40 50 −60
0 −60 40








1

0

0





T(OBA) = −σxx î− τyx ĵ− τzx k̂

= −(40) î− (40) ĵ− (0) k̂

= −40 î− 40 ĵ MPa

Stress vector on face OCB

T(-y) = −T(y) = −σ n̂(y) = −




40 40 0
40 50 −60
0 −60 40








0

1

0





T(OCB) = −τxy î− σyy ĵ− τzy k̂

= −(40) î− (50) ĵ− (−60) k̂

= −40 î− 50 ĵ + 60 k̂ MPa

METHOD TWO: Using Cauchy’s Relation
Find unit vectors on faces on which traction forces are desired

n̂(OAC) = −k̂ =





0
0
−1



 n̂(OCB) = −ĵ =





0
−1

0



 n̂(OBA) = −̂i =





−1
0
0





Now the stress vectors are found using Cauchy’s formula

T(j) = σ · n̂j

Stress vector on face OAC

T(OAC) =




40 40 0
40 50 −60
0 −60 40







0
0
−1



 MPa =





0
60
−40



 MPa

= 60 ĵ− 40 k̂ MPa
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Stress vector on face OBA

T(OBA) =




40 40 0
40 50 −60
0 −60 40







−1
0
0



 MPa =





−40
−40

0



 MPa

= −40 î− 40 ĵ MPa

Stress vector on face OCB

T(OCB) =




40 40 0
40 50 −60
0 −60 40







0
−1

0



 MPa =





−40
−50

60



 MPa

= −40 î− 50 ĵ + 60 k̂ MPa

(c) Determine the total force vectors acting on the mutually orthogonal face OAC, OCB,
OBA. Note that OA = ∆, OB = 3∆, OC = 2∆ (where ∆ is given in meters).

Since force is equal to stress multiplied by area, we proceed to calculate the area of faces
OAC, OCB, OBA

A =
1
2

(base · height)

AOAC =
1
2

(∆) (2 ∆) = ∆2 meters2

AOCB =
1
2

(2 ∆) (3 ∆) = 3 ∆2 meters2

AOBA =
1
2

(3 ∆) (∆) =
3
2

∆2 meters2

Total force acting on face OAC: (Note that distance ∆ is given in meters)

F(OAC) = T(OAC)AOAC

= (60 ĵ− 40 k̂) (∆2) MPa-m2

= 60 ∆2 ĵ− 40 ∆2 k̂ MPa-m2

= 60 ∆2 ĵ− 40 ∆2 k̂ MN

Total force acting on face OBA: (Note that distance ∆ is given in meters)

F(OBA) = T(OBA)AOBA

= (−40 î− 40 ĵ)
(

3
2

∆2

)
MPa-m2

= −60 ∆2 î− 60 ∆2 ĵ MPa-m2

= −60 ∆2 î− 60 ∆2 ĵ MN
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Total force acting on face OCB: (Note that distance ∆ is given in meters)

F(OCB) = T(OCB)AOCB

= (−40 î− 50 ĵ + 60 k̂)(3 ∆2) MPa-m2

= −120 ∆2 î− 150 ∆2 ĵ + 180 ∆2 k̂ MPa-m2

= −120 ∆2 î− 150 ∆2 ĵ + 180 ∆2 k̂ MN

(d) Determine the stress vector acting on the face ABC. Use both static equilibrium and
Cauchy’s relation.

METHOD ONE: STATIC EQUILIBRIUM

 

 z 

 x 

 y 

 C 

 B 

 A 

 2 

  

  3 

 T(ABC) 

The stress vector is obtain by dividing the total force acting on face ABC by area of
face ABC

T(ABC) =
F(ABC)

AABC

Thus the stress vector acting in the ABC plane can be found by first obtaining the force
in the ABC then diving the force by the area enclosed by ABC. Note that element
OABC is in static equilibrium, therefore

∑
F = 0 → F(ABC) + F(OAC) + F(OCB) + F( OBA) = 0
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Thus, the total force acting on face ABC is

F(ABC) = −F(OAC) − F(OCB) − F(OBA)

F(ABC) = −
(

60 ∆2 ĵ− 40 ∆2 k̂
)

−
(
− 120 ∆2 î− 150 ∆2 ĵ + 180 ∆2 k̂

)

−
(
− 60 ∆2 î− 60 ∆2 ĵ

)

F(ABC) = 180 ∆2 î + 150 ∆2 ĵ− 140 ∆2 k̂ MN

Since stresses are obtained dividing forces by the area, we proceed to find the magnitude
of area AABC. The area of ABC is calculate using analytical geometry as follows:

 

 z 

 x 

 y 

 C 

 B 

 A 

 2 

  

  3 

 T(ABC) 

Area of triangle ABC can be found by using the following equation

AABC =
1
2

r(BC) × r(BA)

where

r(BC) = C−B =





2 ∆
0
0



−





0
0

3 ∆



 =





2 ∆
0
−3 ∆



 meters

= 2 ∆ î− 3 ∆ k̂ meters
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r(BA) = A−B =





0
∆
0



−





0
0

3 ∆



 =





0
∆
−3 ∆



 meters

= ∆ ĵ− 3 ∆ k̂ meters

Thus the area is then

AABC =
1
2

r(BC) × r(BA) =
1
2

∣∣∣∣∣∣

î ĵ k̂
2 ∆ 0 −3 ∆
0 ∆ −3 ∆

∣∣∣∣∣∣

=
3
2

∆2 î + 3 ∆2 ĵ + ∆2 k̂ meters2

(2.17)

We could have also used the following (check it!)

AABC =
1
2

r(CA) × r(CB) =
1
2

r(AB) × r(AC) =
3
2

∆2 î + 3 ∆2 ĵ + ∆2 k̂ meters2

Thus the magnitude value of AABC is

‖AABC‖ =
√

AABC ·AABC =
√
A2
x +A2

y +A2
z

=

√

(
3 ∆2

2
)2 + (3 ∆2)2 + (∆2)2 =

7
2

∆2 meters2

(2.18)

Now the stress vector is obtain by dividing the total force acting on face ABC by area
of face ABC

T(ABC) =
F(ABC)

‖AABC‖
=

180 ∆2 î + 150 ∆2 ĵ− 140 ∆2 k̂
7
2

∆2

=
360
7

î +
300
7

ĵ− 40 k̂ =





360
7

300
7

−40





MPa

METHOD TWO: CAUCHY’S FORMULA

We can use Cauchy’s relationship to obtain the stress vector,

T(ABC) = σ · n̂ABC

where T(ABC) is the stress vector acting on the face ABC and the stress tensor σ is
known. Thus in order to calculate the stress vector acting on the face ABC, we need to
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calculate the unit vector. The unit vector can be obtained using

n̂ABC =
AABC

‖AABC‖

The unit normal to face ABC is found using Eqs. (2.17) and (2.18)

n̂ABC =
AABC

‖AABC‖
=

3
2

∆2 î + 3 ∆2 ĵ + ∆2 k̂

7
2

∆2
=

3
7
î +

6
7
ĵ +

2
7
k̂

Stress vector is found as follows

T(ABC) = σ · n̂ABC =




40 40 0
40 50 −60
0 −60 40


 ·





3/7
6/7
2/7



 =





360/7

300/7

−280/7





MPa

=
360
7

î +
300
7

ĵ− 40 k̂ MPa

End Example �

2.1.5 Principal Stresses and Principal Planes

The knowledge of principal stresses2 help us find plane(s) on which the normal stress has the largest
possible value or plane(s) on which the largest possible shear stress value. A principal plane is a plane
such that the stress vector acting on that plane has no component which is tangent to the plane (i.e.,
there are no shear stresses acting on the plane):

T(n) =




σ1 0 0

0 σ2 0

0 0 σ3








nx

ny

nz





(2.19)

In order words, the stress vector has the same direction as the unit normal that describes the plane. The
magnitude of the normal stress is known as principal stress. Now we proceed to derive the solution
procedure.

2The principal state of stress represents the critical value that stresses can have in their normal planes at a point, in
the absence of shear stresses, for any plane cutting through it. These values may be either zero, negative (meaning in
compression), or positive (meaning in tension).
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So far we have used the Cauchy’s relationship to find the stress vector acting on a face whose unit
normal and stress tensor is known. Now, let us assume that the principal stress vector is known and the
unit normal is not known. Let λ be the magnitude of the stress vector acting on the principal plane.
Using Cauchy’s formula we can define the principal stress vector as

T(n) = λ n̂ = λ





nx
ny
nz



 = λ




1 0 0

0 1 0

0 0 1








nx

ny

nz





=




λ 0 0

0 λ 0

0 0 λ








nx

ny

nz





(2.20)

Also, using Cauchy’s relationship, the principal stress vector can be expressed in terms of the nine stress
components as follows

T(n) =





T (n)
x

T (n)
y

T (n)
z





=




σxx τxy τxz

τxy σyy τyz

τxz τyz σzz








nx

ny

nz





(2.21)

Now using the knowledge of what the principal stress vector should be for a principal plane, Eq. (2.20),
Cauchy’s equation becomes




λ 0 0

0 λ 0

0 0 λ








nx

ny

nz





=




σxx τxy τxz

τxy σyy τyz

τxz τyz σzz








nx

ny

nz





(2.22)

Thus for a principal plane, we can write Cauchy’s equations in matrix form as follows



σxx − λ τxy τxz

τyx σyy − λ τyz

τzx τzy σzz − λ







nx
ny
nz



 =





0
0
0



 (2.23)

These equations have the trivial solution nx = ny = nz = 0. However, this solution is not allowed
because nx, ny, and nz are the components of a unit vector, satisfying

n2
x + n2

y + n2
z = 1 (2.24)

and at least one component must be nonzero (i.e., one). Hence, equations in (2.23) possess a nontrivial
solution if the three equations are not independent of each other. In other words, the determinant of
the matrix of coefficients of nx, ny, and nz must vanish:

det



σxx − λ τxy τxz

τyx σyy − λ τyz

τzx τzy σzz − λ


 =

∣∣∣∣∣∣

σxx − λ τxy τxz

τyx σyy − λ τyz

τzx τzy σzz − λ

∣∣∣∣∣∣
= 0 (2.25)

The characteristic equation obtained by expanding the determinant can be expressed in terms of the
stress invariants as follows

λ3 − Iσ1 λ
2 + Iσ2 λ− Iσ3 = 0 (2.26)
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where Iσi ’s are the stress invariants. Using the definition of stress invariants:

Iσ1 = σxx + σyy + σzz (2.27)

Iσ2 = det
[
σxx τxy

τyx σyy

]
+ det

[
σxx τxz

τzx σzz

]
+ det

[
σyy τyz

τzy σzz

]

= σxx σyy + σzz σxx + σyy σzz − τ2
xy − τ2

yz − τ2
zx (2.28)

Iσ3 = det



σxx τxy τxz

τyx σyy τyz

τzx τzy σzz




= σxx σyy σzz + 2 τxy τyz τzx − σxx τ
2
yz − σyy τ

2
zx − σzz τ

2
xy (2.29)

The three roots of the characteristic equation, Eq. (2.26), are the principal stresses and may be obtained
analytically3

λ1 =
Iσ1

3
+

2
3

√
I2
σ1
− 3 Iσ2 cos

(
β

3

)
(2.30)

λ2 =
Iσ1

3
+

2
3

√
I2
σ1
− 3 Iσ2 cos

(
β

3
+

2π
3

)
(2.31)

λ3 =
Iσ1

3
+

2
3

√
I2
σ1
− 3 Iσ2 cos

(
β

3
+

4π
3

)
(2.32)

β = cos−1


2I3

σ1
− 9Iσ1Iσ2 + 27Iσ3

2
√(

I2
σ1
− 3Iσ2

)3


 (keep in radians) (2.33)

For each of these three solutions, the matrix of the system of equations defined by Eq. (2.29) has a zero
determinant, and a non trivial solution exists for the directions on which the shear stresses vanish. Such
direction is called a principal stress plane or simply principal planes. Since we are solving homogeneous
equations, the solution will include an arbitrary constant which can be determined by enforcing the
condition,

n2
x + n2

y + n2
z = 1

associated with the fact that vector n̂ must be a unit vector. We will have three principal stress directions
because we have three principal stresses. Furthermore, it can be shown that these three directions are
mutually orthogonal.

The fact that the stress tensor is symmetric, the three principal stress, roots of Eq. (2.26), will be

3These can also be obtained using any computer program.
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real-valued. The principal stresses are chosen as:

σ1 = max[λ1, λ2, λ3]

σ3 = min[λ1, λ2, λ3]

σ2 = The remaining λ

(2.34)

Thus the principal stresses are given as follows

σ1 > σ2 > σ3

It turns out that a state of stress not only has three extreme values of normal stress, but also three
extreme values of shear stress, which are related to the three principal stresses as follows:

τ12 =
∣∣∣∣
σ1 − σ2

2

∣∣∣∣ τ13 =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ τ23 =
∣∣∣∣
σ2 − σ3

2

∣∣∣∣ (2.35)

Observe that the absolute maximum shear stress at a point equals one-half the difference between the
largest and the smallest principal stress, or:

σmax = max[σ1, σ2, σ3] (2.36)

σmin = min[σ1, σ2, σ3] (2.37)

τmax =
∣∣∣∣
σmax − σmin

2

∣∣∣∣ (2.38)

Finally, it must be pointed out that whereas the shear stress, by definition, vanishes on planes of principal
stress, the normal stress is generally not zero on planes where the shear stress acquires its extreme values.

We are not only interested in the principal stresses but also the planes upon which they act on, as
shown in Fig. 2.7. Hence, we now proceed to determine these plane.

Principal Plane: n̂(1)

To find n̂(1), the principal direction of σ1, we substitute λ = σ1 into Eq. (2.23) and use any two of the
three equations, but not all three. This will give two of the three components of n̂(1) (n(1)

x , n(1)
y , and

n
(1)
z ) and the last component is obtained with

(
n(1)
x

)2

+
(
n(1)
y

)2

+
(
n(1)
z

)2

= 1

The above condition ensures that n̂(1) is indeed a unit vector. Hence,

n̂(1) =





n
(1)
x

n
(1)
y

n
(1)
z





(2.39)

Principal Plane: n̂(2)
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 σ2

 σ2

 σ1

 σ3

 σ1

 σ3  

 n(3)  

 n(1)  

 n(2)  

Figure 2.7: Principal state of stress

To find n̂(2), the principal direction of σ2, we substitute λ = σ2 into Eq. (2.23) and use any two of the
three equations, but not all three. This will give two of the three components of n̂(2) (n(2)

x , n(2)
y , and

n
(2)
z ) and the last component is obtained with

(
n(2)
x

)2

+
(
n(2)
y

)2

+
(
n(2)
z

)2

= 1

The above condition ensures that n̂(2) is indeed a unit vector. Hence,

n̂(2) =





n
(2)
x

n
(2)
y

n
(2)
z





(2.40)

Principal Plane: n̂(3)

To find n̂(3), the principal direction of σ3, we substitute λ = σ3 into Eq. (2.23) and use any two of the
three equations, but not all three. This will give two of the three components of n̂(3) (n(3)

x , n(3)
y , and

n
(3)
z ) and the last component is obtained with

(
n(3)
x

)2

+
(
n(3)
y

)2

+
(
n(3)
z

)2

= 1

The above condition ensures that n̂(3) is indeed a unit vector. Hence,

n̂(3) =





n
(3)
x

n
(3)
y

n
(3)
z





(2.41)
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Note that the principal planes are orthogonal to each other. In other words, the three principal normals
are perpendicular to one another and thus

n̂(3) = n̂(1) × n̂(2) (2.42)
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Example 2.3.

Determine the three principal stresses and corresponding principal planes for the state of
stress given in Example 2.2. Also determine the extreme shear stresses.




40 40 0
40 50 −60
0 −60 40


 MPa

For a principal plane, Cauchy’s equations can be written in matrix form as follows



σxx − λ τxy τxz

τyx σyy − λ τyz

τzx τzy σzz − λ







nx
ny
nz



 =





0
0
0








40− λ 40 0
40 50− λ −60
0 −60 40− λ







nx
ny
nz



 =





0
0
0





For nontrivial solutions the determinant of the matrix of coefficients of nx, ny, and nz must
vanish:

det



σxx − λ τxy τxz

τyx σyy − λ τyz

τzx τzy σzz − λ


 =

∣∣∣∣∣∣

40− λ 40 0
40 50− λ −60
0 −60 40− λ

∣∣∣∣∣∣
= 0

The characteristic equation obtained by expanding the determinant can be expressed in terms
of the stress invariants as follows

λ3 − Iσ1 λ
2 + Iσ2 λ− Iσ3 = 0

where Iσi ’s are the stress invariants.

Iσ1 = σxx + σyy + σzz

= (40 + 50 + 40) MPa = 130 MPa

Iσ2 = det
[
σxx τxy

τyx σyy

]
+ det

[
σxx τxz

τzx σzz

]
+ det

[
σyy τyz

τzy σzz

]

=
∣∣∣∣

40 40
40 50

∣∣∣∣+
∣∣∣∣

40 0
0 40

∣∣∣∣+
∣∣∣∣

50 −60
−60 40

∣∣∣∣

= {(40)(50)− (40)(40)}+ {(40)(40)}+ {(50)(40)− (−60)(−60)} = 400 MPa2
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Iσ3 = det



σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


 =

∣∣∣∣∣∣

40 40 0
40 50 −60
0 −60 40

∣∣∣∣∣∣

= (40)
∣∣∣∣

50 −60
−60 40

∣∣∣∣− (40)
∣∣∣∣

40 −60
0 40

∣∣∣∣+ (0)
∣∣∣∣

40 50
0 −60

∣∣∣∣ = −128000 MPa3

Therefore, the characteristic equation can be written as

λ3 − 130λ2 + 400λ+ 128000 = 0

The three roots of the characteristic equation are the principal stresses and are obtained
analytically as follows:

β = cos−1


2I3

σ1
− 9Iσ1Iσ2 + 27Iσ3

2
√(

I2
σ1
− 3Iσ2

)3


 = cos−1

[
235

157
√

157

]
= 1.45105 rads

λ1 =
Iσ1

3
+

2
3

√
I2
σ1
− 3 Iσ2 cos

(
β

3

)
= 117.284 MPa

λ2 =
Iσ1

3
+

2
3

√
I2
σ1
− 3 Iσ2 cos

(
β

3
+

2π
3

)
= −27.2842 MPa

λ3 =
Iσ1

3
+

2
3

√
I2
σ1
− 3 Iσ2 cos

(
β

3
+

4π
3

)
= 40.00 MPa

and the principal stresses are

σ1 = max[λ1, λ2, λ3] = 117.284 MPa

σ3 = min[λ1, λ2, λ3] = −27.2842 MPa

σ2 = 40.00 MPa

As we can see the principal stresses are given as follows

σ1 > σ2 > σ3

The three extreme values of shear stress are:

τ12 =
∣∣∣∣
σ1 − σ2

2

∣∣∣∣ = 38.6421 MPa

τ13 =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 72.2842 MPa

τ23 =
∣∣∣∣
σ2 − σ3

2

∣∣∣∣ = 33.6421 MPa

c©2012 by Vijay K. Goyal. All Rights Reserved.



2.1. THEORY OF STRESSES 47

Principal Plane: n̂(1)

To find n̂(1), the principal direction of σ1 = 117.284 MPa, we substitute λ = σ1 into Eq. (2.23)
and use only two equations but not all three. This will give two of the three components of
n̂(1) (n(1)

x , n(1)
y , and n

(1)
z ) and the last component is obtained with

(
n(1)
x

)2

+
(
n(1)
y

)2

+
(
n(1)
z

)2

= 1 (2.43)

Therefore,



−77.2842 40 0

40 −67.2842 −60
0 −60 −77.2842







nx
ny
nz





(1)

=





0
0
0





−77.2842n(1)
x + 40n(1)

y + 0 = 0

40n(1)
x + −67.2842n(1)

y + −60n(1)
z = 0

0 + −60n(1)
y + −77.2842n(1)

z = 0

Using the first two equations (we could have used any two equations) and solving all variables
in terms of n

(1)
z (we could have solved in terms of any other component). From the first

equation:
−77.2842n(1)

x + 40n(1)
y + 0 = 0

77.2842n(1)
x = 40n(1)

y

n(1)
x = 0.51757n(1)

y

(2.44)

From the second equation:

40n(1)
x +−67.2842n(1)

y +−60n(1)
z = 0

40
(

0.51757n(1)
y

)
+−67.2842n(1)

y +−60n(1)
z = 0

n(1)
y = −1.28807n(1)

z

(2.45)

Substituting Eq. (2.45) into Eq. (2.44) we get:

n(1)
x = 0.51757n(1)

y = 0.51757
(
−1.28807n(1)

z

)
= −0.666667n(1)

z

Thus
n(1)
x = −0.666667n(1)

z n(1)
y = −1.28807n(1)

z (2.46)
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Now obtain n
(1)
z using Eq. (2.43)

(
n(1)
x

)2

+
(
n(1)
y

)2

+
(
n(1)
z

)2

= 1

(
−0.666667n(1)

z

)2

+
(
−1.28807n(1)

z

)2

+
(
n(1)
z

)2

= 1

3.10357
(
n(1)
z

)2

= 1

Then
n(1)
z = ±0.567635

Note that the signs represent that the stress vector acts on opposite ends of the same plane.
This makes sense as it ensures equilibrium. Now taking the positive sign (arbitrarily) of n(1)

z

and substituting into Eq. (2.46)

n(1)
z = 0.567635 n(1)

x = −0.378424 n(1)
y = −0.731154

Thus, the principal stress σ1 = 117.284 MPa acts on a plane with the unit normal

n̂(1) =





−0.378424
−0.731154
0.567635





Principal Plane: n̂(2)

To find n̂(2), the principal direction of σ2 = 40.00 MPa, we substitute λ = σ2 into Eq. (2.23)
and use only two equations but not all three. This will give two of the three components of
n̂(2) (n(2)

x , n(2)
y , and n

(2)
z ) and the last component is obtained with

(
n(2)
x

)2

+
(
n(2)
y

)2

+
(
n(2)
z

)2

= 1 (2.47)

Therefore,



0 40 0
40 10 −60
0 −60 0







nx
ny
nz





(2)

=





0
0
0





0n(2)
x + 40n(2)

y + 0 = 0

40n(2)
x + 10n(2)

y + −60n(2)
z = 0

0 + −60n(2)
y + 0 = 0

Using the first two equations (we could have used any two equations) and solving all variables
in terms of n(2)

z (we could have solved in terms of any other component)

n(2)
x = 1.5n(2)

z n(2)
y = 0n(2)

z = 0
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Now obtain n
(2)
z using Eq. (2.47)

(
n(2)
x

)2

+
(
n(2)
y

)2

+
(
n(2)
z

)2

= 1

(
1.5n(2)

z

)2

+
(

0n(2)
z

)2

+
(
n(2)
z

)2

= 1

3.25
(
n(2)
z

)2

= 1

Then
n(2)
z = ±0.5547

Note that the signs represent that the stress vector acts on opposite ends of the same plane.
This makes sense as it ensures equilibrium. Now taking the positive sign (arbitrarily) of n(2)

z :

n(2)
z = 0.5547 n(2)

x = 0.83205 n(2)
y = 0

Thus, the principal stress σ2 = 40.00 MPa acts on a plane with the unit normal

n̂(2) =





0.83205
0.0

0.5547





Principal Plane: n̂(3)

To find n̂(3), the principal direction of σ3 = −27.2842 MPa, we substitute λ = σ3 into
Eq. (2.23) and use only two equations but not all three. This will give two of the three
components of n̂(3) (n(3)

x , n(3)
y , and n

(3)
z ) and the last component is obtained with

(
n(3)
x

)2

+
(
n(3)
y

)2

+
(
n(3)
z

)2

= 1 (2.48)

Therefore,



67.2842 40 0
40 77.2842 −60
0 −60 67.2842







nx
ny
nz





(3)

=





0
0
0





67.2842n(3)
x + 40n(3)

y + 0 = 0

40n(3)
x + 77.2842n(3)

y + −60n(3)
z = 0

0 + −60n(3)
y + 67.2842n(3)

z = 0

Using the first two equations (we could have used any two equations) and solving all variables
in terms of n(3)

z (we could have solved in terms of any other component)

n(3)
x = −0.666667n(3)

z n(3)
y = 1.1214n(3)

z
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Now obtain n
(3)
z using Eq. (2.48)

(
n(3)
x

)2

+
(
n(3)
y

)2

+
(
n(3)
z

)2

= 1

(
−0.666667n(3)

z

)2

+
(

1.1214n(3)
z

)2

+
(
n(3)
z

)2

= 1

2.70199
(
n(3)
z

)2

= 1

Then
n(3)
z = ±0.608357

Note that the signs represent that the stress vector acts on opposite ends of the same plane.
This makes sense as it ensures equilibrium. Now taking the positive sign (arbitrarily) of n(3)

z :

n(3)
z = 0.608357 n(3)

x = −0.405571 n(3)
y = 0.682213

Thus, the principal stress σ3 = −27.2842 MPa acts on a plane with the unit normal

n̂(3) =





−0.405571
0.682213
0.608357





Also, we could have obtained this by using Eq. (2.42):

n̂(3) = n̂(1) × n̂(2) =

∣∣∣∣∣∣

î ĵ k̂
−0.378424 −0.731154 0.567635

0.83205 0.0 0.5547

∣∣∣∣∣∣

= î
∣∣∣∣
−0.731154 0.567635

0.0 0.5547

∣∣∣∣− ĵ
∣∣∣∣
−0.378424 0.567635

0.83205 0.5547

∣∣∣∣

+ k̂
∣∣∣∣
−0.378424 −0.731154

0.83205 0.0

∣∣∣∣

n̂(3) = −0.405571 î + 0.682213 ĵ + 0.608357 k̂

End Example �
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2.2 State of Plane Stress

A particular state of stress of great practical importance is the state of plane stress. The state of stress
at a point is given by the stress tensor

σ =



σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


 =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 (2.49)

For applications for which a material is formed into thin sheets and plates of uniform thickness, it is
often appropriate to assume that the stress components are confined to a plane, say x-y plane. In other
words,

τxz = τyz = 0 (2.50)

σ =



σxx τxy 0
τxy σyy 0

0 0 σzz


 (2.51)

Now for many problems, such as in aerospace and mechanical engineering applications,

σzz � σxx σzz � σyy (2.52)

If this is the case, then we can take
σzz ≈ 0 (2.53)

This type of problems are known as plane stress problems and the three dimensional state of stress
reduces to three independent components,

σ =



σxx τxy 0
τxy σyy 0
0 0 0


 (2.54)

and it is shown in Fig. 2.8. In short, plane stress assumption is acceptable when the thickness is far
smaller than (at least) other dimension.

 

 

 

 x 

 y 

 σxx 

 σyy 

 σyy 

 σxx 

 τxy 

 τxy 

Figure 2.8: Positive stresses on a two dimensional element.
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2.2.1 Principal stresses for Plane State of Stress

Recall that the knowledge of principal stresses help us find plane(s) on which the normal stress has the
largest possible value or plane(s) on which the largest possible shear stress value. Next, we will review
three different methods used to obtain the principal stresses and maximum shear stresses for a plane
state of stress.

2.2.2 Principal stresses: Eigenvalue Approach

A principal plane is a plane such that the stress vector acting on that plane has no component which is
tangent to the plane:

T(n) =




σ1 0 0

0 σ2 0

0 0 σ3








nx

ny

nz





(2.55)

For a plane stress problem, at a principal plane Cauchy’s equations can be written in matrix form as
follows



σxx − λ τxy 0
τyx σyy − λ 0
0 0 0− λ







nx
ny
nz



 =





0
0
0



 (2.56)

The above posses a nontrivial solution if the three equations are not independent of each other. In other
words, the determinant of the matrix of coefficients of nx, ny, and nz must vanish:

det



σxx − λ τxy 0
τyx σyy − λ 0
0 0 −λ


 =

∣∣∣∣∣∣

σxx − λ τxy 0
τyx σyy − λ 0
0 0 −λ

∣∣∣∣∣∣
= 0 (2.57)

The characteristic equation obtained by expanding the determinant can be expressed in terms of the
stress invariants as follows

λ3 − Iσ1 λ
2 + Iσ2 λ− Iσ3 = 0

where Iσi ’s are the stress invariants. Using the definition of stress invariants:

Iσ1 = σxx + σyy

Iσ2 = det
[
σxx τxy

τyx σyy

]
+ det

[
σxx 0
0 0

]
+ det

[
σyy 0
0 0

]
= σxx σyy − τ2

xy

Iσ3 = det



σxx τxy 0
τyx σyy 0
0 0 0


 = 0
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Thus the characteristic equation becomes

λ3 − Iσ1 λ
2 + Iσ2 λ = 0 → λ

(
λ2 − Iσ1 λ+ Iσ2

)
= 0 (2.58)

The three roots of the characteristic equation, Eq. (2.58), are the principal stresses and can be obtained
analytically:

λ1 =
Iσ1

2
+

1
2

√
I2
σ1
− 4 Iσ2

λ2 =
Iσ1

2
− 1

2

√
I2
σ1
− 4 Iσ2

λ3 = 0

The principal stresses are chosen as:
σ1 = max[λ1, λ2, λ3]

σ3 = min[λ1, λ2, λ3]

Thus the principal stresses are given as follows

σ1 > σ2 > σ3

2.2.3 Principal stresses: Transformation Equations Approach

Plane stress transformation matrix for a rotation about the z-axis is

a =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 (2.59)

Therefore the plane stresses can be transformed as follows

σ = aσ aT (2.60)

This yields to the plane stress transformation formulas

σxx = σave + σdiff cos 2 θ + τxy sin 2 θ (2.61a)

σyy = σave − σdiff cos 2 θ − τxy sin 2 θ (2.61b)

τ xy = −σdiff sin 2 θ + τxy cos 2 θ (2.61c)

where
σave =

σxx + σyy

2
σdiff =

σxx − σyy

2
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2.2.4 Principal stresses: Mohr’s Circle Approach

The transformation equations for plane stress can be represented in graphical form by a plot known as
Mohr’s circle. The Mohr’s circle, although not so popular, is a useful tool for stress analysis at a material
point. Numerical techniques, such as eigenvalue problem, have substituted this technique. However, the
Mohr’s circle helps the understanding of the physical meaning of some specific problems. Thus, we will
apply the two-dimensional representation of the three-dimensional state of stress at a point4.

Example 2.4.

Mohr’s Stress Circle
At a point on the surface of a turbine engine the stresses are

σ =



−50 20 0
20 −20 0
0 0 0


 MPa

Using Mohr’s circle and only considering in-plane stresses, determine the following quanti-
ties: a)stresses acting on an element inclined at an angle α = 40◦; b) principal stresses; c)
maximum in-plane shear stresses.

2.4a) Determine the Mohr circle radius and center
The average stress acting on the differential element will be:

σave =
σxx + σyy

2
=

(−50) + (−20)
2

MPa = −35 MPa

The difference in stresses acting on the differential element will be:

σdiff =
σxx − σyy

2
=

(−50)− (−20)
2

MPa = −15 MPa

The radius of the in-plane state of stress is:

R =
√
τ2
xy + σ2

diff =
√

(20)2 + (−15)2 MPa = 25 MPa

4A full description and derivation of the Mohr’s circle is found in Appendix B.
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The center of the circle is:

C = C(σave, 0) = C(−35 MPa, 0)

2.4b) Locate the two points and draw the circle:

Q1 = Q1(−50, 20) Q2 = Q2(−20,−20) C = C(−35, 0)

(a) stresses on a two dimensional element (b) Mohr’s circle for plane stress in the x-y plane

2.4c) Calculate angles:

Principal stresses act on an element inclined at an angle θp

2 θ′p = tan−1

[
τxy

σdiff

]
= tan−1

[
(20)

(−15)

]
= −53.130◦

2 θp = 2 θ′p − 180◦ = 126.853◦ → θp = 63.426◦

Note that we in CASE B. because 2 θp is measured from Q1C to positive σ-axis. Min-
imum and maximum in-plane shear stresses act on an element inclined at an angle
θs

2 θs = 2 θp ± 90◦ = 126.87◦ ± 90◦

θs = θp ± 45◦ = 63.435◦ ± 45◦

Transformed stresses act on an element inclined at an angle α = 40◦

2 θA = 2 θp − 2α = 126.87◦ − 80◦ = 46.87◦
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Note that all angles are measured positive clockwise in the Mohr’s circle but are positive
counterclockwise in the rotation of the differential element.

2.4d) Determine the normal and shear stresses on the inclined plane(s)

The normal stresses acting on an element inclined at an angle α are

σx1 = σave +R cos (2 θA) = (−35) + (25) cos (46.87◦) = −17.91 MPa

σy1 = σave −R cos (2 θA) = (−35)− (25) cos (46.87◦) = −52.09 MPa

The shear stresses acting on an element inclined at an angle α are

τx1y1 = R sin (2 θA) = (25) sin (46.87◦) = 18.2451 MPa

2.4e) Determine the maximum normal stresses, the in-plane maximum shear and the overall
maximum shear

Note that when calculating principal stresses 2α = 2 θp → 2 θA = 0◦, therefore the
principal stresses are

λ1 = σave +R = (−35) + (25) = −10 MPa

λ2 = σave −R = (−35)− (25) = −60 MPa

λ3 = 0 MPa

The principal stresses are chosen as:

σ1 = max[λ1, λ2, λ3] = 0 MPa

σ3 = min[λ1, λ2, λ3] = −60 MPa

σ2 = −10

Note σ1 > σ2 > σ3.

The maximum and minimum normal stresses acting on an element inclined at an angle
θp are

σmax = σ1 = 0 MPa

σmin = σ3 = −60 MPa

The in-plane maximum shear stresses acting on an element inclined at an angle θs are

τmax

∣∣∣
in-plane

= R =
σ2 − σ3

2
= 25 MPa

The maximum in-plane shear stresses will be:

τ12 =
σ1 − σ2

2
= 5 MPa

τ13 =
σ1 − σ3

2
= 25 MPa

τ23 =
σ2 − σ3

2
= 30 MPa
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The overall maximum shear stress acting on an element inclined at an angle θs is

τmax =
∣∣∣∣
σmax − σmin

2

∣∣∣∣ = 30 MPa

2.4f) Show all results on sketches of properly oriented elements

(c) (d) (e)

(f)

Figure 2.9: a) Stresses acting on an element in plane stress. b) Stresses acting on an element oriented
at an angle θ = α. c) Principal normal stresses. d) Maximum in-plane shear stresses.

End Example �
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Example 2.5.

An element in plane stress at the lateral surface of a wing panel is subjected to the following
stresses

σ =




0 0 0
0 1 −10
0 −10 −5


 MPa

  z, MPa 
 

 10  

5 

 10  

1 
 10  

10 

 5 

 1  

 z, MPa 

 y, MPa

10 

10 

 1   1  

 5 

 5 

 y, MPa 

 x, MPa 

Considering only the in-plane stresses and using Mohr Circle determine:

1. Stresses acting on a element inclined at an angle θ = 45◦.

2. Principal stresses and maximum shear stresses.

2.5a) Calculate the radius and center of the Mohr’s circle
The average stress acting on the differential element will be:

σave =
σyy + σzz

2
=

1 + (−5)
2

= −2 MPa (2.62)

(2.63)

The difference in stresses acting on the differential element will be:

σdiff =
σyy − σzz

2
=

1− (−5)
2

= 3 MPa (2.64)

(2.65)
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The radius of the inplane state of stress is:

R =
√
τ2
yz + σ2

diff =
√

(−10)2 + (3)2 = 10.44033 MPa (2.66)

(2.67)

The center of the circle is:

C = C(−2, 0)3 MPa (2.68)

2.5b) Draw the circle and locate all points

Q1 = Q1(σyy, τyz) = Q1(1,−10) MPa

Q2 = Q2(σzz,−τyz) = Q1(−5, 10) MPa

C = C(σave, 0) = C(−2, 0) MPa

                       

                       
                       

                       

                       
                       

                       

                       

                       
                       

                       

                       
                       

                       

                       
                       

                       

                       

                       
                       

                       

                       

                       

τ [MPa] 

5.0 

-5.0

-10.0

σ 
[MPa]

Q1(σyy, τyz) = Q1(1, -10) 

A1(σy1, τy1z1)  

σ2 

10.0

5.0 

C(-2, 0) 

Q2(σzz, -τxz) = Q2(-5, 10) 

σ3 σ1 

2θp 

2θA 

2α 

 Figure 2.10: Mohr’s circle for plane stress in the y-z plane.
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2.5c) Calculate angles:

(All measured positive clockwise from Q1C )

First calculate 2 θ′p,

tan 2 θ′p =
τyz

σdiff

2 θ′p = tan−1

{
τyz

σdiff

}
= −73.3008◦

Now consider the location of Q1:

CASE D: Q1 → fourth quadrant (σyy > 0, τyz < 0) 2 θp = 360◦ −
∣∣2 θ′p

∣∣

Thus
2 θp = 360◦ −

∣∣2 θ′p
∣∣ = 360◦ − 73.3008◦ = 286.699◦

Principal stresses act on an element inclined at an angle θp are

θp =
1
2

(2 θp) = 143.35◦

Minimum/maximum in-plane shear stresses act on an element inclined at an angle θs

2 θs = 2 θp ± 90◦

Note that at a rotation of 2 θs = 2 θp + 90◦ from Q1C the value of the in-plane shear
stress is negative thus it gives the minimum shear stress, the maximum is obtained by
taking 2 θs = 2 θp − 90◦. In short,

Maximum Shear Stress: 2 θs = 2 θp − 90◦ = 163.301◦ → τmax

Minimum Shear Stress: 2 θs = 2 θp + 90◦ = −16.6992◦ → τmin

Note we used the fact that 2 θs > 360◦ thus

2 θs = (360◦ − 2 θp)± 90◦

Transformed stresses act on an element inclined at an angle α

2 θA = 2 θp − 2α = 196.699◦

Note: When working in the y–z plane, all angles are measured positive clockwise in
the Mohr’s circle but are positive counterclockwise in the rotation of the differential
element. Also, note that 2 θp is measured from Q1C to positive σ-axis.

2.5d) Determine the normal and shear stresses on the inclined plane(s)

The normal stresses acting on an element inclined at an angle α are

σy1 = σave +R cos (2 θA) = −12.0 MPa

σz1 = σave +R cos (2 θA + 180◦) = σave −R cos (2 θA) = 8.0 MPa
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The shear stresses acting on an element inclined at an angle α are

τy1z1 = R sin (2 θA) = −3 MPa

2.5e) Determine the maximum normal stresses, the in-plane maximum shear and the overall
maximum shear

Note that when calculating principal stresses 2α = 2 θp → 2 θA = 0◦, therefore the
principal normal stresses are found as follows

λ1 = σave +R = 8.4403 MPa

λ2 = σave −R = −12.4403 MPa

λ3 = 0

The principal stresses are chosen as:

σ1 = max[λ1, λ2, λ3] = 8.4403 MPa

σ3 = min[λ1, λ2, λ3] = −12.4403 MPa

Thus the principal stresses are given as follows

σ1 > σ2 > σ3

The maximum and minimum normal stresses acting on an element inclined at an angle
θp are

σmax = σ1 = 8.4403 MPa

σmin = σ3 = −12.4403 MPa

The in-plane maximum shear stresses acting on an element inclined at an angle θs are

τmax

∣∣∣
in-plane

= R =
σ1 − σ2

2
= 10.4403 MPa

The maximum in-plane shear stresses will be:

τ12 =
σ1 − σ2

2
= 4.220 MPa

τ13 =
σ1 − σ3

2
= 6.220 MPa

τ23 =
σ2 − σ3

2
= 10.440 MPa

The overall maximum shear stress acting on an element inclined at an angle θs is

τmax =
∣∣∣∣
σmax − σmin

2

∣∣∣∣ = 10.4403 MPa
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2.5f) Show all results on sketches of properly oriented elements

 
  z, MPa 

 y, MPa

10 

10 

 1   1  

 5 

 5 

(a)

 
 

 y, MPa

 α =45°

 12  3  

 8 
 12 

8 

 z, MPa

3  

(b)

 
 

 z, MPa

 y, MPa

 12.4403 

8.4403

 12.4403 

 8.4403  θp =143.35°

(c)

 
 

 z, MPa

 3 

2 

 2 
 θs =98.34°

 3 
 2 

 2

y, MPa

(d)

Figure 2.11: a) Stresses acting on an element in plane stress. b) Stresses acting on an element oriented
at an angle θ = α. c) Principal normal stresses. d) Maximum in-plane shear stresses.

End Example �
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Example 2.6.

An element in plane stress at the lateral surface of a wing panel is subjected to the following
stresses

σ =




15 0 4
0 0 0
4 0 −5


 MPa

  z, MPa 
 

5 

4  

 4  

 15  
4 

15 

 5 

 4 

 z, MPa

 4  

 4  

 15  15  

 5

5

 x, MPa

 y, MPa 

 x, MPa 

Considering only the in-plane stresses and using Mohr’s Circle determine:

1. Stresses acting on a element inclined at an angle θ = 45◦.

2. Principal stresses and maximum shear stresses.

2.6a) Calculate the radius and center of the Mohr’s circle
The average stress acting on the differential element will be:

σave =
σxx + σzz

2
=

(15) + (−5)
2

MPa = 5 MPa

The difference in stresses acting on the differential element will be:

σdiff =
σxx − σzz

2
=

(15)− (−5)
2

MPa = 10 MPa

The radius of the in-plane state of stress is:

R =
√
τ2
xz + σ2

diff =
√

(4)2 + (10)2 MPa = 10.7703 MPa
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The center of the circle is:

C = C(σave, 0) = C(5, 0) MPa

2.6b) Draw the circle and locate all points

Q1 = Q1(σxx, τxz) = Q1(15, 4) Q2 = Q2(σzz,−τxz) = Q2(−5,−4) C = C(σave, 0) = C(5, 0)

 

 

                    

                    
                    

                    

                    
                    

                    

                    

                    
                    

                    

                    
                    

                    

                    
                    

                    

                    

                    
                    

 

τ 

5.0 -5.0 

-5.0 

σ 

Q1(σx, τxz) = Q1(15, 4)

Q2(σz, -τxz) = Q2(-5, -4) 

σ2 C(5, 0) σ2 

A1(σx1, τx1z1) 

σ3 

10.0 15.0

5.0 

2θp 

2θA 

2α  

Figure 2.12: Mohr’s circle for plane stress in the x-z plane.

2.6c) Calculate angles:

(All measured positive clockwise from Q1C )

First calculate 2 θ′p,

tan 2 θ′p =
τxz

σdiff

2 θ′p = tan−1

{
τxz

σdiff

}
= tan−1

{
4
10

}
= 21.8014◦ = 0.380506 rads

Now consider the location of Q1:

CASE A: Q1 → first quadrant (σxx > 0, τxy > 0)

Thus
2 θp = 2 θ′p = 21.8014◦ = 0.380506 rads

Principal stresses act on an element inclined at an angle θp are

θp =
1
2

(2 θp) = 10.9007◦ = 0.190253 rads
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Minimum/maximum in-plane shear stresses act on an element inclined at an angle θs

2 θs = 2 θp ± 90◦

Note that at a rotation of 2 θs = 2 θp + 90◦ from Q1C the value of the in-plane shear
stress is negative thus it gives the minimum shear stress, the maximum is obtained by
taking 2 θs = 2 θp − 90◦. In short,

Maximum Shear Stress: τmax : 2 θs = 2 θp − 90◦ = −68.1986◦ = −1.19029 rads

Minimum Shear Stress: τmin : 2 θs = 2 θp + 90◦ = 111.801◦ = 1.9513 rads

Transformed stresses act on an element inclined at an angle α

2 θA = 2 θp − 2α = −68.1986◦ = −1.19029 rads (α = 45◦)

or
2 θA + 360◦ = 291.801◦ = 5.0929 rads (to measure clockwise)

Note that all angles are measured positive clockwise in the Mohr’s circle but are positive
counterclockwise in the rotation of the differential element. Also, note that 2 θp is
measured from Q1C to positive σ-axis.

2.6d) Determine the normal and shear stresses on the inclined plane(s)

The normal stresses acting on an element inclined at an angle α are

σx1 = σave +R cos (2 θA) = 9 MPa

σz1 = σave −R cos (2 θA) = 1 MPa

The shear stresses acting on an element inclined at an angle α are

τx1z1 = R sin (2 θA) = −10 MPa

2.6e) Determine the maximum normal stresses, the in-plane maximum shear and the overall
maximum shear

Note that when calculating principal stresses 2α = 2 θp → 2 θA = 0◦, therefore the
principal normal stresses are found as follows

λ1 = σave +R = (5) + (10.7703) = 15.77033 MPa

λ2 = σave −R = (5)− (10.7703) = −5.77033 MPa

λ3 = 0

The principal stresses are chosen as:

σ1 = max[λ1, λ2, λ3] = 15.77033 MPa

σ3 = min[λ1, λ2, λ3] = −5.770333 MPa
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Thus the principal stresses are given as follows

σ1 > σ2 > σ3

The maximum and minimum normal stresses acting on an element inclined at an angle
θp are

σmax = σ1 = 15.77033 MPa

σmin = σ3 = −5.770333 MPa

The in-plane maximum shear stresses acting on an element inclined at an angle θs are

τmax

∣∣∣
in-plane

= R =
σ1 − σ2

2
= 10.77033 MPa

The maximum in-plane shear stresses will be:

τ12 =
σ1 − σ2

2
= 7.885 MPa

τ13 =
σ1 − σ3

2
= 2.885 MPa

τ23 =
σ2 − σ3

2
= 10.770 MPa

The overall maximum shear stress acting on an element inclined at an angle θs is

τmax =
∣∣∣∣
σmax − σmin

2

∣∣∣∣ = 10.77033 MPa

2.6f) Show all results on sketches of properly oriented elements
 
 

 z, MPa 

 4  

 4  

 15  15  

 5

5 

 x, MPa

(a)

 
 

 z, MPa

 x, MPa

 α =45°

 10  

 9  
 1 

9  1 

 10 

(b)

 
 

 z, MPa

 x, MPa
 θp =10.9°

 15.77  

 5.77 

 15.77 

 5.77 

(c)

 
 

 z, MPa

 5 

5 

 10.77

 10.77 
 θs =68.2°

 x, MPa

 5 

 5 

(d)

Figure 2.13: a) Stresses acting on an element in plane stress. b) Stresses acting on an element oriented
at an angle θ = α. c) Principal normal stresses. d) Maximum in-plane shear stresses.

End Example �
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Case 2.1.

Uniaxial Tension

Consider the state of stress at a given point as

σ =



σo σo 0
σo σo 0
0 0 0




where σo is a constant stress, determine the principal stresses and plot the Mohr’s circles.

The principal stresses are determined by finding the eigenvalues of the stress tensor:

det



σxx − λ τxy τxz

τyx σyy − λ τyz

τzx τzy σzz − λ


 =

∣∣∣∣∣∣

σo − λ σo 0
σo σo − λ 0
0 0 −λ

∣∣∣∣∣∣
= 0

which leads to the characteristic equation that can be expressed in terms of the stress invari-
ants as follows

λ3 − Iσ1 λ
2 + Iσ2 λ− Iσ3 = 0

where Iσi ’s are the stress invariants.

Iσ1 = σxx + σyy + σzz = 2σo

Iσ2 = det
[
σxx τxy

τyx σyy

]
+ det

[
σxx τxz

τzx σzz

]
+ det

[
σyy τyz

τzy σzz

]

=
∣∣∣∣
σo σo

σo σo

∣∣∣∣+
∣∣∣∣
σo 0
0 0

∣∣∣∣+
∣∣∣∣
σo 0
0 0

∣∣∣∣ = 0

Iσ3 = det



σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


 =

∣∣∣∣∣∣

σo σo 0
σo σo 0
0 0 0

∣∣∣∣∣∣
= 0

Thus, the characteristic equation becomes

λ3 − 2σo λ
2 = λ2 (λ− 2σo) = 0

The three roots of the characteristic equation are

λ1 = 2σo λ2 = 0 λ3 = 0
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and the principal stresses are

σ1 = max[λ1, λ2, λ3] = 2σo

σ3 = min[λ1, λ2, λ3] = 0

σ2 = 0

The Mohr’s circle is shown in Fig. 2.14. Here because of the double-zero root, one of the
three Mohr’s circles degenerated into a point (origin) and the other two circles coincide. Also,
note that physically this is simply equivalent to a one-dimensional tension in the principal
plane n̂(1).
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Figure 2.14: Mohr’s circle case for uniaxial state of stress.

End Case �
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Case 2.2.

Similar to Uniaxial Tension

Consider the state of stress at a given point as

σ =




2σo 0 0
0 σo 0
0 0 0




where σo is a constant stress, determine the principal stresses and plot the Mohr’s circles.

The principal stresses are determined by finding the eigenvalues of the stress tensor:

det



σxx − λ τxy τxz

τyx σyy − λ τyz

τzx τzy σzz − λ


 =

∣∣∣∣∣∣

2σo − λ 0 0
0 σo − λ 0
0 0 −λ

∣∣∣∣∣∣
= 0

which leads to the characteristic equation that can be expressed in terms of the stress invari-
ants as follows

λ3 − Iσ1 λ
2 + Iσ2 λ− Iσ3 = 0

where Iσi ’s are the stress invariants.

Iσ1 = σxx + σyy + σzz = 3σo

Iσ2 = det
[
σxx τxy

τyx σyy

]
+ det

[
σxx τxz

τzx σzz

]
+ det

[
σyy τyz

τzy σzz

]

=
∣∣∣∣

2σo 0
0 σo

∣∣∣∣+
∣∣∣∣

2σo 0
0 0

∣∣∣∣+
∣∣∣∣
σo 0
0 0

∣∣∣∣ = 2σ2
o

Iσ3 = det



σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


 =

∣∣∣∣∣∣

2σo 0 0
0 σo 0
0 0 0

∣∣∣∣∣∣
= 0

Thus, the characteristic equation becomes

λ3 − 3σo λ
2 + 2σ2

o λ = λ
(
λ− 3σo λ+ 2σ2

o

)
= 0

The three roots of the characteristic equation are

λ1 = 2σo λ2 = σo λ3 = 0
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and the principal stresses are

σ1 = max[λ1, λ2, λ3] = 2σo

σ3 = min[λ1, λ2, λ3] = 0

σ2 = σo

The Mohr’s circle is shown in Fig. 2.15. Here one could try to infer it is a one-dimensional
case but this is not correct. The reason is that there is a Mohr’s circle between σ2 and σ3.
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Figure 2.15: Mohr’s circle case for triaxial state of stress.

End Case �
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Case 2.3.

Hydrostatic State of Stress

Consider the state of stress at a given point as

σ =



σo 0 0
0 σo 0
0 0 σo




where σo is a constant stress, determine the principal stresses and plot the Mohr’s circles.

The principal stresses are determined by finding the eigenvalues of the stress tensor:

det



σxx − λ τxy τxz

τyx σyy − λ τyz

τzx τzy σzz − λ


 =

∣∣∣∣∣∣

σo − λ 0 0
0 σo − λ 0
0 0 σo − λ

∣∣∣∣∣∣
= 0

which leads to the characteristic equation that can be expressed in terms of the stress invari-
ants as follows

λ3 − Iσ1 λ
2 + Iσ2 λ− Iσ3 = 0

where Iσi ’s are the stress invariants.

Iσ1 = σxx + σyy + σzz = 3σo

Iσ2 = det
[
σxx τxy

τyx σyy

]
+ det

[
σxx τxz

τzx σzz

]
+ det

[
σyy τyz

τzy σzz

]

=
∣∣∣∣
σo 0
0 σo

∣∣∣∣+
∣∣∣∣
σo 0
0 0

∣∣∣∣+
∣∣∣∣
σo 0
0 0

∣∣∣∣ = σ2
o

Iσ3 = det



σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


 =

∣∣∣∣∣∣

σo 0 0
0 σo 0
0 0 σo

∣∣∣∣∣∣
= σ3

o

Thus, the characteristic equation becomes

λ3 − 3σo λ
2 + σ2

o λ− σ3
o = (λ− σo) (λ− σo) (λ− σo) = 0

The three roots of the characteristic equation are

λ1 = σo λ2 = σo λ3 = σo
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and the principal stresses are

σ1 = max[λ1, λ2, λ3] = σo

σ3 = min[λ1, λ2, λ3] = σo

σ2 = σo

The Mohr’s circle is shown in Fig. 2.16. Here because of the triple-zero root, all of the three
Mohr’s circles degenerated into a point. The classical physical example of this is the state
of stress in a fluid at rest which is known as hydrostatic stress, and for which σo = −p, the
static pressure.
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Figure 2.16: Mohr’s circle case for hydrostatic state of stress.

End Case �
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Case 2.4.

Consequences on the Overall Maximum Shear Stress

Consider three different state of stresses with the same loading in the x and y direction but
different loadings in the z-direction:

 

 2σo  
 σo

 2σo  

σo

 x 

 z

 σzz 

 y

σzz(a) No loading in the z-axis

 

 2σo  
 σo

 2σo  

σo

 x 

 z

 σo  

 y

 σo  

(b) Tensile loading in the z-axis

 

 2σo  
 σo

 2σo  

σo

 x 

 z

 σo  

 y

 σo  

(c) Compressive loading in the z-axis

For each of the state of stresses determine the consequences on the overall maximum shear
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stress:

σA =




2σo 0 0
0 σo 0
0 0 0


 (2.69a)

σB =




2σo 0 0
0 σo 0
0 0 σo


 (2.69b)

σC =




2σo 0 0
0 σo 0
0 0 −σo


 (2.69c)

where σo is a constant stress.

First we evaluate the principal stresses for each case and then find the overall maximum
shear stress.

For σA,
                    

                    
                    

                    

                    
                    

                    

                    

                    
                    

                    

                    
                    

                    

                    

                    

                    

                    

                    
                    

τ 

σ1σ2σ3

τmax

σ 

 σA =




2σo 0 0
0 σo 0
0 0 0


 → σ1 = 2σo σ2 = σo σ3 = 0

τmax =
∣∣∣∣
σmax − σmin

2

∣∣∣∣ = σo

For σB,
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τ 

σ1
σ2σ3

τmax

σ 

 

σB =




2σo 0 0
0 σo 0
0 0 σo


 → σ1 = 2σo σ2 = σ3 = σo

τmax =
∣∣∣∣
σmax − σmin

2

∣∣∣∣ =
σo

2

For σC,
                    

                    
                    

                    

                    
                    

                    

                    

                    
                    

                    

                    
                    

                    

                    

                    

                    

                    

                    
                    

τ 

σ1σ2σ3

τmax

σ 

 σC =




2σo 0 0
0 σo 0
0 0 −σo


 → σ1 = 2σo σ2 = σo σ3 = −σo

τmax =
∣∣∣∣
σmax − σmin

2

∣∣∣∣ =
3
2
σo

From these very interesting cases we can observe that when adding a compressive traction
to the point of stress, it improves the shear capacity; and when adding a tensile traction,
it worsens the shear capacity. This observations became handy when studying steady-load
theories of failure.

End Case �
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Case 2.5.

Pure Shear

 

x 

y 

σo σo 

σo 

σo 

σo 

45° 

A stress state of great practical importance is the state of pure shear characterized by prin-
cipal stresses of equal magnitude but opposite signs:

σA =



σo 0 0
0 −σo 0
0 0 0


 (2.70a)

First we evaluate the principal stresses for each case and then find the overall maximum
shear stress.

σA =



σo 0 0
0 −σo 0
0 0 0


 → σ1 = σo σ2 = 0 σ3 = −σo

τmax =
∣∣∣∣
σmax − σmin

2

∣∣∣∣ = σo

On faces oriented at 45◦ angles with respect to the principal stress directions, the direct
stresses vanish and the shear has a maximum value, equal in magnitude to the common
magnitudes of the two principal stresses.

End Case �
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 σσσσ3 

 σσσσ1 

 x2
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O  

Figure 2.17: General state of stress for stresses acting on octahedral planes.

2.3 Important Stresses

2.3.1 Octahedral Stresses

Sometimes it is advantageous to represent the stresses on an octahedral stress element rather than on
a conventional cubic element of principal stresses. Figures 2.17 and 2.18 and show the general state of
stress for stresses acting on octahedral planes. These figures show the orientation of the eight octahedral
planes that are associated with a given stress state. Each octahedral plane cuts across a corner of a
principal element, so that the eight planes together form an octahedron. The following characteristics
of the stresses on an octahedral plane should be noted:

1. Identical normal stresses act on all eight planes. Thus, the normal stresses tend to compress or
enlarge the octahedron but not to distort it.

2. Identical shear stresses act on all eight planes. Thus, the shear stresses tend to distort the octahe-
dron without changing its volume.

The fact that the normal and shear stresses are of equal magnitude for the eight planes is a powerful
tool in failure analysis. Furthermore, the octahedral normal and shear stress can be expressed in terms
of the principal normal stresses. Hence, our goal is to determine the octahedral normal stress, σoct, and
the octahedral shear stress, τoct. The octahedral stresses are also known as hydrostatic stresses and will
are denoted as T(oct).
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Figure 2.18: Tetrahedron element at O.

In order to derive these stresses we use Cauchy’s relationship. We start the analysis with the principal
stress element at point O. The general state of stress at O has only principal stresses

σ =




σ1 0 0

0 σ2 0

0 0 σ3




(2.71)

and they are acting on the principal axes x1-x2-x3, as shown in Fig. 2.18. All three axes are mutually
orthogonal: x1 is the principal plane n̂(1), x2 is the principal plane n̂(2), and x3 is the principal plane
n̂(3). Figure 2.18 shows the equilibrium of an infinitesimal tetrahedron at O.

We need to find the direction of the unit vector normal to the oblique face of the tetrahedron, n̂:

n̂ACB =
AACB

‖AACB‖
(2.72)

where AACB is the area of the tetrahedron’s oblique face. Note that for a tetrahedron OA = OB = OC.
Let us take OA = OB = OC = ∆. Let us proceed to obtain the area of ACB:

AACB =
1
2

r(AC) × r(AB)

where

r(AC) = C−A =





0
∆
0



−





∆
0
0



 = −∆ î + ∆ ĵ

r(AB) = B−A =





0
0
∆



−





∆
0
0



 = −∆ î + ∆ ĵ
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Hence, the area and its magnitude are

AACB =
1
2

r(AC) × r(AB) =
1
2

∆2 î +
1
2

∆2 ĵ +
1
2

∆2 k̂

‖AACB‖ =
√

AABC ·AABC =
√
A2
x +A2

y +A2
z =

√
3

2
∆2

Thus, the unit vector on face ACB is

n̂ACB =
1√
3

î +
1√
3

ĵ +
1√
3

k̂ (2.73)

Now we find the stress vector on face ACB using Cauchy’s formula

T(ACB) =




σ1 0 0

0 σ2 0

0 0 σ3








1√
3

1√
3

1√
3





=





σ1√
3

σ2√
3

σ3√
3





=
σ1√

3
î +

σ2√
3

ĵ +
σ3√

3
k̂

Since the octahedral stress vector is the stress vector acting on face ACB:

T(oct) = T(ACB) =
σ1√

3
î +

σ2√
3

ĵ +
σ3√

3
k̂ (2.74)

The magnitude of the normal octahedral stress can be obtained using Eq. (2.5):

σoct = T(oct) · n̂oct =
σ1 + σ2 + σ3

3
(2.75)

where n̂oct = n̂ACB. The magnitude of the shear octahedral stress can be obtained using Eq. (2.7):

τoct =
√∥∥T(oct)

∥∥2 − σ2
oct =

√
2

3

√
σ2

1 + σ2
2 + σ2

3 − σ1 σ2 − σ1 σ3 − σ2 σ3
(2.76)

We can rearrange the above equation as follows

τoct =
1
3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

=
1
3

√
(σxx − σyy)2 + (σyy − σzz)

2 + (σzz − σxx)2 + 6
(
τ2
xy + τ2

yz + τ2
xz

)
(2.77)

The octahedral stresses can also be expressed in terms of the stress invariants as follows



σ1 − λ 0 0

0 σ2 − λ 0
0 0 σ3 − λ







nx
ny
nz



 =





0
0
0
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The nontrivial solution is given when the determinant of the matrix of coefficients of nx, ny, and nz
vanish: ∣∣∣∣∣∣

σ1 − λ 0 0
0 σ2 − λ 0
0 0 σ3 − λ

∣∣∣∣∣∣
= 0

The characteristic equation obtained by expanding the determinant can be expressed in terms of the
stress invariants as follows

λ3 − Iσ1 λ
2 + Iσ2 λ− Iσ3 = 0

where Iσi ’s are the stress invariants. Using the definition of stress invariants:

Iσ1 = σ1 + σ2 + σ3

Iσ2 =
∣∣∣∣
σ1 0
0 σ2

∣∣∣∣+
∣∣∣∣
σ2 0
0 σ3

∣∣∣∣+
∣∣∣∣
σ1 0
0 σ3

∣∣∣∣ = σ1 σ2 + σ2 σ3 + σ1 σ3

Iσ3 =

∣∣∣∣∣∣

σ1 0 0
0 σ2 0
0 0 σ3

∣∣∣∣∣∣
= σ1 σ2 σ3

We can express the normal octahedral (hydrostatic) stress in terms of the stress invariants as follows:

σoct =
σ1 + σ2 + σ3

3
=
Iσ1

3
(2.78)

and the shear octahedral stress in terms of the stress invariants as follows:

τoct =
1
3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 =

1
3

√
2 I2

σ1
− 6 Iσ2

(2.79)

2.3.2 Von Mises Stress

The triaxial state of stress can be expressed in terms of the following equation

τoct =

√
2

3
σeq

(2.80)

where σeq is known as the von Misses stress, effective stress, or equivalent uniaxial stress. The derivation
for the above equation is left for the discussion of steady-load failure criterions. However, here we define
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the von Mises stress using the expression for τoct:

σeq =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2

=

√
(σxx − σyy)2 + (σyy − σzz)

2 + (σzz − σxx)2 + 6
(
τ2
xy + τ2

yz + τ2
xz

)

2

=
√
I2
σ1
− 3 Iσ2

(2.81)

Note that the von Mises stress is invariant as it only depends on stress invariants.

For a uniaxial state of stress

σ =



σxx 0 0

0 0 0
0 0 0




where σ2 = σ3 = 0,
σeq = σ1 = σxx

For a state of plane stress (say the x-y plane)

σ =



σxx τxy 0
τxy σyy 0

0 0 0




where σ3 = 0,

σeq =
√
σ2

1 + σ2
2 − σ1 σ2 =

√
σ2

xx + σ2
yy − σyy σxx + 3 τ2

xy

Reconsider the particular case of combined loading, where σyy = σzz = τxz = τyz = 0. Then the above
expression becomes

σeq =
√
σ2

xx + 3 τ2
xy
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2.4 Theory of Strains

A structure deforms as we apply loads. The deformation may produce change in the dimensions of
the body, change in its shape. Deformations induce strains throughout the structure. Thus, strain
may defined as a measure of the relative distortion of the material in the vicinity of a given point.
Normal strains have units of [Length]/[Length] and shear strains have units of [radians]; and they are
directionally dependent.

 

 

 

x, U 

z, W 

y, V  

Reference configuration 
(Undeformed) 

Current configuration 
(Deformed) 

P1(x1, y1, z1) 

R 

r 

r1 

P(x, y, z) 

Figure 2.19: Deformation of a solid body from the initial configuration, C0, to the current configuration,
C1

The formulation of strains is more complex that that of stresses. One reason is due to the non-
linear terms. As is was in the case of stresses, we are interested in deriving the state of strain in the
neighborhood of a given point. The state of strain may be defined as the deformation of a solid in the
neighborhood of a given point, say point P of position vector

r = x î + y ĵ + z k̂ (2.82)

as shown in Fig. 2.19.

To better understand the concept of strain let us start by defining the deformed and undeformed
states. The reference configuration is the configuration of the solid in its undeformed state. Under
the effect of applied loads, the body deforms and assumes a new configuration, called the deformed
configuration. Figure 2.19 shows an arbitrary body in its initial and deformed configurations. Let the
body in its undeformed configuration have a volume designated Γ, external surface area Ω, mass density
ρ, and reference material points of the body to cartesian coordinates x, y, z. Denote the deformed
configuration with a volume Γ1, external surface area Ω1, mass density ρ1, and reference material points
of the body to cartesian coordinates x1, y1, z1. Furthermore, let the coordinate system of the reference
(undeformed) and current (deformed) configuration coincide.

The initial position of a point, P, with coordinates (x, y, z) is given by the position vector r, and the
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current position of the same point, P1, with coordinates (x1, y1, z1) is given by the position vector r1.
Let us define the position vector r1 as

r1 = r + R

where5

R =





U(x, y, z)
V (x, y, z)
W (x, y, z)



 r =





x

y

z



 r1 =





x1

y1

z1





When loads are applied to an initially unstressed body, each unconstrained material particle undergoes a
small displacement, moving from its initial location to a new location a small distance away, see Fig. 2.19.

 

 

 

 y

 z 
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 P 

 Q 

 R 

 S

 T 

 P1

 R1

 Q1 

 S1

 T1

 r 

 R 

Reference Configuration Deformed Configuration 

 dy  dx 

 dz 

 r1

 dr 
 dr1 

Figure 2.20: The neighborhood of point P in the reference and deformed configurations..

In order to visualize the deformed configuration, consider a small rectangular parallelepiped PQRST
of differential volume dΓ = dx dy dz. Let us cut the parallelepiped in the neighborhood of point P, as
shown in Fig. 2.20. All the material particle that form the rectangular parallelepiped PQRST in the
reference configuration now form the parallelepiped P1Q1R1S1T1 in the deformed configuration. The
state of strain at a point characterizes the deformation of the parallelepiped without any consideration
for the loads that created the deformation.

The displacement vector is a measure of how much a material point moves from the reference to the
deformed configuration. The components of the displacement vector in the cartesian coordinates are

R = U(x, y, z) î + V (x, y, z) ĵ +W (x, y, z) k̂ (2.83)

5They could be time-dependent.
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This displacement field describes the displacement of any point within the solid and consists of two parts:
a rigid body motion and a deformation or straining of the solid. The rigid body motion itself consists of
two parts: a rigid body translation and rigid body rotation. By definition, a rigid body motion does not
strain the body. Strain measures extract from the displacement field the part that deforms the body.

Consider a differential line element dr joining an arbitrary material point P to a neighboring material
point Q, as shown in Fig. 2.20. The components of dr are:

dr = dx î + dy ĵ + dz k̂

and the magnitude is
ds = ‖dr‖ =

√
dx2 + dy2 + dz2

Thus the unit vector un the direction of dr is

n̂ =
dr
ds

=
dx

ds
î +

dy

ds
ĵ +

dz

ds
k̂

During deformation, point P undergoes a displacement R, carrying it to P1. The displacement vector
joins a point in the deformed body to its new location in the deformed state. The coordinates of P1

therefore are
x1 = x+ U(x, y, z) y1 = y + V (x, y, z) z1 = z +W (x, y, z) (2.84)

Thus, after deformation, the vector joining P1 to Q1 is dr1:

dr1 = dx1 î + dy1 ĵ + dz1 k̂

where
dx1 = dx+ dU dy1 = dy + dV dz1 = dz + dW (2.85)

From differential calculus, the total derivatives in Eq. (2.85) are:

dU =
∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz

dV =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz

dW =
∂W

∂x
dx+

∂W

∂y
dy +

∂W

∂z
dz

Thus, Eq. (2.85) may be written as:

dx1 = dx+
∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz

dy1 = dy +
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz

dz1 = dz +
∂W

∂x
dx+

∂W

∂y
dy +

∂W

∂z
dz
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2.4.1 State of Strain

A material line is an ensemble of material particles that are in a straight line in the reference configuration
of the body. For instance, segments PR, PS and PT of the reference configuration are material lines.
Due to the deformation of the body, all the material particles forming material line PR will move to
segment P1R1 in the deformed configuration. Due to the differential nature of this segment, it can be
assumed to remain straight in the deformed configuration.

When comparing segment PR in the undeformed and deformed configurations, the motion consists
of two parts: a change in orientation and a change in length. Clearly, the orientation change is a
rigid body motion, whereas the change in length is a deformation or stretching of the material line.
Similarly, segments PR and PS form a rectangle in the reference configuration, but a parallelogram
in the deformed configuration. Here again, the change in orientation of the rectangle is a rigid body
rotation, but the angular distortion of the rectangle into a parallelogram represents a deformation of the
body. Stretching of the material lines and angular distortion between two material lines will be selected
as measures of the state of strain at a point.

The stretching or relative elongations of materials lines PR, PS and PT will be denoted exx, eyy and
ezz, respectively. The angular distortions between segments PS and PT, PR and PT, and PR and PS
will be denoted γyz, γxz, and γxy, respectively.

Extensional Strains

The extensional strain of the line element PQ in Fig. 2.20, is the ratio of the change of its length to its
original length:

en =
ds1 − ds

ds
=
ds1

ds
− 1

The extensional strain is obviously a dimensionless quantity and a typical order of magnitude is 10−3.
It is written often as 1000µ and is read as “1000 microstrain”, where µ = 10−6 length units/ per length
unit. In order to derive these strains let us only look at the material line PR. This will give us the total
strain in the x-direction. The relative elongation, exx, of the material line PR is defined as:

exx =
ds1

ds
− 1 =

P1R1

PR
− 1

The length of the material lines in the undeformed and deformed configurations are

PR =
∥∥∥dx î

∥∥∥ = dx

P1R1 =
∥∥∥(dx+ dU) î

∥∥∥ =

√
1 + 2

∂U

∂x
+
(
∂U

∂x

)2

+
(
∂V

∂x

)2

+
(
∂W

∂x

)2

dx
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The extensional, or relative, elongation becomes

exx =
P1R1

PR
− 1

=

√
1 + 2

∂U

∂x
+
(
∂U

∂x

)2

+
(
∂V

∂x

)2

+
(
∂W

∂x

)2

dx

dx
− 1

=

√
1 + 2

∂U

∂x
+
(
∂U

∂x

)2

+
(
∂V

∂x

)2

+
(
∂W

∂x

)2

− 1

We can replace the squared operator by using the following expansion

(1 + ε)1/2 = 1 +
1
2
ε− 1

8
ε2 +

1
16
ε3 + · · ·

and for a small ε
(1 + ε)1/2 ≈ 1 +

1
2
ε (2.86)

Thus,

exx =
∂U

∂x
+

1
2

{(
∂U

∂x

)2

+
(
∂V

∂x

)2

+
(
∂W

∂x

)2
}

Similarly,

eyy =
∂V

∂y
+

1
2

{(
∂U

∂y

)2

+
(
∂V

∂y

)2

+
(
∂W

∂y

)2
}

ezz =
∂W

∂z
+

1
2

{(
∂U

∂z

)2

+
(
∂V

∂z

)2

+
(
∂W

∂z

)2
}

In most aerospace engineering materials, strains on the order of 1% or more may cause damage,
which is unacceptable. The fact that in most applications are indeed quite small when compared to
1, justifies a fundamental assumption of linear elasticity which states that all displacement components
remain very small so that all second order terms can be neglected. As a consequence:

|U | � 1 |V | � 1 |W | � 1
∣∣∣∣
∂U

∂x

∣∣∣∣� 1
∣∣∣∣
∂U

∂y

∣∣∣∣� 1
∣∣∣∣
∂U

∂z

∣∣∣∣� 1

∣∣∣∣
∂V

∂x

∣∣∣∣� 1
∣∣∣∣
∂V

∂y

∣∣∣∣� 1
∣∣∣∣
∂V

∂z

∣∣∣∣� 1
∣∣∣∣
∂W

∂x

∣∣∣∣� 1
∣∣∣∣
∂W

∂y

∣∣∣∣� 1
∣∣∣∣
∂W

∂z

∣∣∣∣� 1

With these assumptions, the expressions for the relative elongation are reduced to:

exx =
∂U

∂x
eyy =

∂V

∂y
ezz =

∂W

∂z

But we should treat this assumption with care as for some applications, such as helicopter blades,
nonlinear terms are extremely important.
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Shear Strain

Now let us obtain the appropriate measure of the change in shape of the solid body. To better understand
the derivation, let us limit to the y-z plane, see Fig. 2.21.
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y-z plane with positive angular distortion 

Figure 2.21: Shear deformation in the reference and deformed configurations..

The shear strain, or the angular distortion, γyz, between two material lines PT and PS is defined as
the change of the initially right angle

γyz = α+ β = ]TPS− ]T1P1S1 =
π

2
− ]T1P1S1

where ]TPS is is used to indicate the angle between segments PT and PS. The shear strain, or the
angular distortion, are also nondimensional quantities. To eliminate the difference between the two
angles, the basic properties of the sine function are used: the sine of the angular distortion becomes

sin γyz = sin
(π

2
− ]T1P1S1

)
= cos]T1P1S1 → γyz = arcsin

(
cos]T1P1S1

)

The cosine of the angle between the two material lines is computed from the following trigonometric
identity, the law of cosines, applied to triangle T1P1S1 in the deformed configuration

‖T1S1‖2 = ‖P1T1‖2 + ‖P1S1‖2 − 2 ‖P1T1‖ ‖P1S1‖ cos]T1P1S1
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solving in terms of the cosine of the angle ]T1P1S1

cos]T1P1S1 =
‖T1S1‖2 − ‖P1T1‖2 − ‖P1S1‖2

2 ‖P1T1‖ ‖P1S1‖

Thus, the shear strain is

γyz = arcsin
(

cos]T1P1S1

)
= γyz = arcsin

{
‖T1S1‖2 − ‖P1T1‖2 − ‖P1S1‖2

2 ‖P1T1‖ ‖P1S1‖

}

The same procedure as used above in determining exx is used to compute ‖P1T1‖ and ‖P1S1‖:

P1T1 =
(
dy ĵ +

∂R
∂y

dy

)
=
(

ĵ +
∂R
∂y

)
dy

P1S1 =
(
dz k̂ +

∂R
∂z

dz

)
=
(

k̂ +
∂R
∂z

)
dz

Hence,
T1S1 = P1S1 −P1T1

With some mathematical manipulation, it can be shown that

numerator = ‖T1S1‖2 − ‖P1T1‖2 − ‖P1S1‖2

= 2
(

ĵ +
∂R
∂y

)
·
(

k̂ +
∂R
∂z

)
dy dz

= 2
(
∂V

∂z
+
∂W

∂y
+
∂R
∂y
· ∂R
∂z

)
dy dz

= 2
(
∂V

∂z
+
∂W

∂y
+
∂U

∂y

∂U

∂z
+
∂V

∂y

∂V

∂z
+
∂W

∂y

∂W

∂z

)
dy dz

The denominator is expressed in the same manner:

denominator = 2 ‖P1T1‖ ‖P1S1‖

= 2

√
1 + 2

∂U

∂y
+
(
∂U

∂y

)2

+
(
∂V

∂y

)2

+
(
∂W

∂y

)2

dy ×
√

1 + 2
∂W

∂z
+
(
∂U

∂z

)2

+
(
∂V

∂z

)2

+
(
∂W

∂z

)2

dz

Using Eq. (2.86), it can be shown that

denominator = 2 ‖P1T1‖ ‖P1S1‖ ≈ 1 +
∂U

∂y
+
∂W

∂z
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For moderately small rotations, the angular distortion, or the shear strain about the x-axis can be
approximated as

γyz =
∂V

∂z
+
∂W

∂y
+
∂U

∂y

∂U

∂z
+
∂V

∂y

∂V

∂z
+
∂W

∂y

∂W

∂z

Likewise,

γxy =
∂U

∂y
+
∂V

∂x
+
∂U

∂y

∂U

∂x
+
∂V

∂y

∂V

∂x
+
∂W

∂y

∂W

∂x

γxz =
∂U

∂z
+
∂W

∂x
+
∂U

∂x

∂U

∂z
+
∂V

∂x

∂V

∂z
+
∂W

∂x

∂W

∂z

For small displacements,

γxy =
∂U

∂y
+
∂V

∂x
γxz =

∂U

∂z
+
∂W

∂x
γyz =

∂U

∂y
+
∂V

∂z
(2.87)

Now recall that the engineering shear strain (γshear) is related to the true elasticity shear strain (eshear)
as

eshear =
γshear

2
(2.88)
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Thus

exy =
1
2

(
∂U

∂y
+
∂V

∂x

)

exz =
1
2

(
∂U

∂z
+
∂W

∂x

)

eyz =
1
2

(
∂W

∂y
+
∂V

∂z

)

(2.89)

These strains are often called the Green-Cauchy strains.

Green Tensor or Cauchy’s Strain Tensor

The components os strain relative to any set of orthogonal axes are therefore known if we are given the
state of strain (relative to a cartesian coordinate system),

e =




exx exy exz

eyx eyy eyz

ezx ezy ezz




The above is known as the strain tensor. Further we can show that the strain tensor is a symmetric
strain matrix,

e =




exx exy exz

exy eyy eyz

exz eyz ezz




(2.90)

In terms of the engineering shear strains

e =




exx

1
2
γxy

1
2
γxz

1
2
γxy eyy

1
2
γyz

1
2
γxz

1
2
γyz ezz




(2.91)
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Example 2.7.

The following displacement field describes the movement of a body under load:

R = 0.01
(
x2 + 3

)
î + 0.01

(
3 y2 z

)
ĵ + 0.01 (x+ 3 z) k̂ m

(2.7a) Determine the strain tensor.

The strain tensor is

e =




exx

1
2
γxy

1
2
γxz

1
2
γxy eyy

1
2
γyz

1
2
γxz

1
2
γyz ezz




and from the given problem,

U(x, y, z) = 0.01
(
x2 + 3

)

V (x, y, z) = 0.01
(
3 y2 z

)

W (x, y, z) = 0.01 (x+ 3 z)

Now, evaluating all strains we get

exx =
∂U

∂x
= 2 (0.01)x eyy =

∂V

∂y
= 6 (0.01) y z

ezz =
∂W

∂z
= 0.03 γxy =

∂U

∂y
+
∂V

∂x
= 0

γxz =
∂U

∂z
+
∂W

∂x
= 0.010 γyz =

∂W

∂y
+
∂V

∂z
= 3 (0.01) y2

Thus, the strain tensor is

e =




exx

1
2
γxy

1
2
γxz

1
2
γxy eyy

1
2
γyz

1
2
γxz

1
2
γyz ezz




=




2x 0 0.5

0 6 y z 1.5 y2

0.5 1.5 y2 3



× 10−2

(2.7b) Determine the state of strain at (0,2,3).
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At the given point: x = 0, y = 2, z = 3. Thus the state of strain is

e =




0.000 0.000 0.005

0.000 0.360 0.060

0.005 0.060 0.030




End Example �
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2.4.2 Strain compatibility equations

We defined the displacement field, R, to describe the motion and deformation of a solid. In order to
accomplish this, the displacement field must be a single-valued, continuous function. If it is not single-
valued, it means that certain points can have more than one displacement at a time, which is physically
impossible. A a discontinuous displacement field means that originally infinitesimally close points would
be separated by a finite amount in the deformed geometry, which takes place in presence of imperfections
or cracks. However, this is beyond the scope of this text.

The state of strain also has a means of describing deformation of a solid for purposes of relating
simply to the state of stress. Hence, we must ensure properly association with a physically deformation
of a solid, free from cracks and fissures. To better understand this suppose a solid is before deformation
consists of a system of infinitesimal contiguous cubes. Then, we must choose strain component functions
that ensure that

1. each element is continuous.

2. no element partially or fully occupies the same space at the same time.

This is known as ensuring strain compatibility. One way to ensure strain compatible is by starting with
a single-valued, continuous displacement field and developing the strains from this field in accordance
with the strain-displacement equations discussed earlier. However, for some circumstances we may
only be able to assume the strains functions instead of the displacement field. In order to ensure that
the strains are indeed compatible, we can derive certain equations known as the compatibility equations.
Compatibility equations guarantee for certain classes of bodies that the strains have the proper functions.

Consider the following derivatives of the shear strain components

∂2γyz

∂y ∂z
=

∂2

∂y ∂z

{
∂V

∂z
+
∂W

∂y

}
=

∂3V

∂y ∂2z
+

∂3W

∂2y ∂z
=
∂2eyy

∂z2 +
∂2ezz

∂y2

or

2
∂2eyz

∂y ∂z
=
∂2eyy

∂z2 +
∂2ezz

∂y2

This clearly implies that the shear and axial strain components are not independent. Consider now a
different set of derivatives

∂2exx

∂y ∂z
=

∂3U

∂x∂y ∂z

∂γyz

∂x
=

∂2V

∂x ∂z
+
∂2W

∂x∂y

∂γxz

∂y
=

∂2U

∂y ∂z
+
∂2W

∂x∂y

∂γxy

∂z
=

∂2U

∂y ∂z
+

∂2V

∂x ∂z

It can be shown that all the above four equations can be written into one:

2
∂2exx

∂y ∂z
=

∂

∂x

{
−∂γyz

∂x
+
∂γxz

∂y
+
∂γxy

∂z

}
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or
∂2exx

∂y ∂z
=

∂

∂x

{
−∂eyz

∂x
+
∂exz

∂y
+
∂exy

∂z

}

This is another relationship between the shear and axial strain components. Similar relationship can be
obtained through cyclical permutations of the indices to yield the six strain compatibility equations

∂2exy

∂x ∂y
=
∂2exx

∂y2 +
∂2eyy

∂x2

∂2eyz

∂y ∂z
=
∂2eyy

∂z2 +
∂2ezz

∂y2

∂2ezx

∂z ∂x
=
∂2exx

∂z2 +
∂2ezz

∂x2

∂2exx

∂y ∂z
=

∂

∂x

{
−∂eyz

∂x
+
∂exz

∂y
+
∂exy

∂z

}

∂2eyy

∂x ∂z
=

∂

∂y

{
−∂ezx

∂y
+
∂eyx

∂z
+
∂eyz

∂x

}

∂2ezz

∂x ∂y
=

∂

∂z

{
−∂exy

∂z
+
∂ezy

∂x
+
∂ezx

∂y

}

(2.92)

In short, note that at the beginning of this chapter, we found that to satisfy equilibrium, stresses
had to vary with position in such a way as to satisfy the equilibrium equations. Similarly, strains must
vary with position so as to satisfy the compatibility equations in order to represent physically realizable
deformations.
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2.4.3 Cauchy’s relationship for Strains

Cauchy’s relation can be extended for strains. Recall that to find the stress vector at a surface with a
unit normal n̂(s), we had 




Tx

Ty

Tz





=




σxx τxy τxz

τxy σyy τyz

τxz τyz σzz








nx

ny

nz





T(s) = σ · n̂(s)

Analog to the above formulation, the relationship may be extended to strains as follows:





Ex

Ey

Ez





=




exx

1
2
γxy

1
2
γxz

1
2
γxy eyy

1
2
γyz

1
2
γxz

1
2
γyz ezz








nx

ny

nz





E(s) = e · n̂(s)

(2.93)
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Example 2.8.

The following displacement field describes the movement of a body under load:

R = 0.01
(
x2 + y2

)
î + 0.01 (3 + x z) ĵ−

(
0.006 z2

)
k̂ ft

(2.8a) Determine the strain tensor.

The strain tensor is

e =




exx

1
2
γxy

1
2
γxz

1
2
γxy eyy

1
2
γyz

1
2
γxz

1
2
γyz ezz




From the problem,
U(x, y, z) = 0.01

(
x2 + y2

)

V (x, y, z) = 0.01 (3 + x z)

W (x, y, z) = −
(
0.006 z2

)

Now, evaluating all strains we get

exx =
∂U

∂x
= 2 (0.01)x

eyy =
∂V

∂y
= 0

ezz =
∂W

∂z
= −.012 z

γxy =
∂U

∂y
+
∂V

∂x
= 2 (0.01) y + (0.01) z

γxz =
∂U

∂z
+
∂W

∂x
= 0

γyz =
∂W

∂y
+
∂V

∂z
= (0.01)x
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Thus, the strain tensor is

e =




exx

1
2
γxy

1
2
γxz

1
2
γxy eyy

1
2
γyz

1
2
γxz

1
2
γyz ezz




=




2x y +
z

2
0

y +
z

2
0

x

2

0
x

2
−1.2 z



× 10−2

(2.8b) Determine the state of strain at (0,1,3).

At the given point x = 0, y = 1, z = 3. Thus the state of strain is

e =




0 0.025 0

0.025 0 0

0 0 −0.036




(2.8c) Compute the normal and tangential strain at (0,1,3) in the direction of

n̂(s) = 0.6 î + 0.8 ĵ =





0.6
0.8
0.0





E(s) =




0 0.025 0

0.025 0 0

0 0 −0.036








0.6
0.8
0.0



 =





0.0200
0.015
0.000





 E(s)

En
 

Et
 

The normal component of the strain is

enn =
[
E(s)

]T · n̂(s) =
{

0.0200 0.015 0.000
}
·





0.6
0.8
0.0



 = 0.0240
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En = enn n̂(s) = 0.0240





0.6
0.8
0.0



 =





0.0144
0.0192
0.0000





The tangential component of the strain is:

Et = E(s) −En =





0.0056
−0.0042
0.0000





and the magnitude is

ett =
√

(0.0056)2 + (−0.0042)2 + (0.0)2 = 0.007

End Example �
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2.4.4 Principal Strains and Principal Planes

Similar to principal stresses, the knowledge of principal strains help us find plane(s) on which the
normal strains has the largest possible value or plane(s) on which the largest possible shear strain value.
A principal plane is a plane such that the strain vector acting on that plane has no component which is
tangent to the plane (i.e., there are no shear strains acting on the plane):

e =




e1 0 0

0 e2 0

0 0 e3




(2.94)

In order words, the strain vector has the same direction as the unit normal that describes the plane.
The magnitude of the normal strain is known as principal strain. The procedure is similar to that
used to obtain principal stresses for a given three-dimensional state of stress6

The derivation of the eigenvalue problem is similar to that for the stress analysis. If φ is the magnitude
of the strain vector acting on the principal plane the strain vector is defined as

φ n̂ = φ





nx
ny
nz



 = φ




1 0 0

0 1 0

0 0 1








nx

ny

nz





=




φ 0 0

0 φ 0

0 0 φ








nx

ny

nz





(2.95)

Now using the knowledge of what the strain vector should be for a principal plane, Eq. (2.95),




φ 0 0

0 φ 0

0 0 φ








nx

ny

nz





=




exx

1
2
γxy

1
2
γxz

1
2
γxy eyy

1
2
γyz

1
2
γxz

1
2
γyz ezz








nx

ny

nz





Thus for a principal plane,



exx − φ
1
2
γxy

1
2
γxz

1
2
γxy eyy − φ

1
2
γyz

1
2
γxz

1
2
γyz ezz − φ








nx
ny
nz



 =





0
0
0



 (2.96)

These equations have the trivial solution nx = ny = nz = 0, which is not allowed, since nx, ny, and nz

6All stress equations apply but take τ →
γ

2
and σ → e for the case of strains.
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are the components of a unit vector, satisfying

n2
x + n2

y + n2
z = 1 (2.97)

Equations in (2.96) possess a nontrivial solution if the three equations are not independent of each other.
In other words, the determinant of the matrix of coefficients of nx, ny, and nz must vanish:

∣∣∣∣∣∣∣∣∣∣∣∣∣

exx − φ
1
2
γxy

1
2
γxz

1
2
γxy eyy − φ

1
2
γyz

1
2
γxz

1
2
γyz ezz − φ

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

The characteristic equation obtained by expanding the determinant can be expressed in terms of the
strain invariants as follows

φ3 − Iε1 φ2 + Iε2 φ− Iε3 = 0 (2.98)

where Iεi ’s are7:

Iε1 = exx + eyy + ezz (2.99)

Iε2 =

∣∣∣∣∣∣∣∣

exx

1
2
γxy

1
2
γxy eyy

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

exx

1
2
γxz

1
2
γxz ezz

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

eyy

1
2
γyz

1
2
γyz ezz

∣∣∣∣∣∣∣∣

= exx eyy + ezz exx + eyy ezz −
1
4
(
γ2

xy + γ2
yz + γ2

xz

)
(2.100)

Iε3 = det




exx

1
2
γxy

1
2
γxz

1
2
γxy eyy

1
2
γyz

1
2
γxz

1
2
γyz ezz




= exx eyy ezz +
1
4
(
γxy γyz γxz − exx γ

2
yz − eyy γ

2
xz − ezz γ

2
xy

)
(2.101)

The three roots of the characteristic equation, Eq. (2.98), are the principal strains and can be obtained

7When working with Cauchy’s strains, substitute γ for 2 e, i.e., γxy → 2 exy.
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analytically:

e1 =
Iε1
3

+
2
3

√
I2
ε1 − 3 Iε2 cos

(
β

3

)
(2.102)

e2 =
Iε1
3

+
2
3

√
I2
ε1 − 3 Iε2 cos

(
β

3
+

2π
3

)
(2.103)

e3 =
Iε1
3

+
2
3

√
I2
ε1 − 3 Iε2 cos

(
β

3
+

4π
3

)
(2.104)

β = cos−1


2I3

ε1 − 9Iε1Iε2 + 27Iε3

2
√(

I2
ε1 − 3Iε2

)3


 (keep in radians) (2.105)

Since the strain tensor is symmetric, the principal strains, roots of Eq. (2.98), will be three real-valued
solutions. For each of these three solutions, the matrix of the system of equations defined by Eq. (2.96)
will have a zero determinant and a non trivial solution for the directions cosines that now define the
direction for which the shear strains vanish. Such direction is called a principal strain direction. Since
the equations to be solved are homogeneous, their solution will include an arbitrary constant which can
be determined by enforcing the condition

n2
x + n2

y + n2
z = 1

associated with the fact that vector n̂ must be a unit vector. Since there exist three principal strains,
three principal strain directions will exist. It can be shown that these three directions are mutually
orthogonal.

It turns out that a state of strain not only has three extreme values of normal strain, but also three
extreme values of shear strain, which are related to the three principal strains as follows:

e12 =
∣∣∣∣
e1 − e2

2

∣∣∣∣ e13 =
∣∣∣∣
e1 − e3

2

∣∣∣∣ e23 =
∣∣∣∣
e2 − e3

2

∣∣∣∣ (2.106)

or
γ12 = |e1 − e2| γ13 = |e1 − e3| γ23 = |e2 − e3| (2.107)

Observe that the absolute maximum shear strain at a point equals one-half the difference between the
largest and the smallest principal strain, or:

emax = max[e1, e2, e3] (2.108)

emin = min[e1, e2, e3] (2.109)

γmax = |emax − emin| (2.110)

Note that whereas the shear strain vanishes on planes of principal strain, the normal strain is generally
nonzero on planes where the shear strain acquires its extreme values.
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Principal Plane: n̂(1)

To find n̂(1), the principal direction of e1, we substitute φ = e1 into Eq. (2.96) and use only two equations
but not all three. This will give two of the three components of n̂(1) (n(1)

x , n(1)
y , and n

(1)
z ) and the last

component is obtained with (
n(1)
x

)2

+
(
n(1)
y

)2

+
(
n(1)
z

)2

= 1

thus

n̂(1) =





n
(1)
x

n
(1)
y

n
(1)
z





Principal Plane: n̂(2)

To find n̂(2), the principal direction of e2, we substitute φ = e2 into Eq. (2.96) and use only two equations
but not all three. This will give two of the three components of n̂(2) (n(2)

x , n(2)
y , and n

(2)
z ) and the last

component is obtained with (
n(2)
x

)2

+
(
n(2)
y

)2

+
(
n(2)
z

)2

= 1

thus

n̂(2) =





n
(2)
x

n
(2)
y

n
(2)
z





Principal Plane: n̂(3)

To find n̂(3), the principal direction of e3, we substitute φ = e3 into Eq. (2.96) and use only two equations
but not all three. This will give two of the three components of n̂(3) (n(3)

x , n(3)
y , and n

(3)
z ) and the last

component is obtained with (
n(3)
x

)2

+
(
n(3)
y

)2

+
(
n(3)
z

)2

= 1

thus

n̂(3) =





n
(3)
x

n
(3)
y

n
(3)
z





Note that the principal planes are orthogonal to each other. In other words, the three principal normals
are perpendicular to one another and thus

n̂(3) = n̂(1) × n̂(2)
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Example 2.9.

Determine the three principal strains and the corresponding principal planes for the state of
strain given in Example 2.7.

From the problem we found that the state of strain at (0,2,3) was

e =




0.000 0.000 0.005

0.000 0.360 0.060

0.005 0.060 0.030




For a principal plane, Cauchy’s equations can be written in matrix form as follows



exx − φ exy exz

eyx eyy − φ eyz

ezx ezy ezz − φ







nx
ny
nz



 =





0
0
0








0.000− φ 0.000 0.005

0.000 0.360− φ 0.060

0.005 0.060 0.030− φ








nx
ny
nz



 =





0
0
0





For nontrivial solutions the determinant of the matrix of coefficients of nx, ny, and nz must
vanish:

det



exx − φ exy exz

eyx eyy − φ eyz

ezx ezy ezz − φ


 =

∣∣∣∣∣∣∣∣∣∣

0.000− φ 0.000 0.005

0.000 0.360− φ 0.060

0.005 0.060 0.030− φ

∣∣∣∣∣∣∣∣∣∣

= 0

The characteristic equation obtained by expanding the determinant can be expressed in terms
of the stress invariants as follows

φ3 − Iε1 φ2 + Iε2 φ− Iε3 = 0
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where Iεi ’s are the strain invariants.

Iε1 = exx + eyy + ezz = 0.390

Iε2 =

∣∣∣∣∣∣

exx exy

exy eyy

∣∣∣∣∣∣
+

∣∣∣∣∣∣

exx exz

exz ezz

∣∣∣∣∣∣
+

∣∣∣∣∣∣

eyy eyz

eyz ezz

∣∣∣∣∣∣

= exx eyy + ezz exx + eyy ezz − e2
xy + e2

yz + e2
xz = 0.007175

Iε3 = det




exx exy exz

exy eyy eyz

exz eyz ezz




= exx eyy ezz +
(
2 exy eyz exz − exx e

2
yz − eyy e

2
xz − ezz e

2
xy

)
= −0.000009

Therefore, the characteristic equation can be written as

λ3 − 0.390λ2 + 0.007175λ+ 0.000009 = 0

The three roots of the characteristic equation are the principal strains and are obtained
analytically as follows:

β = cos−1


2 I3

ε1 − 9 Iε1Iε2 + 27 Iε3

2
√(

I2
ε1 − 3 Iε2

)3


 = 0.11567 rads

φ1 =
Iε1
3

+
2
3

√
I2
ε1 − 3 Iε2 cos

(
β

3

)
= 0.370573

φ2 =
Iε1
3

+
2
3

√
I2
ε1 − 3 Iε2 cos

(
β

3
+

2π
3

)
= −0.001178

φ3 =
Iε1
3

+
2
3

√
I2
ε1 − 3 Iε2 cos

(
β

3
+

4π
3

)
= 0.02061

and the principal strains are

e1 = max[φ1, φ2, φ3] = 0.370573

e3 = min[φ1, φ2, φ3] = −0.001178

e2 = 0.02061
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As we can see the principal strains are given as follows

e1 > e2 > e3

Principal Plane: n̂(1)

To find n̂(1), the principal direction of e1 = 0.370573, we substitute φ = e1 into Eq. (2.96)
and use only two equations but not all three. This will give two of the three components of
n̂(1) (n(1)

x , n(1)
y , and n

(1)
z ) and the last component is obtained with

(
n(1)
x

)2

+
(
n(1)
y

)2

+
(
n(1)
z

)2

= 1 (2.111)

Therefore,



−0.370573 0.0 0.005

0.0 −0.010573 0.06
0.005 0.06 −0.340573







nx
ny
nz





(1)

=





0
0
0





−0.370573n(1)
x + 0 + 0.005n(1)

z = 0

0 + −0.010573n(1)
y + 0.06n(1)

z = 0

0.005n(1)
x + 0.06n(1)

y + −0.340573n(1)
z = 0

Using the first two equations (we could have used any two equations) and solving all variables
in terms of n(1)

z (we could have solved in terms of any other component). Using the first two
equations:

n(1)
x = 0.01349n(1)

z n(1)
y = 5.6748n(1)

z (2.112)

Now obtain n
(1)
z using Eq. (2.111)

(
n(1)
x

)2

+
(
n(1)
y

)2

+
(
n(1)
z

)2

= 1

(
0.01349n(1)

z

)2

+
(

5.6748n(1)
z

)2

+
(
n(1)
z

)2

= 1

Then
n(1)
z = ±0.173535

Now taking the positive sign (arbitrarily) of n(1)
z and substituting into Eq. (2.112)

n(1)
z = 0.173535 n(1)

x = 0.00234144 n(1)
y = 0.984825

Thus, the principal strain e1 = 0.370573 acts on a plane with the unit normal

n̂(1) =





0.00234144
0.984825
0.173535
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Principal Plane: n̂(2)

To find n̂(2), the principal direction of e2 = 0.0206061, we substitute φ = e2 into Eq. (2.96)
and use only two equations but not all three. This will give two of the three components of
n̂(2) (n(2)

x , n(2)
y , and n

(2)
z ) and the last component is obtained with

(
n(2)
x

)2

+
(
n(2)
y

)2

+
(
n(2)
z

)2

= 1 (2.113)

Therefore,


−0.0206061 0.0 0.005

0.0 0.33939 0.06
0.005 0.06 0.00939







nx
ny
nz





(2)

=





0
0
0





−0.0206061n(2)
x + 0 + 0.005n(2)

z = 0

0 + 0.33939n(2)
y + 0.06n(2)

z = 0

0.005n(2)
x + 0.06n(2)

y + 0.00939n(2)
z = 0

Using the first two equations (we could have used any two equations) and solving all variables
in terms of n(2)

z (we could have solved in terms of any other component). Using the first two
equations:

n(2)
x = 0.2426n(2)

z n(2)
y = −0.17678n(2)

z (2.114)

Now obtain n
(2)
z using Eq. (2.113)

(
n(2)
x

)2

+
(
n(2)
y

)2

+
(
n(2)
z

)2

= 1

(
0.2426n(2)

z

)2

+
(
−0.17678n(2)

z

)2

+
(
n(2)
z

)2

= 1

Then
n(2)
z = ±0.957769

Now taking the positive sign (arbitrarily) of n(2)
z and substituting into Eq. (2.114)

n(2)
z = 0.957769 n(2)

x = 0.232399 n(2)
y = −0.16932

Thus, the principal strain e2 = 0.00206061 acts on a plane with the unit normal

n̂(2) =





0.232399
−0.16932
0.957769
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Principal Plane: n̂(3)

To find n̂(3), the principal direction of e3 = −0.00117862, we substitute φ = e1 into Eq. (2.96)
and use only two equations but not all three. This will give two of the three components of
n̂(3) (n(3)

x , n(3)
y , and n

(3)
z ) and the last component is obtained with

(
n(3)
x

)2

+
(
n(3)
y

)2

+
(
n(3)
z

)2

= 1 (2.115)

Therefore,




0.00117862 0.0 0.005
0.0 0.361178 0.06

0.005 0.06 0.031178







nx
ny
nz





(3)

=





0
0
0





0.00117862n(3)
x + 0 + 0.005n(3)

z = 0

0 + 0.361178n(3)
y + 0.06n(3)

z = 0

0.005n(3)
x + 0.06n(3)

y + 0.031178n(3)
z = 0

Using the first two equations (we could have used any two equations) and solving all variables
in terms of n(3)

z (we could have solved in terms of any other component). Using the first two
equations:

n(3)
x = −4.24225n(3)

z n(3)
y = −0.166123n(3)

z (2.116)

Now obtain n
(3)
z using Eq. (2.115)

(
n(3)
x

)2

+
(
n(3)
y

)2

+
(
n(3)
z

)2

= 1

(
−4.24225n(3)

z

)2

+
(
−0.166123n(3)

z

)2

+
(
n(3)
z

)2

= 1

Then
n(3)
z = ±0.229269

Now taking the positive sign (arbitrarily) of n(3)
z and substituting into Eq. (2.116)

n(3)
z = 0.229269 n(3)

x = −0.972618 n(3)
y = −0.0380868

Thus, the principal strain e3 = −0.0405854 acts on a plane with the unit normal

n̂(3) =





−0.972618
−0.0380868

0.229269
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Also, we could have obtained this by using Eq. (2.42):

n̂(3) = n̂(1) × n̂(2) =

∣∣∣∣∣∣

î ĵ k̂
0.00234144 0.984825 0.173535
0.232399 −0.16932 0.957769

∣∣∣∣∣∣

= −0.972618 î− 0.0380868 ĵ + 0.229269 k̂

End Example �
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2.5 State of Plane Strain

The state of strain in the neighborhood of a point is given by the strain tensor

e =



exx exy exz

eyx eyy eyz

ezx ezy ezz


 =




exx

1
2
γxy

1
2
γxz

1
2
γxy eyy

1
2
γyz

1
2
γxz

1
2
γyz ezz




(2.117)

The plane state of strain is of great practical importance in aerospace engineering. In this case, the
displacement component along the direction of z-axis is assumed to vanish, or to be negligible compared
to the displacement components in the other two directions.

For applications for which a material is formed into thick sheets and plates of uniform thickness, it is
often appropriate to assume that the strain components are confined to a plane, say x-y plane. In other
words,

γxz = γyz = 0 (2.118)

e =




exx

1
2
γxy 0

1
2
γxy eyy 0

0 0 ezz


 (2.119)

Now for many problems, such as in aerospace applications,

ezz � exx ezz � eyy (2.120)

If this is the case, then we can take
ezz ≈ 0 (2.121)

This type of problems are known as plane strain problems and the three dimensional state of strain
reduces to three independent components,

e =




exx

1
2
γxy 0

1
2
γxy eyy 0

0 0 0


 =



exx exy 0
exy eyy 0
0 0 0


 (2.122)

2.5.1 Principal strains for State of Plane Strain

Now we will briefly discuss three different methods used to obtain the principal strains and maximum
shear strains.
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Principal strains: Eigenvalue Approach

A principal plane is a plane such that the strain vector acting on that plane has no component which is
tangent to the plane (i.e., there are no shear strains acting on the plane):




e1 0 0

0 e2 0

0 0 e3




For a plane strain problem,



exx − φ exy 0
eyx eyy − φ 0
0 0 0− φ







nx
ny
nz



 =





0
0
0





The above posses a nontrivial solution if the three equations are not independent of each other. In other
words, the determinant of the matrix of coefficients of nx, ny, and nz must vanish:

∣∣∣∣∣∣

exx − φ exy 0
eyx eyy − φ 0
0 0 0− φ

∣∣∣∣∣∣
= 0

The characteristic equation obtained by expanding the determinant can be expressed in terms of the
strain invariants as follows

φ3 − Iε1 φ2 + Iε2 φ− Iε3 = 0

where Iεi ’s are the strain invariants. Using the definition of strain invariants:

Iε1 = exx + eyy

Iε2 =

∣∣∣∣∣∣∣

exx

1
2
γxy

1
2
γxy eyy

∣∣∣∣∣∣∣
+
∣∣∣∣
exx 0
0 0

∣∣∣∣+
∣∣∣∣
eyy 0
0 0

∣∣∣∣ = exx eyy −
1
4
γ2

xy

Iε3 =

∣∣∣∣∣∣∣∣∣

exx

1
2
γxy 0

1
2
γxy eyy 0

0 0 0

∣∣∣∣∣∣∣∣∣
= 0

Thus the characteristic equation becomes

φ3 − Iε1 φ2 + Iε2 φ = 0 → φ
(
φ2 − Iε1 φ+ Iε2

)
= 0 (2.123)
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The three roots of the characteristic equation, Eq. (2.123), are the principal strains and can be obtained
analytically:

e1 =
Iε1
2

+
1
2

√
I2
ε1 − 4 Iε2

e2 =
Iε1
2
− 1

2

√
I2
ε1 − 4 Iε2

e3 = 0

2.5.2 Strain Measurements

The whole idea of state of stress at a given point of an elastic body must be verified using through
experimental data or measurements. So far we have no experimental equipment to directly measure
stresses. However, we do have gauges that can measure strains, and thus the state of strain. The state
of stress can be obtained using the constitutive laws discussed in chapter ??.

Let us now discuss how we determine the state of strain. In general, we obtain the measurements
on an external surface rather than at an interior point. As we have discussed in previous sections,
a two-dimensional state of strain in the neighborhood of a point is characterized by two components:
extensional and angular (shear). The measurement of the first one, extensional strains, is easy; but the
measurement of the extremely small angular changes associated with shear strain is very difficult to
accomplish. The relative elongation at the surface of a body can be measured with the help of what
are called electrical resistance strain gauges, or more simply, strain gauges. The complete state of strain
at the surface of the body is specified by three independent quantities, i.e., either two extensional and
a shear strain, or two principal strains and a principal direction. These can be computed from the
measurement of relative elongation in three distinct directions.

 

 

 

1 

3 

2 

u3, y 
u2 

u1, x 

θ 

Figure 2.22: Three strain gauges at the surface of a solid: 3-gage rosette.

To better understand how this works, let ε1, ε2, and ε3 be the experimentally measured relative
elongations in those three directions. Note that a complete evaluation of the state of strain requires
the knowledge of three strain components, and thus requires three independent measurements in three
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distinct directions. If the four gauges are properly working, the redundant information can be used to
compensate for experimental errors.

In order to calculate the principal strains, we need the actual strains for the above measurements.
These can be obtained by solving the following system of equations:

ε1 = exx cos2 θ1 + eyy sin2 θ1 + γxy sin θ1 cos θ1

ε2 = exx cos2 θ2 + eyy sin2 θ2 + γxy sin θ2 cos θ2

ε3 = exx cos2 θ3 + eyy sin2 θ3 + γxy sin θ3 cos θ3

where the θi’s are measured counterclockwise from the x-axis. The above can also be written in matrix
form, 




ε1
ε2
ε3



 =




cos2 θ1 sin2 θ1 sin θ1 cos θ1

cos2 θ2 sin2 θ2 sin θ2 cos θ2

cos2 θ3 sin2 θ3 sin θ3 cos θ3







exx

eyy

γxy



 (2.124)
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Example 2.10.

The strain gage measurements from a rosette are given as:

exx = 2000µ exx+45◦ = 1350µ eyy = 950µ

Determine the principal strains from the above components.

First we need to find all strains components in the x-y plane.

θ1 = 0◦ θ2 = 45◦ θ3 = 90◦

ε1 = exx = 2000µ ε2 = exx+45◦ = 1350µ ε3 = eyy = 950µ

From Eq. (2.124):





2000
1350
950



µ =




1 0 0
1/2 1/2 1/2
0 1 0







exx
eyy
γxy









exx
eyy
γxy



 =




1 0 0
1/2 1/2 1/2
0 1 0



−1



2000
1350
950



µ =





2000
950
−250



µ

Note that for this rosette ε1 = exx and ε3 = eyy and the only unknown is the shear strain γxy,
which could have been directly calculated using the transformation relationship for ε2:

ε2 = ε(θ) = exx cos2 θ + eyy sin2 θ + γxy sin θ cos θ

= eave + edif cos 2θ +
γxy

2
sin 2θ

ε(45◦) = eave +
γxy

2

where,

eave =
exx + eyy

2
=

(2000) + (950)
2

µ = 1475µ

edif =
exx − eyy

2
=

(2000)− (950)
2

µ = 525µ

Now, half the shear strain, γxy/2, is

exy =
γxy

2
= ε(45◦)− eave = (1350µ)− (1475µ) = −125µ
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Let’s use the Mohr’s circle to find the principal strains.

2.10a) Calculate the radius and center of the Mohr’s circle

eave =
exx + eyy

2
=

(2000) + (950)
2

µ = 1475µ

edif =
exx − eyy

2
=

(2000)− (950)
2

µ = 525µ

R =

√(γxy

2

)2

+ e2
dif =

√
(−125)2 + (525)2 µ = 539.676µ

C = C(eave, 0) = C(1475µ, 0)

2.10b) Draw the circle and locate all points

Q1 = Q1(exx, exy) = (2000,−125) Q2 = Q2(eyy,−exy) = (950, 125) C = C(1475, 0)

 

Q1(exx, γxy/2) =  
Q1(2000, -125) 

ε (µ) 

γxy/2 (µ) 

e1 
e2 

C(1475, 0)

Q2(eyy, -γxy/2) =  
Q2(950, 125) 

2θp 

Figure 2.23: Mohr’s circle for plane strain in the x-y plane.

2.10c) Calculate angles:

Principal stresses act on an element inclined at an angle θp

2θ′p = tan−1

[
γxy/2
edif

]
= tan−1

[
(−125)
(525)

]
= −13.3925◦

2θp = 360◦ −
∣∣2θ′p

∣∣ = 346.6◦
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Note that we in CASE C because 2 θp is measured from Q1C to positive σ-axis. Recall
Now consider the location of Q1:

CASE A: Q1 → first quadrant (exx > 0, γxy/2 > 0) 2 θp = 2 θ′p

CASE B: Q1 → second quadrant (exx < 0, γxy/2 > 0) 2 θp = 180◦ −
∣∣2 θ′p

∣∣

CASE C: Q1 → third quadrant (exx < 0, γxy/2 < 0) 2 θp = 180◦ +
∣∣2 θ′p

∣∣

CASE D: Q1 → fourth quadrant (exx > 0, γxy/2 < 0) 2 θp = 360◦ −
∣∣2 θ′p

∣∣

Minimum and maximum shear strain act on an element inclined at an angle θs

2 θs = 2 θp ± 90◦ = 346.6◦ ± 90◦

θs = θp ± 45◦ = 173.3◦ ± 45◦

Note that all angles are measured positive clockwise in the Mohr’s circle but are positive
counterclockwise in the rotation of the differential element.

2.10d) Determine the principal strains

Note that when calculating principal stresses 2α = 2 θp → 2 θA = 0◦, therefore the
principal stresses are

φ1 = eave +R = (1475µ) + (539.676µ) = 2014.68µ

φ2 = eave −R = (1475µ)− (539.676µ) = 935.324µ

φ3 = 0

For the in-plane principal strain:

e1 = 2014.68µ e2 = 935.324µ

2.10e) Determine the maximum in-plane shear strain

γmax
2

∣∣∣∣∣
in−plane

= R =
ε1 − ε2

2
= 539.676µ (2.125)

γmax

∣∣∣∣∣
in−plane

= 2R = ε1 − ε2 = 1079.35µ (2.126)
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2.10f) Show all results on sketches of properly oriented elements

 
yp 

xp 

x

y 

θp=13.5° 

e2=935µ 

e1=2014µ 

deformed 

undeformed 

1 

1 

(a) Principal strain axes shown with a undeformed
and deformed element

 

x

y 

deformed 

θs=128.3° 
γxy/2

γxy/2

xs 

ys 

(b) Axes of maximum shearing with the deformed el-
ement

End Example �
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2.6 Linear Elasticity for Structures

We describe the elastic field with fifteen unknowns (6 stresses, 6 strains, 3 displacements). In order to
find the description of the elastic field, we would need fifteen equations.

1. Displacement field (3 equations)

First, we begin with the assumption of a kinematically displacement field:

U(x, y, z) = u(x, y, z)

V (x, y, z) = v(x, y, z)

W (x, y, z) = w(x, y, z)

This displacement approximation comes from the physical problem.

2. Strain-displacement relationship (6 equations): Kinematics

The displacement gradients for our displacement field are:

g1 =
∂U(x, y, z)

∂x
, g2 =

∂V (x, y, z)
∂x

, g3 =
∂W (x, y, z)

∂x
,

g4 =
∂U(x, y, z)

∂y
, g5 =

∂V (x, y, z)
∂y

, g6 =
∂W (x, y, z)

∂y
,

g7 =
∂U(x, y, z)

∂z
, g8 =

∂V (x, y, z)
∂z

, g9 =
∂W (x, y, z)

∂z

Using these displacements gradients, we obtain the strain-displacement relationship for small
strains:

exx = g1

eyy = g5

ezz = g9

2 eyz = g6 + g8

2 exz = g3 + g7

2 exy = g2 + g4

3. Stress-Strain relationship (6 equations): Material Law
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The constitutive relationship for anisotropic materials is:

S = D E

S =





Sxx

Syy

Szz

Syz

Sxz

Sxy





=




D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66








exx

eyy

ezz

2 eyz

2 exz

2 exy





4. Equilibrium Equations (3 equations)

The three equilibrium equations which must be satisfied at all point inside the body:

∂σxx

∂x
+
∂τyx

∂y
+
∂τzx
∂z

+ bx = 0

∂τxy

∂x
+
∂σyy

∂y
+
∂τzy
∂z

+ by = 0

∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z
+ bz = 0

Note that the body forces, b’s, have units of [F]/[L3].

5. Finally, use the boundary conditions

Now, we find all the remaining unknown constants by using the conditions at the boundaries. For
this we use Cauchy’s relationship:





Tx

Ty

Tz





=




Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz








nx

ny

nz





If we were to add the density as an unknown, then we would need to use the continuity equation. As
we add more unknowns, we need the add that many equations to fully express the elastic field. Figure
2.24 shows the interaction/relationship between displacement, strains, stresses and loads. If we have
a displacement, we should be able to find the strains and viceversa for any given problem. Given the
strains, we should be able to find the stresses and viceversa for any given problem. Given the stresses, we
should be able to determine the internal loads (stress resultants) and viceversa for any given problems.
The external loads must always maintain the system in equilibrium with the internal ones.
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Displacements 

Strains 

Stresses 

Internal Loads External 

Kinematics 

Material Law 

Static Equivalency 

Equilibrium 

Figure 2.24: Relationship between displacement, strains, stresses and loads.

2.7 Alternative Stress and Strain Quantities

For a given problem different strains and stress measures can be used. However, it is important to con-
sider the stresses and the strains as conjugate quantities in the sense that their product gives mechanical
work. The present formulations are generally used for nonlinear analysis of structures.
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2.7.1 Green-Lagrange strains

Consider the quantities defined in Fig. 2.19. Then derivatives of r1 with respect to r constitute the
deformation gradient matrix, F, when arranged in Jacobian format:

F =




∂x1

∂x

∂x1

∂y

∂x1

∂z

∂y1

∂x

∂y1

∂y

∂y1

∂z

∂z1

∂x

∂z1

∂y

∂z1

∂z




=




1 +
∂U

∂x

∂U

∂y

∂U

∂z

∂V

∂x
1 +

∂V

∂y

∂V

∂z

∂W

∂x

∂W

∂y
1 +

∂W

∂z




(2.127)

The determinant of the deformation gradient matrix is known as the Jacobian determinant and is defined
as

J = det[F] (2.128)

The displacement gradients with respect to the reference configuration are defined as

G = F− I =




∂x1

∂x
− 1

∂x1

∂y

∂x1

∂z

∂y1

∂x

∂y1

∂y
− 1

∂y1

∂z

∂z1

∂x

∂z1

∂y

∂z1

∂z
− 1




=




∂U

∂x

∂U

∂y

∂U

∂z

∂V

∂x

∂V

∂y

∂V

∂z

∂W

∂x

∂W

∂y

∂W

∂z




=




g1 g4 g7

g2 g5 g8

g3 g6 g9




(2.129)

where I is the identity matrix. Sometimes, it is convenient to arrange the displacements gradients in
vector form as follows

gT =
{
g1 g2 g3 g4 g5 g6 g7 g8 g9

}
(2.130)

Now, the displacement gradients for the displacement field are:

g1 =
∂U(x, y, z)

∂x
g2 =

∂V (x, y, z)
∂x

g3 =
∂W (x, y, z)

∂x

g4 =
∂U(x, y, z)

∂y
g5 =

∂V (x, y, z)
∂y

g6 =
∂W (x, y, z)

∂y

g7 =
∂U(x, y, z)

∂z
g8 =

∂V (x, y, z)
∂z

g9 =
∂W (x, y, z)

∂z

(2.131)
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The strains associated with the displacement field are computed using the Green-Lagrange strains. These
strains can be expressed in terms of the displacement gradients as follows

ε1 = exx = g1 +
1
2
(
g2

1 + g2
2 + g2

3

)
(2.132a)

ε2 = eyy = g5 +
1
2
(
g2

4 + g2
5 + g2

6

)
(2.132b)

ε3 = ezz = g9 +
1
2
(
g2

7 + g2
8 + g2

9

)
(2.132c)

ε4 = 2 eyz = g6 + g8 + g4 g7 + g5 g8 + g6 g9 (2.132d)

ε5 = 2 exz = g3 + g7 + g1 g7 + g2 g8 + g3 g9 (2.132e)

ε6 = 2 exy = g2 + g4 + g1 g4 + g2 g5 + g3 g6 (2.132f)

The above may be rewritten in the quadratic form, as follows:

εi = hT
i g +

1
2

gT Hi g (2.133)

where the 9× 1 vectors hi’s and 9× 9 matrices Hi’s are given in Appendix C. If we assume small dis-
placements, small strains and rotations, these strains can be expressed in terms of the Green-Langrange
strains as follows

E1 = exx = g1 (2.134a)

E2 = eyy = g5 (2.134b)

E3 = ezz = g9 (2.134c)

E4 = 2 eyz = g6 + g8 (2.134d)

E5 = 2 exz = g3 + g7 (2.134e)

E6 = 2 exy = g2 + g4 (2.134f)

The above expressions are obtained by taking Hi as the zero matrix. The Green-Lagrange strains are
usually expressed in vectorial form as follows

ε =





ε1
ε2
ε3
ε4
ε5
ε6





(2.135)

For arbitrary rigid-body motions (motions without deformations)

FT F = F FT = I

that is, F is an orthogonal matrix. Displacement gradient matrices are connected by the relations

G = (I− J)−1 − I and J = I− (I + G)−1
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For small deformations,
G ≈ J−1 and J ≈ G−1

Example 2.11.

Express the state of strain in Example 2.7 in terms of the Green-Lagrange linear and non-
linear strains.

From Example 2.7, the displacement field was given as

U(x, y, z) = 0.01
(
x2 + 3

)

V (x, y, z) = 0.01
(
3 y2 z

)

W (x, y, z) = 0.01 (x+ 3 z)

and the state of strain at (0,2,3) is

e =




0.000 0.000 0.005

0.000 0.360 0.060

0.005 0.060 0.030




2.11a) Linear Green-Lagrange strains.

εi = hT
i g

where hi’s are given in Appendix C. The linear Green-Lagrange strains are:

ε1 = exx = g1

ε2 = eyy = g5

ε3 = ezz = g9

ε4 = 2 eyz = g6 + g8

ε5 = 2 exz = g3 + g7

ε6 = 2 exy = g2 + g4
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where the displacement gradient is

g1 =
∂U

∂x
= 0.02x = 0.000 g4 =

∂U

∂y
= 0.000 g7 =

∂U

∂z
= 0.000

g2 =
∂V

∂x
= 0.000 g5 =

∂V

∂y
= 0.06yz g8 =

∂V

∂z
= 0.03y2

g3 =
∂W

∂x
= 0.01 g6 =

∂W

∂y
= 0.00 g9 =

∂W

∂z
= 0.03

The displacement gradient vector is

g =





g1

g2

g3

g4

g5

g6

g7

g8

g9





=





0.02x
0.0
0.01
0.0

0.06 y z
0.0

0.03 y2

0.03





and the displacement gradient matrix becomes:

G =




0.02x 0.0 0.01

0.0 0.06 y z 0.03 y2

0.01 0.0 0.03




(x,y,z)=(0,2,3)

=




0.0 0.0 0.01

0.0 0.36 0.48

0.01 0.0 0.03




The linear strains are

ε =





ε1
ε2
ε3
ε4
ε5
ε6





=





0.02x
0.06 y z

0.03
0.03 y2

0.01
0.00





(x,y,z)=(0,2,3)

=





0.00
0.36
0.03
0.12
0.01
0.00





2.11b) Full Green-Lagrange Strains.

εi = hT
i g +

1
2

gT Hi g
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where hi’s and Hi’s are given in Appendix C.

ε =





ε1
ε2
ε3
ε4
ε5
ε6





=





0.00005 + 0.02x+ 0.0002x2

0.06 y z + 0.0018 y2 z2

0.03045 + 0.00045 y4

0.03 y2 + 0.0018 y3 z

0.0103
0.00





(x,y,z)=(0,2,3)

=





0.00005
0.4248
0.0376
0.1632
0.0103
0.00





2.11c) Comparing both solutions (Linear and Nonlinear Green-Lagrange Strains):

percentage of error =





exx
exy
exz
eyy
eyz
ezz





=





0.00
0.00

2.91262
15.2542
26.4706
20.3187





End Example �
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2.7.2 Stress Measures

We introduced the concept of stress in the body through the Cauchy’s formula at the beginning of the
chapter. We used σ to denote the Cauchy stress tensor, which is the true stress in the body. However,
other stress measures may be defined as functions of Cauchy’s stress tensor:

1. The first Piola-Kirchhoff stress tensor P

P = J σF−T

where J is the Jacobian determinant, and F the deformation gradient matrix as defined by
Eq. (2.127). The first Piola-Kirchhoff stress tensor is nonsymmetric.

2. The second Piola-Kirchhoff (PK2) stress tensor S

S = J F−1 σF−T

where J is the Jacobian determinant, σ the Cauchy (true) stresses, and F the deformation gradient
matrix as defined by Eq. (2.127). The second Piola-Kirchhoff stress tensor is symmetric.

The stresses corresponding to the Green-Lagrange strains are the second Piola-Kirchhoff stresses. The
three dimensional tensor in Cartesian coordinates is

S =




Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz




=




Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz




(2.136)

It can be shown that the PK2 stresses are linearly related to the Cauchy stresses as follows

S = S0 + J F−1 σF−T (2.137)

where S0 are the prestresses, J the Jacobian determinant, F the deformation gradient matrix, S the
PK2 stresses, and σ the Cauchy (true) stresses defined as

σ =




σxx σxy σxz

σxy σyy σyz

σxz σyz σzz




(2.138)

From continuity equation, we know that the total mass of the entire body must be conserved:

ρ1 dΓ1 = ρ dΓ ⇒ ρ1 det[F] dΓ = ρ dΓ (2.139a)

⇒ J = det[F] =
dΓ1

dΓ
=

ρ

ρ1
(2.139b)
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where dΓ1 and dΓ are the volumes in the current configuration and reference configuration, respectively;
ρ1 and ρ are the mass densities in the current and reference configuration, respectively.

Assuming that isochoric deformation takes place (volume-preserving deformation),

J = det[F] =
dΓ1

dΓ
=

ρ

ρ1
= 1

. Also, we assume that the prestressed state in the reference configuration, S0, is zero. Further, recall
that we restrict our analysis to small deformations and small strains. Under these assumptions, it can
be shown that the PK2 and Cauchy stresses coalesce. Thus, Eq. (2.137) reduces to

S ≈ σ (2.140)

and these stresses are usually expressed in vectorial form as follows

S =





S1

S2

S3

S4

S5

S6





=





Sxx

Syy

Szz

Syz

Sxz

Sxy





In short, the Cauchy stress works with the Almansi strain or Green-Cauchy strain, and the Green-
Lagrange strain works with the second Piola-Kirchhoff stress tensor. For small deformation, no difference
are made between the two of them.
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2.8 Mechanical Behavior of Materials

Elastic behavior may be characterized by the following two conditions:

1. the stress in a material is a unique function of the strain,

2. the material has the property to complete recovery to its natural shape upon removal of the applied
forces.

Nonelastic materials are known as inelastic materials. In fact, two major type of deformation that
occurs in engineering materials are:

1. Elastic: associated with stretching but not breaking of chemical bonds.

2. Inelastic:

(a) Plastic (or Non-time dependent inelastic): atoms change their relative positions.

(b) Creep (or Time dependent inelastic): basically same as plastic but it the deformation is time
dependent.

In this book, we will limit our discussion to linear elastic behavior. The elastic behavior may be linear
or non-linear. Figure 2.25 shows geometrically these behavior patterns by simple stress-strain curves,
with the relevant loading and unloading paths indicated.

 

σ 

ε 

σ 

ε 

σ 

ε 
Linear elastic 

behavior 
Nonlinear 

elastic behavior
Inelastic 
behavior 

Loading Loading 

Loading 

Unloading

Unloading 

Unloading 

Reloading 

Figure 2.25: Uniaxial loading-unloading stress-strain curves.
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2.9 Constitutive Equations for Elastic Materials

Equations describing stress-strain behavior are often used in engineering analysis and are usually called
stress-strain relationships or constitutive equations. For example, in basic mechanics of materials,
elastic behavior with a linear stress-strain relationship is assumed and used in calculating stresses and
deflections in simple components such as beams and shafts. More complex situations of geometry and
loading can be analyzed by employing the same basic assumptions in the form of theory of elasticity,
discussed in Chapter 2.

The constitutive equations take into account a three-dimensional behavior of the material. The
constitutive equations may be nonlinear or linear, this is independent from elastic or inelastic behavior
of the material. When analyzing thin-walled structures to determine the deflections and stresses, we
often need to determine the appropriate constitutive relationships for the material involved. Here, we
will limit to linear elastic stress-strain relationships.

2.9.1 Hooke’s Law

Symbolically, we can write the constitutive equations for elastic behavior in its most general for as

S = G(ε)

where G is a symmetric tensor-valued function, S and ε are any of the stress and strain tensors, respec-
tively. Throughout this book, we will assume that, in the deformed material, the displacement gradients
are everywhere small compared to unity and the materials follow linear elastic behavior. Within this
context the constitutive equations for linear elastic behavior are written as

S = C ε

where the tensor of elastic coefficients has 81 components. It can be shown that due to symmetry of
both stress and strain tensors, C reduces to 36 distinct coefficients (the proof is beyond the scope of this
book):

S = C ε

S =





S1

S2

S3

S4

S5

S6





=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66








ε1
ε2
ε3
ε4
ε5
ε6





(2.141)
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where

S =





S1

S2

S3

S4

S5

S6





=





Sxx

Syy

Szz

Syz

Sxz

Sxy





ε =





ε1
ε2
ε3
ε4
ε5
ε6





=





exx

eyy

ezz

2 eyz

2 exz

2 exy





The 6× 6 matrix C is called the elastic-constant matrix and it does not constitute a tensor. In general,
C may depend upon temperature. We shall ignore strain-rate effects and consider the elastic coefficients,
components of C, at most function of position. If the elastic coefficients are constants, the material is
said to be homogeneous. These constants are those describing the elastic properties of the material.
Equation (2.141) is known as the Hooke’s Law.

2.9.2 Internal Strain Energy

When loads are applied to a structure, the material of the structural element will deform. In the process
the external work done by the loads will be converted by the action of either normal or shear stress into
internal work called strain energy, provided that no energy is lost in the form of heat. Hence, the strain
energy is stored in the body and we use the symbol U to designate strain energy. The unit of strain
energy is [N–m] in SI and [lb–in] in English. Strain energy is always a positive scalar quantity even if
the stress is compressive because stress and strain are always in the same direction. The strain energy
density is expressed with u and is shown in Fig. 6.2 and has units of [Pa] in SI and [psi] in English.

 
σ 

ε 

 
u= 

 σ ε 

2 

Figure 2.26: Strain energy density.

When an external force acts upon an elastic body and deforms it, the work done by the force is
stored within the body in the form of strain energy. In the case of elastic deformation, the total strain
energy density due to a general state of stress is

u =
1
2

STε =
1
2

{
Sxx εxx + Syy εyy + Szz εzz + Sxy εxy + Sxz εxz + Syz εyz

}
(2.142)

Then total strain energy due to a general state of stress is

U =
∫∫∫

Vol

1
2

{
Sxx εxx + Syy εyy + Szz εzz + Sxy εxy + Sxz εxz + Syz εyz

}
dVol (2.143)
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Material that have a strain energy function are known as hyperelastic materials.

2.9.3 Anisotropic Materials

An isotropic material has the same material properties in all directions, opposed to an anisotropic
material whose properties differ in various directions. A material is homogeneous if it has the same
properties at every point. Wood is an example of a homogeneous material that can be anisotropic. A
body formed of steel and aluminum portions is an example of a material that is inhomogeneous, but
each portion is isotropic.

Due to the growing importance of composite materials, the linear elastic behavior of anisotropic
materials will be treated here. The physical properties of anisotropic materials are directional, i.e., the
physical response of the material depends on the direction in which it is acted upon. Consider, as an
example, the stiffness of the unidirectional composite material: in the fiber direction the stiffness of the
composite is dominated by the high stiffness of the fiber. However, in the direction transverse to the
fiber, the stiffness of the composite is dominated by that of the matrix material, which is far small than
that of the fiber. This contrasts with isotropic materials for which the mechanical response is identical
in all directions.

Anisotropic formulation

The three-dimensional anisotropic hookean strain formulation is given by

S =





S1

S2

S3

S4

S5

S6





=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66








ε1
ε2
ε3
ε4
ε5
ε6





(2.144)

Under multiaxial and isothermal (constant temperature conditions), an elastic material is one that
possesses a stress-free state with all components of stress being single-valued functions of the components
of strain. In other words,

Sxx = Sxx (εxx, εyy, εzz, εyz, εxz, εxy)

Syy = Syy (εxx, εyy, εzz, εyz, εxz, εxy)

Szz = Szz (εxx, εyy, εzz, εyz, εxz, εxy)

Syz = Syz (εxx, εyy, εzz, εyz, εxz, εxy)

Sxz = Sxz (εxx, εyy, εzz, εyz, εxz, εxy)

Sxy = Sxy (εxx, εyy, εzz, εyz, εxz, εxy)

(2.145)

where the parenthesis implies dependence only on the current values of the quantities enclosed.
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First Law of Thermodynamics of Elastic Solids

For us to fully define the response of the body, we need three additional constitutive equations. For this
we assume that the following thermodynamic quantities are functions of the strain as well:

internal energy field u = u (εxx, εyy, εzz, εyz, εxz, εxy)

heat field h = h (εxx, εyy, εzz, εyz, εxz, εxy)

entropy field s = s (εxx, εyy, εzz, εyz, εxz, εxy)

(2.146)

The first Law of thermodynamics states that at every point in a body there exists an internal energy
per unit volume ul such that

du

dt
=
dh

dt
+
dw

dt

where hl is the heat addition to the body per unit volume and w is the work done on the body per unit
volume. Assuming that only mechanical work is done on a material element:

dw

dt
= Sxx ε̇xx + Syy ε̇yy + Szz ε̇zz + Syz ε̇yz + Sx ε̇xz + Sxy ε̇xy

Equations (2.146) indicate that the heat added to the body is independent of temperature. In fact, most
elastic aerospace metals generate negligible heat in most cases. Thus, an elastic body under quasi-static
conditions behaves as an adiabatic body (there is no heat gain or loss); i.e., ḣ = 0. Thus, the first law
of thermodynamics yields to

u̇ = Sxx ε̇xx + Syy ε̇yy + Szz ε̇zz + Syz ε̇yz + Sx ε̇xz + Sxy ε̇xy (2.147)

Now, the time rate of change of the internal energy may be obtained from the change differentiation of

u = u (εxx, εyy, εzz, εyz, εxz, εxy)

du =
∂u

∂εxx

dεxx +
∂u

∂εyy

dεyy +
∂u

∂εzz
dεzz +

∂u

∂εyz

dεyz +
∂u

∂εxz

dεxz +
∂u

∂εxy

dεxy

Thus,

u̇ =
∂u

∂εxx

ε̇xx +
∂u

∂εyy

ε̇yy +
∂u

∂εzz
ε̇zz +

∂u

∂εyz

ε̇yz +
∂u

∂εxz

ε̇xz +
∂u

∂εxy

ε̇xy (2.148)

From Eqs. (2.147) and (2.148),
(
Sxx −

∂u

∂εxx

)
ε̇xx +

(
Syy −

∂u

∂εyy

)
ε̇yy +

(
Szz −

∂u

∂εzz

)
ε̇zz+

(
Syz −

∂u

∂εyz

)
ε̇yz +

(
Sxz −

∂u

∂εxz

)
ε̇xz +

(
Sxy −

∂u

∂εxy

)
ε̇xy = 0
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Since the strain rate components are independent from each other,

Sxx =
∂u

∂εxx

Syy =
∂u

∂εyy

Szz =
∂u

∂εzz

Syz =
∂u

∂εyz

Sxz =
∂u

∂εxz

Sxy =
∂u

∂εxy

(2.149)

The above equation guarantees energy balance of the first law of thermodynamics for an elastic body
under adiabatic conditions.

Second Law of Thermodynamics of Elastic Solids

The second law of thermodynamics states that there exists an entropy per unit volume s such that

ds

dt
≥ 1
T

dh

dt

where T is the absolute temperature, s the total entropy per unit volume, and h the total heat per unit
volume. We can also write this relationship as follows:

ṡi ≡ ṡ−
1
T
ḣ ≥ 0 (2.150)

where si is the internal entropy generation since it represents the total entropy minus a quantity that
arises from the heat added to the body. For adiabatic conditions, ḣ = 0, thus,

ṡi = ṡ ≥ 0 (2.151)

Now using the change rule of differentiation of

s = s (εxx, εyy, εzz, εyz, εxz, εxy)

ṡ =
∂s

∂εxx

ε̇xx +
∂s

∂εyy

ε̇yy +
∂s

∂εzz
ε̇zz +

∂s

∂εyz

ε̇yz +
∂s

∂εxz

ε̇xz +
∂s

∂εxy

ε̇xy ≥ 0
(2.152)

Now, since all strain rates are independent of each other, we let ε̇xx change in time while all other strain
components don’t. Thus Eq. (2.152) reduces to

ṡ =
∂s

∂εxx

ε̇xx ≥ 0 (2.153)

Note that ∂s/∂εxx and ε̇xx are independent from each other because the entropy does not depend on the
strain rate but on the strain value. Now, let us consider two different possible cases for the strain rate
at the same time:

ε̇xx = c t → ∂s

∂εxx

c t ≥ 0

ε̇xx = −c t → − ∂s

∂εxx

c t ≥ 0
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Which implies that Eq. (2.153) can be satisfied if and only if

∂s

∂εxx

= 0

Similar, we can show that all other entropy derivatives are zero, as well. Thus, for an elastic body

ṡi = ṡ = 0

and the second law of thermodynamics is satisfied. This indicates that no entropy is generated in an
elastic body, which is consistent with the assumption that all lines of the constitutive equation are
single-valued; and, thus, all processes in an elastic body are recoverable.

Consequence of the First Law of Thermodynamics

Using the first law of thermodynamics, we can write Eq. (2.144) as follows




Sxx

Syy

Szz

Syz

Sxz

Sxy





=





∂u/∂εxx

∂u/∂εyy

∂u/∂εzz
∂u/∂εyz

∂u/∂εxz

∂u/∂εxy





=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66








εxx

εyy

εzz
γyz

γxz

γxy





(2.154)

Consider the first equation of Eq. (2.154)

Sxx =
∂u

∂εxx

= C11 εxx + C12 εyy + C13 εzz + C14 εyz + C15 εxz + C16 εxy

Let’s differentiate once respect to εyy:

∂Sxx

∂εyy

=
∂2u

∂εyy ∂εxx

= C12 (2.155)

Now consider the second equation of Eq. (2.154)

Syy =
∂u

∂εyy

= C21 εxx + C22 εyy + C23 εzz + C24 εyz + C25 εxz + C26 εxy

Let’s differentiate once respect to εxx:

∂Syy

∂εxx

=
∂2u

∂εxx ∂εyy

= C21 (2.156)

Since the order of differentiation is unimportant, Eqs. (2.155) and (2.156) are equal:

∂2u

∂εyy ∂εxx

=
∂2u

∂εxx ∂εyy

→ C12 = C21
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Similarly it can be shown that the elastic-constant matrix C is symmetric:



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66




=




C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




Thus for a general linearly elastic material, the independent material constants are reduced to 21.

3-D Anisotropic Hookean Formulation

The three-dimensional anisotropic Hookean strain formulation is given by




S1

S2

S3

S4

S5

S6





=




C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66








ε1
ε2
ε3
ε4
ε5
ε6





(2.157)

The above is known as the inverted form of the Hooke’s Law. Then the Hooke’s Law is defined as




ε1
ε2
ε3
ε4
ε5
ε6





=




D11 D12 D13 D14 D15 D16

D12 D22 D23 D24 D25 D26

D13 D23 D33 D34 D35 D36

D14 D24 D34 D44 D45 D46

D15 D25 D35 D45 D55 D56

D16 D26 D36 D46 D56 D66








S1

S2

S3

S4

S5

S6





(2.158)

where matrix D is the elastic compliance material constant matrix and is defined as:

D = C−1

2.9.4 Elastic Constitutive Relationship for Isotropic Materials

Now let us proceed to obtain the matrices C and D for isotropic materials. Recall that the deformation
of a structure is a function of the applied loads, and the resulting strains at a point are related to the
local state of stress at a point. To better understand the stress and strain relationships, let us consider
a simple uniform rod subjected to a tension test. An axial load P is applied at the end of the rod,
resulting in an axial deflection δ. If the rod is elastic, the relationship between axial load P and the axial
deflection δ is essentially linear for sufficiently small deflections, and it is the same whether the load is
increasing or decreasing. If the load P is applied at the centroid of the rod’s cross section, then the axial
stress and strain are uniform across all sections, except possibly in the vicinity of the ends. A plot of
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stress versus strain will be linear. The slope of the stress-strain diagram is the modulus of elasticity, or
Young’s modulus, E.

All structural materials exhibit the Poisson effect. To understand this effect, let us go back to our
tensile test specimen: when the specimen is stretched in the axial direction, it contracts laterally; if
axially compressed, it expands laterally. If a bar has a circular cross section of unloaded diameter D,
and if the contraction transverse to the pull direction is d, then the transverse strain is

ε⊥ = − d

D
(2.159)

Poisson’s ratio ν is a material property that relates the axial strain to the transverse strain, as follows:

ν = − lateral strain
axial strain

= −ε⊥
e

(2.160)

The minus sign is important because the axial strain and accompanying transverse strain are always
opposite in sign. The following properties of the elastic constants can be shown:

E > 0 G > 0 0 < ν <
1
2

Materials for which
ν ≈ 0 are very compressible

ν ≈ 1
2

are very incompressible

Cork is an example of a very compressible material, whereas rubber is very incompressible.

The constitutive relationships for a three-dimensional state of stress can be derived by calculating
the strains that accompany the normal and shear stresses considered to act separately in each direction
and then adding the results together. This is an application of the principle of superposition, which
holds for linear elastic behavior. Thus, if a plane differential element of material is subjected to stress
Sxx, then the resulting normal strains will be

exx =
Sxx

E
eyy = −ν exx = −ν Sxx

E
ezz = −ν exx = −ν Sxx

E

If a plane differential element of material is subjected to stress Syy, then the resulting normal strains
will be

eyy =
Syy

E
exx = −ν eyy = −ν Syy

E
ezz = −ν eyy = −ν Syy

E

If a plane differential element of material is subjected to stress Szz, then the resulting normal strains will
be

ezz =
Szz

E
exx = −ν ezz = −ν Szz

E
eyy = −ν ezz = −ν Szz

E

Now, if the three states of uniaxial stress are combined using the principle of superposition, we obtain
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a triaxial state of stress in which the total normal strain in each direction

exx =
Sxx

E
− ν Syy

E
− ν Szz

E

eyy =
Syy

E
− ν Sxx

E
− ν Szz

E

ezz =
Szz

E
− ν Sxx

E
− ν Syy

E

(2.161)

These results are valid only for isotropic materials, that is, materials whose stiffness, strength, and other
properties are the same in all directions. Young’s modulus is the same in both the x and y directions of
a sheet of isotropic material.

In isotropic materials, the shear stresses are independent of the normal strains. Thus

γxy =
Sxy

G
γxz =

Sxz

G
γyz =

Syz

G
(2.162)

The constant G is called the shear modulus. For isotropic materials it can be shown that

G =
E

2(1 + ν)
(2.163)

The stress-strain relationship for normal components can be also expressed in matrix form as follows:




exx

eyy

ezz





=
1
E




1 −ν −ν

−ν 1 −ν

−ν −ν 1








Sxx

Syy

Szz





(2.164)

or including all strains and stress, in matrix form,





exx

eyy

ezz

γyz

γxz

γxy





=
1
E




1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)








Sxx

Syy

Szz

Syz

Sxz

Sxy





(2.165)
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or 



ε1

ε2

ε3

ε4

ε5

ε6





=
1
E




1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)








S1

S2

S3

S4

S5

S6





(2.166)

Thus the number of independent elastic constants reduces to two and the elastic matrix is symmetric
regardless of the existence of a strain energy function. The Hooke’s Law relationship may be inverted
to get 




Sxx

Syy

Szz





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν

ν 1− ν ν

ν ν 1− ν








exx

eyy

ezz





(2.167)

and
Sxy = Gγxy Sxz = Gγxz Syz = Gγyz (2.168)

or including all strains and stress, in matrix form,





Sxx

Syy

Szz

Syz

Sxz

Sxy





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2 ν
2 0 0

0 0 0 0 1−2 ν
2 0

0 0 0 0 0 1−2 ν
2








exx

eyy

ezz

γyz

γxz

γxy





(2.169)

or




S1

S2

S3

S4

S5

S6





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2 ν
2 0 0

0 0 0 0 1−2 ν
2 0

0 0 0 0 0 1−2 ν
2








ε1

ε2

ε3

ε4

ε5

ε6





(2.170)
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2.9.5 Elastic Stress-Strain Relationship for Orthotropic Materials

Materials that possess elastic symmetry about three mutually orthogonal planes, that is, about planes
oriented 90◦ to each other, are known as orthotropic materials. The three-dimensional orthotropic
Hookean strain formulation is given by

S =





S1

S2

S3

S4

S5

S6





=




C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66








ε1
ε2
ε3
ε4
ε5
ε6





(2.171)

For such materials 9 independent material constants exist. These constants are found as follows





exx

eyy

ezz

γyz

γxz

γxy





=




1
Exx

− νyx

Eyy

− νzx

Ezz

0 0 0

− νxy

Exx

1
Eyy

− νzy

Ezz

0 0 0

− νxz

Exx

− νyz

Eyy

1
Ezz

0 0 0

0 0 0
1
Gyz

0 0

0 0 0 0
1
Gxz

0

0 0 0 0 0
1
Gxy








Sxx

Syy

Szz

Syz

Sxz

Sxy





(2.172)

or





ε1

ε2

ε3

ε4

ε5

ε6





=




1
Exx

− νyx

Eyy

− νzx

Ezz

0 0 0

− νxy

Exx

1
Eyy

− νzy

Ezz

0 0 0

− νxz

Exx

− νyz

Eyy

1
Ezz

0 0 0

0 0 0
1
Gyz

0 0

0 0 0 0
1
Gxz

0

0 0 0 0 0
1
Gxy








S1

S2

S3

S4

S5

S6





(2.173)

Due to symmetry the following holds:

νxy

Exx

=
νyx

Eyy

νxz

Exx

=
νzx

Ezz

νyz

Eyy

=
νzy

Ezz
(2.174)
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2.9.6 Temperature Strains in Isotropic Materials

In the material’s elastic region, behavior changes in temperature can cause two effects:

1. Changes in the elastic constants of the material (for isotropic materials E and ν).

2. Changes causes the material to strain in the absence of stress.

Thus, the total material strain can be expressed as follows

εtotal = εmechanical + εthermal effect due to changes in elastic constant + εthermal effect due to material changes

For many structural components, a change in temperature of few hundred degrees Fahrenheit does not
result in much changes in the material’s elastic constants. Thus it is a reasonable assumption to neglect
this thermal effect:

εtotal = εmechanical + εthermal effect due to material changes

The strain caused by a temperature change in the absence of stress is called thermal strain and is denoted
as εt:

εtotal = εmechanical + εtthermal (2.175)

For isotropic materials, the thermal strains must be a pure expansion or contraction of the material
with no distortion or shear. This is because normal strain at a point is the same in all directions
in isotropic materials, in which the temperature change does not induce shear strain. The strain is
assumed to be a linear function of the temperature change although it may not be exactly true. However,
the actual thermal strain is nearly linear with temperature change in temperature. Thus response of
isotropic materials to temperature change from T0 to T (represented by ∆T ) is characterized by the
linear coefficient of thermal expansion α:

εt = α∆T + Higher Order Terms ≈ α∆T

where
∆T = T − T0

Note that since the strains are nondimensional, the units of α must be

α =
1

units of ∆T

Further here we will assume that the temperature change throughout the body is determined by
means of a separate heat transfer analysis. This results in uncoupled thermoelasticity, in which the
temperature field T , like the body forces, is prescribed for a given stress problem. Thus the strain-stress
relationship for isotropic materials becomes
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exx

eyy

ezz

γyz

γxz

γxy





=
1

E




1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)








Sxx

Syy

Szz

Syz

Sxz

Sxy





+ α∆T





1

1

1

0

0

0





(2.176)

or its inverse form




Sxx

Syy

Szz

Syz

Sxz

Sxy





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2 ν
2

0 0

0 0 0 0 1−2 ν
2

0

0 0 0 0 0 1−2 ν
2








exx

eyy

ezz

γyz

γxz

γxy





− E α∆T

1− 2 ν





1

1

1

0

0

0





(2.177)

2.10 Plane Stress and Plane Strain

2.10.1 Consequence of Plane Stress

Recall that for structures with a relatively small thickness, we can use the plane stress assumption. If
we say the structure is confound to the x-y plane,

S =



Sxx Sxy 0
Sxy Syy 0
0 0 0


 (2.178)

Since Szz = Sxz = Syz = 0, the Hooke’s Law reduced to




exx

eyy

ezz





=
1
E




1 −ν −ν

−ν 1 −ν

−ν −ν 1








Sxx

Syy

0





=
1
E





Sxx − ν Syy

Syy − ν Sxx

−ν Sxx − ν Syy





(2.179)
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γxy =
Sxy

G
(2.180)

Note that due to Poisson effect, the plane stress is accompanied by normal strain in the z-direction. As
it can be seen, the fact that Szz = 0, ezz 6= 0:

ezz = − ν
E

{
Sxx + Syy

}

The above will not be zero specially when the body undergoes temperature changes.

2.10.2 Consequence of Plane strain

Recall that for structures with a relatively large thickness, we can use the plane strain assumption. If
we say the structure is in plane strain in the x-y plane,

e =




exx
1
2 γxy 0

1
2 γxy eyy 0

0 0 0


 (2.181)

Since ezz = γxz = γyz = 0, the inverted Hooke’s Law reduced to




Sxx

Syy

Szz





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν

ν 1− ν ν

ν ν 1− ν








exx

eyy

0





=
E

(1 + ν)(1− 2 ν)





(1− ν) exx + ν eyy

ν exx + (1− ν) eyy

ν exx + ν eyy





(2.182)

Sxy = Gγxy (2.183)

Note that due to Poisson effect, the plane stress is accompanied by normal stress in the z-direction. As
it can be seen, the fact that ezz = 0, Szz 6= 0:

Szz =
ν E

(1 + ν)(1− 2 ν)

{
exx + eyy

}

2.10.3 von Mises Stress in Plane Strain and Plane Stress

Suppose we have a structure with a plane stress state of stress at a point. For such a case:

Szz = 0 ezz = − ν
E

{
Sxx + Syy

}
(2.184)
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and the von Mises stress for plane stress become be

Seq

∣∣∣
Plane Stress

=
√
S2

xx + S2
yy − Syy Sxx + 3S2

xy (2.185)

Suppose we have a structure with a plane strain state of stress at a point. For such a case:

Szz =
ν E

(1 + ν)(1− 2 ν)

{
exx + eyy

}
ezz = 0 (2.186)

and the von Mises stress for plane strain become

Seq

∣∣∣
Plane Strain

=
√
S2

xx + S2
yy − Syy Sxx + 3S2

xy − ν (1− ν) (Sxx + Syy)2 (2.187)

Thus by comparing the above we can conclude that von Mises stress in plane stress is higher than for
the case of plane strain: Sxx, Syy, and Szz,

Seq

∣∣∣
Plane Strain

≤ Seq

∣∣∣
Plane Stress
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Example 2.12.

Consider the following displacement field described in Example 2.8:

R = 0.01
(
x2 + y2

)
î + 0.01 (3 + x z) ĵ−

(
0.006 z2

)
k̂ ft

(2.12a) Ignoring temperature effects and assuming the material is isotropic, determine the stress
tensor at (0,1,3). Assume ν = 0.3 and E = 30× 106 psi.

The strain tensor was found as

e =




exx
1
2 γxy

1
2 γxz

1
2 γxy eyy

1
2 γyz

1
2 γxz

1
2 γyz ezz




=




2x y + z
2 0

y + z
2 0 x

2

0 x
2 −1.2 z



× 10−2

=




0 0.025 0

0.025 0 0

0 0 −0.036




Thus,
exx = 0.0 γxy = 0.05 γxz = 0.0

γxy = 0.05 eyy = 0.0 γyz = 0.0

γxz = 0.0 γyz = 0.0 ezz = −0.036

The state of stress at a point is given by the stress tensor

S =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz
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To find the stress components we can use the inverted Hooke’s Law relationship




Sxx

Syy

Szz

Syz

Sxz

Sxy





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2 ν
2

0 0

0 0 0 0 1−2 ν
2

0

0 0 0 0 0 1−2 ν
2








exx

eyy

ezz

γyz

γxz

γxy





Thus




Sxx

Syy

Szz

Syz

Sxz

Sxy





=
3× 107

(1 + 0.3)(1− 2 (0.3))




0.7 0.3 0.3 0 0 0

0.3 0.7 0.3 0 0 0

0.3 0.3 0.7 0 0 0

0 0 0 0.2 0 0

0 0 0 0 0.2 0

0 0 0 0 0 0.2








0.0

0.0

−0.036

0.0

0.0

0.05









Sxx

Syy

Szz

Syz

Sxz

Sxy





=





−623077

−623077

−1453850

0

0

576923





psi

Thus the three dimensional state of stress for an isotropic related to the given state of
strain is:

S =



Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz


 =



−623 577 0

577 −623 0
0 0 −1454


 ksi

(2.12b) Ignoring temperature effects and assuming the material is orthotropic, determine the
stress tensor at (0,1,3). The material is graphite eopxy (AS/3501).

c©2012 by Vijay K. Goyal. All Rights Reserved.



2.10. PLANE STRESS AND PLANE STRAIN 146

From material tables,
Exx = 20.00× 106 psi

Eyy = 1.3× 106 psi

Ezz = 1.6× 106 psi

Gxy = 1.03× 106 psi

Gxz = 1.03× 106 psi

Gyz = 0.90× 106 psi

νxy = 0.30

νxz = 0.30

νyz = 0.49

From Eq. (2.174):
νyx =

νxy

Exx

Eyy = 0.0195

νzx =
νxz

Exx

Ezz = 0.024

νzy =
νyz

Eyy

Ezz = 0.603

The state of stress at a point is given by the stress tensor

S =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz




To find the stress components we can use the Hooke’s Law relationship





exx

eyy

ezz

γyz

γxz

γxy





=




1

Exx
− νyx

Eyy
− νzx

Ezz
0 0 0

− νxy

Exx

1

Eyy
− νzy

Ezz
0 0 0

− νxz

Exx
− νyz

Eyy

1

Ezz
0 0 0

0 0 0
1

Gyz
0 0

0 0 0 0
1

Gxz
0

0 0 0 0 0
1

Gxy








Sxx

Syy

Szz

Syz

Sxz

Sxy
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0.0

0.0

−0.036

0.0

0.0

0.05





= 10−6




0.05 −0.015 −0.015 0 0 0

−0.015 0.769231 −0.376923 0 0 0

−0.015 −0.376923 0.625 0 0 0

0 0 0 1.11111 0 0

0 0 0 0 0.970874 0

0 0 0 0 0 0.970874








Sxx

Syy

Szz

Syz

Sxz

Sxy









Sxx

Syy

Szz

Syz

Sxz

Sxy





= 106




0.05 −0.015 −0.015 0 0 0

−0.015 0.769231 −0.376923 0 0 0

−0.015 −0.376923 0.625 0 0 0

0 0 0 1.11111 0 0

0 0 0 0 0.970874 0

0 0 0 0 0 0.970874




−1



0.0

0.0

−0.036

0.0

0.0

0.05









Sxx

Syy

Szz

Syz

Sxz

Sxy





= 106




20.5876 0.913519 1.04502 0 0 0

0.913519 1.88584 1.15923 0 0 0

1.04502 1.15923 2.32418 0 0 0

0 0 0 0.90 0 0

0 0 0 0 1.03 0

0 0 0 0 0 1.03








0.0

0.0

−0.036

0.0

0.0

0.05









Sxx

Syy

Szz

Syz

Sxz

Sxy





=





−37620.9
−41732.2
−83670.6

0.0
0.0

51500.0





psi

Thus the three dimensional state of stress for this orthotropic related to the given state
of strain is:

S =



Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz


 =



−37.6211 51.500 0

51.500 −41.732 0
0 0 −83.671


 ksi

End Example �
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Example 2.13.

The state of stress at the surface of a wing is subjected to the following stresses

S =



So 0 So

0 So 0
So 0 So




It is known that So = 1.0× 106 psi.

(2.13a) Determine the principal state of stress.

The principal stresses are determined by finding the eigenvalues of the stress tensor:

det



Sxx − λ Sxy Sxz

Syx Syy − λ Syz

Szx Szy Szz − λ


 =

∣∣∣∣∣∣

So − λ 0 So

0 So − λ 0
So 0 So − λ

∣∣∣∣∣∣
= 0

which leads to the characteristic equation that can be expressed in terms of the stress
invariants as follows

λ3 − Iσ1 λ
2 + Iσ2 λ− Iσ3 = 0 (2.188)

where Iσi ’s are the stress invariants.

Iσ1 = Sxx + Syy + Szz = 3So

Iσ2 = det
[
Sxx Sxy

Syx Syy

]
+ det

[
Sxx Sxz

Szx Szz

]
+ det

[
Syy Syz

Szy Szz

]

=
∣∣∣∣
So 0
0 So

∣∣∣∣+
∣∣∣∣
So So

So So

∣∣∣∣+
∣∣∣∣
So 0
0 So

∣∣∣∣ = 2S2
o

Iσ3 = det



Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz


 =

∣∣∣∣∣∣

So 0 So

0 So 0
So 0 So

∣∣∣∣∣∣
= 0

Thus, the characteristic equation becomes

λ3 − 3So λ
2 + S2

o λ = (λ)
(
λ2 − 3So λ+ S2

o

)
= 0

The three roots of the characteristic equation are

λ1 = 2So λ2 = So λ3 = 0
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and the principal stresses are

S1 = max[λ1, λ2, λ3] = 2So

S3 = min[λ1, λ2, λ3] = 0

S2 = So

As we can see from this problem that when Iσ3 = 0 it is not always a plane

stress problem but if it is a plane stress problem Iσ3 = 0. Thus

Sp =




2So 0 0
0 So 0
0 0 0


 =




2 0 0
0 1 0
0 0 0


× 106 psi

(2.13b) Draw the Mohr’s circle for both cases.

The Mohr’s circles for both the given state of stress and the related principal state of
stress will have the same Mohr’s circles. The Mohr’s circle is characteristic of the point
of stress and not any stress transformation. Thus Fig. 2.27 shows the Mohr’s circles for
both cases.

                    

                    
                    

                    

                    
                    

                    

                    

                    
                    

                    

                    
                    

                    

                    

                    

                    

                    

                    
                    

τ 

σ 

σ1=2σoσ2=σoσ3=0 

 
Figure 2.27: Mohr’s circle case for the principal state of stress.

Furthermore, the Mohr’s circle for the given state of stress will be that related to S1

and S3. This can be seen from the fact that the state of stress is confound to the x-z
plane and only normal stresses act on the y plane.
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(2.13c) If the material is isotropic, determine the principal state of strain. Assume ν = 0.3 and
E = 30× 106 psi.

Let us first express the Hooke’s Law:





exx

eyy

ezz

γyz

γxz

γxy





=
1
E




1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)








Sxx

Syy

Szz

Syz

Sxz

Sxy





Now since the strains are related to stresses, two procedures exist for isotropic materials.
First obtain the state of strain for

S =



So 0 So

0 So 0
So 0 So




and then finding the eigenvalues. The second one is to note that since the principal
strains are invariants and characteristics of a point, and are proportionally related to
stresses for linear isotropic materials, we can obtain the state of strain for

Sp =




2So 0 0
0 So 0
0 0 0




Indeed we can show that a state of principal stress will always produce a state of principal
strain and viceversa for orthotropic materials (and note that isotropic materials are a
special case of orthotropic materials). If x-y-z are orthogonal axes, the principal stresses
can be represented as

Sp =




S1 0 0

0 S2 0

0 0 S3




(2.189)

Where we can see that the only nonzero stresses present are S1, S2, and S3. These are
normal stresses at the new orthogonal plane 1-2-3. Note that all shear stresses are zero.
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So we may apply the Hooke’s Law for principal stresses:





e1

e2

e3

γ23

γ13

γ12





=
1
E




1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)








S1

S2

S3

0

0

0





Multiplying the above we get





e1

e2

e3

γ23

γ13

γ12





=





1
E
S1 −

ν

E
S2 −

ν

E
S3

− ν
E
S1 +

1
E
S2 −

ν

E
S3

− ν
E
S1 −

ν

E
S2 +

1
E
S3

0

0

0





Thus, from Hooke’s Law above clearly the only nonzero strains present are the normal
strains and all shear strains are zero for these axes.

By definition when principal strains are present all shear strains are zero. Then we
must conclude that these normal strain are principal strains. Thus the axes of principal
strain must also be principal axes of stress.

Thus




e1

e2

e3

γ23

γ13

γ12





=
So

E





2− ν

−2 ν + 1

−2 ν − ν

0

0

0





= So





5.66667× 10−8

1.33333× 10−8

−3.00× 10−8

0

0

0





=





0.056667

0.01333

−0.03000

0

0

0





c©2012 by Vijay K. Goyal. All Rights Reserved.



2.10. PLANE STRESS AND PLANE STRAIN 152

Hence, the state of principal strain is

ep =




e1 0 0

0 e2 0

0 0 e3




=




0.056667 0 0
0 0.01333 0
0 0 −0.03000


 (2.190)

(2.13d) If the material is orthotropic (Boron-Epoxy), determine the principal state of strain.

From material tables8:
Exx = 30.00× 106 psi

Eyy = 3.0× 106 psi

Ezz = 3.0× 106 psi

Gxy = 1.00× 106 psi

Gxz = 1.00× 106 psi

Gyz = 0.60× 106 psi

νxy = 0.30

νxz = 0.25

νyz = 0.25

From Eq. (2.174):
νyx =

νxy

Exx

Eyy = 0.030

νzx =
νxz

Exx

Ezz = 0.025

νzy =
νyz

Eyy

Ezz = 0.250

Let us first express the Hooke’s Law:





exx

eyy

ezz

γyz

γxz

γxy





=




1
Exx

− νyx

Eyy

− νzx

Ezz

0 0 0

− νxy

Exx

1
Eyy

− νzy

Ezz

0 0 0

− νxz

Exx

− νyz

Eyy

1
Ezz

0 0 0

0 0 0
1
Gyz

0 0

0 0 0 0
1
Gxz

0

0 0 0 0 0
1
Gxy








Sxx

Syy

Szz

Syz

Sxz

Sxy





8http://www.matweb.com
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Now since the strains are related to stresses. First let us obtain the state of strain for

S =



So 0 So

0 So 0
So 0 So








exx

eyy

ezz

γyz

γxz

γxy





= 108




3.333 −1.000 −0.833 0 0 0

−1.000 33.333 −8.333 0 0 0

−0.833 −8.333 33.333 0 0 0

0 0 0 166.667 0 0

0 0 0 0 100.000 0

0 0 0 0 0 100.000








So

So

So

0

So

0









exx

eyy

ezz

γyz

γxz

γxy





= So × 10−8





1.5

24.0

24.1667

0.0

100.00

0.0





=





0.015

0.24

0.241667

0.0

1.000

0.0





The strain tensor is

e =




exx
1
2 γxy

1
2 γxz

1
2 γxy eyy

1
2 γyz

1
2 γxz

1
2 γyz ezz




=




0.015 0.0 0.5

0.0 0.24 0.0

0.5 0.0 0.241667




And the eigenvalues are:

φ1 = −38.435× 10−8 So φ2 = 24× 10−8 So φ3 = 64.1017× 10−8 So

Thus the principal state of strain is

ep =




0.64101 0 0

0 0.24 0

0 0 −0.38435




Now, let us show that for orthotropic materials, the principal strains are not propor-
tionally related to stresses. It should be highlighted that this approach is incorrect. Let
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us begin with the principal state of stress:

Sp =




2So 0 0
0 So 0
0 0 0








exx

eyy

ezz

γyz

γxz

γxy





= 108




3.333 −1.000 −0.833 0 0 0

−1.000 33.333 −8.333 0 0 0

−0.833 −8.333 33.333 0 0 0

0 0 0 166.667 0 0

0 0 0 0 100.000 0

0 0 0 0 0 100.000








2So

So

0

0

0

0









e1

e2

e3

γ23

γ13

γ12





= So × 10−8





5.667

31.33

−10.

0.0

0.0

0.0





=





0.05667

0.3133

−0.1000

0.0

0.0

0.0





Thus the principal state of strain is

ep =




5.667 0 0

0 31.33 0

0 0 −10.00



× 10−8 So =




0.05667 0 0

0 0.3133 0

0 0 −0.1000




Which clearly shows that it is we cannot use the same assumption as for the case of
isotropic materials. This is mainly because the material is dependent in three-mutually
orthogonal planes.

End Example �
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Example 2.14.

Application 1: Isothermal Isotropic Material

Consider a solid structure of a Hookean material with negligible body forces and subject to
evenly distributed pressure po in the x-direction. The block is constrained to zero displace-
ment at all points in the y-direction but is free to displace in the z-direction. Boundary
conditions are such that the body is free to expand or contract in the x and z directions at
both rigid interfaces.

 

z 

y 

FRONT VIEW 
(Seen from z-axis) 

SIDE VIEW 
(Seen from x-axis) 

x 

y 

po 

a a bb

h 

h 
po 

If the bock is made of isotropic material, determine the isothermal elastic field. The mechan-
ical properties for the isotropic material are

E = 210× 109 Pa ν = 0.30

and the geometric properties are:

a = h = 2 b = 1′′

Take the load as po = 200 lb/in2.
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For an elastic body under isothermal conditions, the problem reduces to one of characterizing
the stresses, S, strains, e, and displacements, R. This is a set of 15 unknowns at all point in
the body:

6 stress components (Sxx, Syy, Szz, Syz, Sxz, Sxy)

6 strain components (exx, eyy, ezz, eyz, exz, exy)

3 displacements (U, V,W )

These are solved using 15 field equations:

3 equilibrium equations

6 strain-displacement equations

6 stress-strain equations

Along with the boundary conditions.

2.14a) Displacement field.

 

Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

1 

From the geometry of the problem it is assumed that at all points in the body the
displacement field (displacement boundary conditions) is:

U(x, y, z) = u(x)

V (x, y, z) = 0

W (x, y, z) = w(z)

2.14b) Strain field.
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Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

2 

The displacement gradients are then found as:

g1 =
∂U

∂x
=
∂u

∂x
g4 =

∂U

∂y
= 0 g7 =

∂U

∂z
= 0

g2 =
∂V

∂x
= 0 g5 =

∂V

∂y
= 0 g8 =

∂V

∂z
= 0

g3 =
∂W

∂x
= 0 g6 =

∂W

∂y
= 0 g9 =

∂W

∂z
=
∂w

∂z
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Thus the resulting strain-displacement relationship is obtained using the Lagrange-
Green equations:

ε1 = exx = g1 =
∂u

∂x

ε2 = eyy = g5 = 0

ε3 = ezz = g9 =
∂w

∂z

ε4 = 2 eyz = g6 + g8 = 0

ε5 = 2 exz = g3 + g7 = 0

ε6 = 2 exy = g2 + g4 = 0

2.14c) Stress field.

 

Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

3 

Now the stress-strain relationship for isotropic Hookean strain is obtained using the
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inverted Hooke’s law:




S1

S2

S3

S4

S5

S6





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2 ν
2 0 0

0 0 0 0 1−2 ν
2 0

0 0 0 0 0 1−2 ν
2








ε1

ε2

ε3

ε4

ε5

ε6





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2 ν
2 0 0

0 0 0 0 1−2 ν
2 0

0 0 0 0 0 1−2 ν
2








ε1

0

ε3

0

0

0





Thus,

S1 = Sxx =
(1− ν)E

(1 + ν)(1− 2 ν)
exx +

ν E

(1 + ν)(1− 2 ν)
ezz

S2 = Syy =
ν E

(1 + ν)(1− 2 ν)
(exx + ezz)

S3 = Szz =
ν E

(1 + ν)(1− 2 ν)
exx +

(1− ν)E
(1 + ν)(1− 2 ν)

ezz

S4 = Syz = 0

S5 = Sxz = 0

S6 = Sxy = 0

2.14d) Equilibrium Equations and Cauchy’s Relationship.
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Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

4 

Now, substituting the stress components into the three equilibrium equations which
must be satisfied at all point inside the body:

∂Sxx

∂x
+
∂Syx

∂y
+
∂Szx

∂z
+ bx = 0 → ∂Sxx

∂x
= 0 → Sxx = c1 = c1(y, z) = constant

∂Sxy

∂x
+
∂Syy

∂y
+
∂Szy

∂z
+ by = 0 → ∂Syy

∂y
= 0 → Syy = c2 = c2(x, z) = constant

∂Sxz

∂x
+
∂Syz

∂y
+
∂Szz

∂z
+ bz = 0 → ∂Szz

∂z
= 0 → Szz = c3 = c3(x, y) = constant

Recall, all body forces are neglected.

Now, in other to complete find the unknowns we need to apply stress boundary condi-
tions: 




Tx

Ty

Tz





=




Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz








nx

ny

nz





(a) On the surface defined by x = a, n̂ = î, and T = −po î





Tx

Ty

Tz



 =





−po
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







1
0
0



 =





Sxx

Sxy

Sxz





Thus,
Sxx(a, y, z) = −po

and from the stress-strain relationship,

Sxy(a, y, z) = Sxz(a, y, z) = 0
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(b) On the surface defined by x = −a, n̂ = −̂i, and T = po î





Tx

Ty

Tz



 =





po
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







−1
0
0



 =





−Sxx

−Sxy

−Sxz





Thus,
Sxx(−a, y, z) = −po

and from the stress-strain relationship,

Sxy(−a, y, z) = Sxz(−a, y, z) = 0

Yields the same results as in (a).

(c) On the surface defined by z = b, n̂ = k̂, and T = 0





Tx

Ty

Tz



 =





0
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







0
0
1



 =





Sxz

Syz

Szz





Thus,
Szz(x, y, b) = 0

and from the stress-strain relationship,

Syz(x, y, b) = Sxz(x, y, b) = 0

(d) On the surface defined by z = −b, n̂ = −k̂, and T = 0





Tx

Ty

Tz



 =





0
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







0
0
−1



 =





−Sxz

−Syz

−Szz





Thus,
Szz(x, y,−b) = 0

and from the stress-strain relationship,

Syz(x, y,−b) = Sxz(x, y,−b) = 0

Yields the same results as in (c).

2.14e) Stress field.
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Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

5 

We know from equilibrium conditions:

Sxx = c1 = c1(y, z) Syy = c2 = c2(x, z) = constant Szz = c3 = c3(x, y) = constant

From stress boundary conditions,

Sxx(a, y, z) = −po and c1 = −po

Szz(x, y, b) = 0 and c3 = 0

2.14f) Strain field.

 

Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

6 

In order to obtain the constant c2, let us use the stress-strain relationships. Let us begin
with the third equation:

Szz = 0 =
ν E

(1 + ν)(1− 2 ν)
exx +

(1− ν)E
(1 + ν)(1− 2 ν)

ezz → ezz = − ν

(1− ν)
exx
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Let us proceed to use the first equation:

Sxx = −po =
(1− ν)E

(1 + ν)(1− 2 ν)
exx +

ν E

(1 + ν)(1− 2 ν)
ezz

=
(1− ν)E

(1 + ν)(1− 2 ν)
exx +

ν E

(1 + ν)(1− 2 ν)

{
− ν

(1− ν)
exx

}

From the above equation we can obtain the value of exx:

exx = − (1− ν2)
E

po

Thus ezz is then

ezz = − ν

(1− ν)
exx = − ν

(1− ν)

{
− (1− ν2)

E
po

}
=
ν (1 + ν)

E
po

From the second stress-strain equation, we can solve for Syy:

Syy =
ν E

(1 + ν)(1− 2 ν)
(exx + ezz) =

ν E

(1 + ν)(1− 2 ν)

(
− (1− ν2)

E
po +

ν (1 + ν)
E

po

)
= −ν po

Thus,
c2 = −ν po

2.14g) Displacement field.

 

Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 
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7 

With this we have completed the stress and strain fields but the displacements are know
remaining. Although we know that V = 0, U and W are remaining. Let us use the
strain-displacement equations for this purpose:

exx =
∂U

∂x
→ ∂U

∂x
= − (1− ν2)

E
po → U = − (1− ν2)

E
po x+ f1(y, z)
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Also,

g4 =
∂U

∂y
= 0 → U = f2(x, z)

g7 =
∂U

∂z
= 0 → U = f3(x, y)

Which implies that f1(y, z) = f2(x, z) = f3(x, y) = k1 = constant:

U(x, y, z) = − (1− ν2)
E

po x+ k1

Let us assume that U(0, 0, 0) = 0 and thus k1 = 0. Thus

U(x, y, z) = u(x) = − (1− ν2)
E

po x

Now, we proceed to find W :

ezz =
∂W

∂z
→ ∂W

∂z
=
ν (1 + ν)

E
po → W =

ν (1 + ν)
E

po z + h1(x, y)

Also,

g3 =
∂W

∂x
= 0 → W = h2(x, z)

g6 =
∂W

∂y
= 0 → W = h3(x, y)

Which implies that h1(y, z) = h2(x, z) = h3(x, y) = k2 = constant:

W (x, y, z) =
ν (1 + ν)

E
po z + k2

Let us assume that W (0, 0, 0) = 0 and thus k2 = 0. Thus

W (x, y, z) = w(z) =
ν (1 + ν)

E
po z

2.14h) Elastic field. In summary, the state of stress is

S =




Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz




=




−po 0 0

0 −ν po 0

0 0 0




=




−200 0 0

0 −60 0

0 0 0




psi
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The state of strain is

e =




exx exy exz

exy eyy eyz

exz eyz ezz




=




− (1− ν2)
E

po 0 0

0 0 0

0 0
ν (1 + ν)

E
po




=




−5.97567 0 0

0 0 0

0 0 2.561



µ

The displacement field is

R =





U(x, y, z)

V (x, y, z)

W (x, y, z)





=





− (1− ν2)
E

po x

0

ν (1 + ν)
E

po z





=





−5.975667× 10−6 x

0

2.561× 10−6 z





End Example �
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Example 2.15.

Application 2: Isothermal Isotropic Material

Consider a solid structure of a Hookean material with negligible body forces and subject to
evenly distributed pressure σ in the x-direction. The block is bound in the y- and z-direction
by rigid walls at y = b+ t, y = −b− t, z = a+ w, z = −a− w, but free to expand/contract
in the x-plane.

 

y 

z 

σ σ 
w 

w 

t t 

x 

z 

FRONT VIEW 
(Seen from x-axis) 

SIDE VIEW 
(Seen from y-axis) 

a 

a 

b b 
h h

Assume the material is isotropic with the following mechanical properties:

E = 210× 109 Pa ν = 0.30

The geometric properties are:

2 a = 2 b = 2h = 0.127 m t = w = 0.0381 mm

(2.15a) What is the needed pressure σ1 to make contact between the solid cube structure and
the rigid walls? Take σ = σ1.

(1) Assumed displacement.
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Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

1 

From the geometry of the problem it is assumed that at all points in the body the
displacement field (displacement boundary conditions) is:

U1(x, y, z) = u1(x)

V1(x, y, z) = v1(y)

W1(x, y, z) = w1(z)

(2) Strains.

 

Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

2 

The displacement gradients are then found as:

g1 =
∂U1

∂x
=
∂u1

∂x
g4 =

∂U1

∂y
= 0 g7 =

∂U1

∂z
= 0

g2 =
∂V1

∂x
= 0 g5 =

∂V1

∂y
=
∂v1

∂y
g8 =

∂V1

∂z
= 0

g3 =
∂W1

∂x
= 0 g6 =

∂W1

∂y
= 0 g9 =

∂W1

∂z
=
∂w1

∂z
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Thus the resulting strain-displacement relationship is obtained using the Lagrange-
Green equations:

ε1 = exx = g1 =
∂u1

∂x

ε2 = eyy = g5 =
∂v1

∂y

ε3 = ezz = g9 =
∂w1

∂z

ε4 = 2 eyz = g6 + g8 = 0

ε5 = 2 exz = g3 + g7 = 0

ε6 = 2 exy = g2 + g4 = 0

(3) Stresses.

 

Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

3 

Now the stress-strain relationship for isotropic Hookean strain is obtained using the
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inverted Hooke’s law:




S1

S2

S3

S4

S5

S6





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2 ν
2 0 0

0 0 0 0 1−2 ν
2 0

0 0 0 0 0 1−2 ν
2








ε1

ε2

ε3

ε4

ε5

ε6





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2 ν
2 0 0

0 0 0 0 1−2 ν
2 0

0 0 0 0 0 1−2 ν
2








ε1

ε2

ε3

0

0

0





Thus,

S1 = Sxx =
(1− ν)E

(1 + ν)(1− 2 ν)
exx +

ν E

(1 + ν)(1− 2 ν)
(eyy + ezz)

S2 = Syy =
ν E

(1 + ν)(1− 2 ν)
(exx + ezz) +

(1− ν)E
(1 + ν)(1− 2 ν)

eyy

S3 = Szz =
ν E

(1 + ν)(1− 2 ν)
(exx + eyy) +

(1− ν)E
(1 + ν)(1− 2 ν)

ezz

S4 = Syz = 0

S5 = Sxz = 0

S6 = Sxy = 0

(4) Equilibrium Equations and Boundary Conditions.
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Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

4 

Now, substituting the stress components into the three equilibrium equations which
must be satisfied at all point inside the body:

∂Sxx

∂x
+
∂Syx

∂y
+
∂Szx

∂z
+ bx = 0 → ∂Sxx

∂x
= 0 → Sxx = c1 = c1(y, z) = constant

∂Sxy

∂x
+
∂Syy

∂y
+
∂Szy

∂z
+ by = 0 → ∂Syy

∂y
= 0 → Syy = c2 = c2(x, z) = constant

∂Sxz

∂x
+
∂Syz

∂y
+
∂Szz

∂z
+ bz = 0 → ∂Szz

∂z
= 0 → Szz = c3 = c3(x, y) = constant

Recall, all body forces are neglected.
Now in other to complete find the unknowns we need to apply stress boundary
conditions: 




Tx

Ty

Tz





=




Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz








nx

ny

nz





(a) On the surface defined by x = h, n̂ = î, and T = −σ1 î





Tx

Ty

Tz



 =





−σ1

0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







1
0
0



 =





Sxx

Sxy

Sxz





Thus,
Sxx(h, y, z) = −σ1

and from the stress-strain relationship,

Sxy(h, y, z) = Sxz(h, y, z) = 0
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(b) On the surface defined by x = −h, n̂ = −̂i, and T = σ1 î





Tx

Ty

Tz



 =





σ1

0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







−1
0
0



 =





−Sxx

−Sxy

−Sxz





Thus,
Sxx(−h, y, z) = −σ1

and from the stress-strain relationship,

Sxy(−h, y, z) = Sxz(−h, y, z) = 0

Yields the same results as in (a).

(c) On the surface defined by z = a, n̂ = k̂, and T = 0





Tx

Ty

Tz



 =





0
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







0
0
1



 =





Sxz

Syz

Szz





Thus,
Szz(x, y, a) = 0

and from the stress-strain relationship,

Syz(x, y, a) = Sxz(x, y, a) = 0

(d) On the surface defined by z = −a, n̂ = −k̂, and T = 0





Tx

Ty

Tz



 =





0
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







0
0
−1



 =





−Sxz

−Syz

−Szz





Thus,
Szz(x, y,−a) = 0

and from the stress-strain relationship,

Syz(x, y,−a) = Sxz(x, y,−a) = 0

Yields the same results as in (c).

(e) On the surface defined by y = b, n̂ = ĵ, and T = 0





Tx

Ty

Tz



 =





0
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







0
1
0



 =





Sxy

Syy

Syz





Thus,
Syy(x, b, z) = 0
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and from the stress-strain relationship,

Sxy(x, b, z) = Syz(x, b, z) = 0

(f) On the surface defined by y = −b, n̂ = −ĵ, and T = 0





Tx

Ty

Tz



 =





0
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







0
−1
0



 =





−Sxy

−Syy

−Syz





Thus,
Syy(x,−b, z) = 0

and from the stress-strain relationship,

Sxy(x,−b, z) = Syz(x,−b, z) = 0

(5) Stress field.

 

Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

5 

From equilibrium conditions:

Sxx = c1 = c1(y, z) = constant Syy = c2 = c2(x, z) = constant Szz = c3 = c3(x, y) = constant

From stress boundary conditions,

Sxx(h, y, z) = −σ1 and c1 = −σ1

Syy(x, b, z) = 0 and c2 = 0

Szz(x, y, a) = 0 and c3 = 0

(6) Strain field.
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Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

6 

Now, let us use the stress-strain relationships (using the Hooke’s Law):





ε1

ε2

ε3

ε4

ε5

ε6





=
1
E




1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)








−σ1

0

0

0

0

0





Multiplying the above we get





exx

eyy

ezz

γyz

γxz

γxy





=
σ1

E





−1

ν

ν

0

0

0





Thus, while there is no contact between the solid structure and the rigid walls, the
state of stress is

S =




Sxx 0 0

0 0 0

0 0 0




=




−σ1 0 0

0 0 0

0 0 0




Note that since the above is a principal state of stress, the result will be a principal
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state of strain. Thus the associated state of strain is

e =




exx 0 0

0 eyy 0

0 0 ezz




=
σ1

E




−1 0 0

0 ν 0

0 0 ν




We can see that eyy = ezz. The strain needed for the solid cube to make with the
rigid wall is

eyy =
final expansion in y − initial expansion in y

initial expansion in y
=

(2 b+ 2 t)− (2 b)
2 b

=
2 (0.0381× 10−3)

0.127
= 0.0006

Thus
eyy = ezz = 0.0006

The needed pressure can be calculated from the second or third equation in the
Hooke’s Law

eyy = ezz =
σ1

E
ν → σ1 =

eyyE

ν
= 420 MPa

Thus for contact to occur between the cube and the rigid walls, a compression of
420 MPa need to be applied in the x-direction. The normal strain in the x-direction
is

exx =
Sxx

E
= −0.002

Thus the stress and strain tensors are

S
∣∣∣
at rigid wall

=



−420 0 0

0 0 0
0 0 0


 MPa

e
∣∣∣
at rigid wall

=




−2000 0 0

0 600 0

0 0 600



µ

(7) Displacement field.
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Material Law 
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7 

With this we have completed the stress and strain fields but the displacements are
know remaining. Let us use the strain-displacement equations for this purpose:

exx =
∂U1

∂x
→ ∂U1

∂x
= −0.002 → U1(x) = −0.002x+ f1(y, z)

Also,

g4 =
∂U1

∂y
= 0 → U1 = f2(x, z)

g7 =
∂U1

∂z
= 0 → U1 = f3(x, y)

Which implies that f1(y, z) = f2(x, z) = f3(x, y) = k1 = constant:

U1(x, y, z) = −0.002x+ k1

Let us assume that U1(0, 0, 0) = 0 and thus k1 = 0. Thus

U1(x, y, z) = u1(x) = −0.002x

Now, we proceed to find V1:

eyy =
∂V1

∂y
→ ∂V1

∂y
= 0.0006 → V1 = 0.0006 y + h1(x, z)

Also,

g2 =
∂V1

∂x
= 0 → V1 = h2(x, z)

g8 =
∂V1

∂z
= 0 → V1 = h3(x, y)

Which implies that h1(y, z) = h2(x, z) = h3(x, y) = k2 = constant:

V1(x, y, z) = 0.0006 y + k2

We know that V1(0, b + t, 0) = V1(0, 0.063538, 0) = 0 and thus k2 = −0.00006096.
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Thus
V1(x, y, z) = v1(y)(x) = 0.0006 y − 0.00006096

Now, we proceed to find W1:

ezz =
∂W1

∂z
→ ∂W1

∂z
= 0.0006 → W1 = 0.0006 z + s1(x, y)

Also,

g3 =
∂W1

∂x
= 0 → W1 = s2(x, z)

g6 =
∂W1

∂y
= 0 → W1 = s3(x, y)

Which implies that s1(y, z) = s2(x, z) = s3(x, y) = k3 = constant:

W1(x, y, z) = 0.0006 z + k3

Let us assume thatW1(0, 0, a+w) = W1(0, 0, 0.0635) = 0 and thus k3 = −0.00006096.
Thus

W1(x, y, z) = w1(z) = 0.0006 z − 0.00006096

Thus, the displacement field is

R
∣∣∣
at rigid wall

=





U1(x, y, z)

V1(x, y, z)

W1(x, y, z)





=





−0.002000x

0.000600 y − 0.00006096

0.000600 z − 0.00006096





(2.15b) If σ2 = 600 MPa, determine the isothermal elastic field. Take σ = σ2.

A total pressure of σ1 = 420 MPa are necessary to bring the block to have contact with
the rigid walls. Once the block reaches the rigid walls, the problem changes. As the
solid block reaches the rigid walls, the geometry is:
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y 

z 

σ σ 

x 

z 

FRONT VIEW 
(Seen from x-axis) 

SIDE VIEW 
(Seen from y-axis) 

a+w 

b+t h´ h´b+t 

a+w 

In order to find the value of h′, let us use the definition of the strain in the x-direction.
We know that just when the block hits the walls:

exx

∣∣∣
at rigid walls

=
final expansion in x− initial expansion in x

initial expansion in x
=

2h′ − 2h
2h

= −0.002

Thus
h′ = (−0.002)(h) + h = 0.063373

Since σ2 > σ1, the block has reached the rigid walls, and the excessive pressure the
block is experiencing will be:

∆σ = (600− 420) = 180 MPa

(1) Assumed Displacement.

 

Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

1 

Also, there will be no further deformation in the y and z direction (because of the
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rigid walls) and thus the displacement field is

U2(x, y, z) = u2(x)

V2(x, y, z) = 0

W2(x, y, z) = 0

(2) Strains.

 

Displacements 
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Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

2 

The displacement gradients are then found as:

g1 =
∂U2

∂x
=
∂u2

∂x
g4 =

∂U2

∂y
= 0 g7 =

∂U2

∂z
= 0

g2 =
∂V2

∂x
= 0 g5 =

∂V2

∂y
= 0 g8 =

∂V2

∂z
= 0

g3 =
∂W2

∂x
= 0 g6 =

∂W2

∂y
= 0 g9 =

∂W2

∂z
= 0

Thus the resulting strain-displacement relationship is obtained using the Lagrange-
Green equations:

ε1 = exx = g1 =
∂u2

∂x

ε2 = eyy = g5 = 0

ε3 = ezz = g9 = 0

ε4 = 2 eyz = g6 + g8 = 0

ε5 = 2 exz = g3 + g7 = 0

ε6 = 2 exy = g2 + g4 = 0

(3) Stresses.
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3 

Now the stress-strain relationship for isotropic Hookean strain is obtained using the
inverted Hooke’s law:




S1

S2

S3

S4

S5

S6





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2 ν
2 0 0

0 0 0 0 1−2 ν
2 0

0 0 0 0 0 1−2 ν
2








ε1

ε2

ε3

ε4

ε5

ε6





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2 ν
2 0 0

0 0 0 0 1−2 ν
2 0

0 0 0 0 0 1−2 ν
2








ε1

0

0

0

0

0
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Thus,

S1 = Sxx =
(1− ν)E

(1 + ν)(1− 2 ν)
exx

S2 = Syy =
ν E

(1 + ν)(1− 2 ν)
exx

S3 = Szz =
ν E

(1 + ν)(1− 2 ν)
exx

S4 = Syz = 0

S5 = Sxz = 0

S6 = Sxy = 0

(4) Equilibrium Equations and Boundary Conditions.
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4 

Now, substituting the stress components into the three equilibrium equations which
must be satisfied at all point inside the body:

∂Sxx

∂x
+
∂Syx

∂y
+
∂Szx

∂z
+ bx = 0 → ∂Sxx

∂x
= 0 → Sxx = c1 = c1(y, z) = constant

∂Sxy

∂x
+
∂Syy

∂y
+
∂Szy

∂z
+ by = 0 → ∂Syy

∂y
= 0 → Syy = c2 = c2(x, z) = constant

∂Sxz

∂x
+
∂Syz

∂y
+
∂Szz

∂z
+ bz = 0 → ∂Szz

∂z
= 0 → Szz = c3 = c3(x, y) = constant

Recall, all body forces are neglected.
Now in other to complete find the unknowns we need to apply stress boundary
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conditions: 



Tx

Ty

Tz





=




Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz








nx

ny

nz





The block is only free to move in the x direction, thus:

(a) On the surface defined by x = h′, n̂ = î, and T = −∆σ î





Tx

Ty

Tz



 =





−∆σ
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







1
0
0



 =





Sxx

Sxy

Sxz





Thus,
Sxx(h′, y, z) = −∆σ

and from the stress-strain relationship,

Sxy(h′, y, z) = Sxz(h′, y, z) = 0

(b) On the surface defined by x = −h′, n̂ = −̂i, and T = ∆σ î





Tx

Ty

Tz



 =





∆σ
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







−1
0
0



 =





−Sxx

−Sxy

−Sxz





Thus,
Sxx(−h′, y, z) = −∆σ

and from the stress-strain relationship,

Sxy(−h′, y, z) = Sxz(−h′, y, z) = 0

Yields the same results as in (a).

(5) Stress and strain fields.

 

Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
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5 
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From equilibrium conditions:

Sxx = c1 = c1(y, z) = constant Syy = c2 = c2(x, z) = constant Szz = c3 = c3(x, y) = constant

From stress boundary conditions,

Sxx(h, y, z) = −∆σ and c1 = −∆σ

Now, using Hooke’s Law:

Sxx = −∆σ =
E(1− ν)

(1 + ν)(1− 2 ν)
exx = −180 MPa → exx = −.000635

Also
Syy =

E ν

(1 + ν)(1− 2 ν)
exx = −77 MPa

Szz =
E ν

(1 + ν)(1− 2 ν)
exx = −77 MPa

Also, note that the total stress and strain are

S = S
∣∣∣
before rigid wall

+ S
∣∣∣
after rigid wall

e = e
∣∣∣
before rigid wall

+ e
∣∣∣
after rigid wall

and the total stress and strain acting in the x-direction are:

Sxx

∣∣∣
total

= Sxx

∣∣∣
before contact

+ Sxx

∣∣∣
after contact

= −420− 180 = −600 MPa

exx

∣∣∣
total

= exx

∣∣∣
before contact

+ exx

∣∣∣
after contact

= −0.00200− 0.000635 = −0.002635
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When σ = σ2 = 600 MPa, the stress and strain fields are

S = S
∣∣∣
before rigid wall

+ S
∣∣∣
after rigid wall

=



−420 0 0

0 0 0
0 0 0


+



−180 0 0

0 −77 0
0 0 −77


 MPa

=



−600 0 0

0 −77 0
0 0 −77


 MPa

e = e
∣∣∣
before rigid wall

+ e
∣∣∣
after rigid wall

=




−0.002 0 0

0 0.0006 0

0 0 0.0006




+




−0.000635 0 0

0 0 0

0 0 0




=




−2637 0 0

0 600 0

0 0 600



µ

(6) Displacement field.

 

Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
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6 

With this we have completed the stress and strain fields but the displacements are
know remaining. Let us solve this after the block has reached the rigid wall and
thus

R
∣∣∣
total

= R
∣∣∣
at rigid wall

+ R
∣∣∣
after rigid wall

We know that V2 = W2 = 0. Only, U2 remains. Let us use the strain-displacement
equations for this purpose:

exx =
∂U2

∂x
→ ∂U2

∂x
= −0.000635 → U2(x) = −0.000635x+ f1(y, z)
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Also,

g4 =
∂U2

∂y
= 0 → U2 = f2(x, z)

g7 =
∂U2

∂z
= 0 → U2 = f3(x, y)

Which implies that f1(y, z) = f2(x, z) = f3(x, y) = k1 = constant:

U2(x, y, z) = −0.000635x+ k1

We know that the displacement when the block just hits the y-z walls must be same
to displacement when the expansion begins:

U1(0.063373, 0, 0) = U2(0.063373, 0, 0)

However, let us make the new displacement independent from U1, in other words,
let U2(0.063373, 0, 0) = 0. As a consequence,

k1 = 4.02419× 10−5

Thus, the displacement field is

R
∣∣∣
after rigid wall

=





U2(x, y, z)

V2(x, y, z)

W2(x, y, z)





=





−0.000635x+ 4.02419× 10−5

0.00

0.00





End Example �
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Example 2.16.

Application 3: Isothermal Orthotropic Material

Consider a solid structure of a Hookean material with negligible body forces and subject to
evenly distributed pressure σ in the x-direction. The block is bound in the y- and z-direction
by rigid walls at y = b+ t, y = −b− t, z = a+ w, z = −a− w, but free to expand/contract
in the x-plane.

 

y 

z 

σ σ 
w 

w 

t t 

x 

z 

FRONT VIEW 
(Seen from x-axis) 

SIDE VIEW 
(Seen from y-axis) 

a 

a 

b b 
h h

Assume the orthotropic material is Glass-Epoxy (Scothply 1002) . The geometric properties
are:

2 a = 2 b = 2h = 0.127 m t = w = 0.0381 mm

What is the needed pressure, σ, to make contact between the Hookean solid cube structure
and all the rigid walls?

Before we proceed let us obtain the mechanical properties for Glass-Epoxy; hence, from
material tables:

Exx = 5.6× 106 psi Eyy = 1.2× 106 psi Ezz = 1.3× 106 psi

Gxy = 0.60× 106 psi Gxz = 0.60× 106 psi Gyz = 0.50× 106 psi

νxy = 0.26 νxz = 0.25 νyz = 0.34

c©2012 by Vijay K. Goyal. All Rights Reserved.



2.10. PLANE STRESS AND PLANE STRAIN 186

Converting to SI units9:

Exx = 38.612 GPa Eyy = 8.274 GPa Ezz = 8.9635 GPa

Gxy = 4.137 GPa Gxz = 4.137 GPa Gyz = 3.4475 GPa

The remaining mechanical properties are obtained from Eq. (2.174):

νyx =
νxy

Exx

Eyy = 0.0557143 νzx =
νxz

Exx

Ezz = 0.0580357 νzy =
νyz

Eyy

Ezz = 0.368333

(2.16a) Assumed Displacement.
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1 

From the geometry of the problem it is assumed that at all points in the body the
displacement field (displacement boundary conditions) is:

U1(x, y, z) = u1(x)

V1(x, y, z) = v1(y)

W1(x, y, z) = w1(z)

(2.16b) Strains.

91 psi = 6895 Pa
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2 

The displacement gradients are then found as:

g1 =
∂U1

∂x
=
∂u1

∂x
g4 =

∂U1

∂y
= 0 g7 =

∂U1

∂z
= 0

g2 =
∂V1

∂x
= 0 g5 =

∂V1

∂y
=
∂v1

∂y
g8 =

∂V1

∂z
= 0

g3 =
∂W1

∂x
= 0 g6 =

∂W1

∂y
= 0 g9 =

∂W1

∂z
=
∂w1

∂z

Thus the resulting strain-displacement relationship is obtained using the Lagrange-
Green equations:

ε1 = exx = g1 =
∂u1

∂x

ε2 = eyy = g5 =
∂v1

∂y

ε3 = ezz = g9 =
∂w1

∂z

ε4 = 2 eyz = g6 + g8 = 0

ε5 = 2 exz = g3 + g7 = 0

ε6 = 2 exy = g2 + g4 = 0

(2.16c) Stresses.
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3 

Now the stress-strain relationship for Hookean body is obtained using the Hooke’s law:





εxx

εyy

εzz

γyz

γxz

γxy





=




1
Exx

− νyx

Eyy

− νzx

Ezz

0 0 0

− νxy

Exx

1
Eyy

− νzy

Ezz

0 0 0

− νxz

Exx

− νyz

Eyy

1
Ezz

0 0 0

0 0 0
1
Gyz

0 0

0 0 0 0
1
Gxz

0

0 0 0 0 0
1
Gxy








Sxx

Syy

Szz

Syz

Sxz

Sxy





= 10−9




0.0258987 −0.00673366 −0.00647467 0 0 0

−0.00673366 0.120861 −0.0410926 0 0 0

−0.00647467 −0.0410926 0.111564 0 0 0

0 0 0 0.290065 0 0

0 0 0 0 0.241721 0

0 0 0 0 0 0.241721








Sxx

Syy

Szz

Syz

Sxz

Sxy





c©2012 by Vijay K. Goyal. All Rights Reserved.



2.10. PLANE STRESS AND PLANE STRAIN 189

Or in its inverted form:




S1

S2

S3

S4

S5

S6





= 109




40.4261 3.48665 3.63041 0 0 0

3.48665 9.75924 3.797 0 0 0

3.63041 3.797 10.5728 0 0 0

0 0 0 3.4475 0 0

0 0 0 0 4.137 0

0 0 0 0 0 4.137








ε1

ε2

ε3

ε4

ε5

ε6





Thus,





S1

S2

S3

S4

S5

S6





= 109




40.4261 3.48665 3.63041 0 0 0

3.48665 9.75924 3.797 0 0 0

3.63041 3.797 10.5728 0 0 0

0 0 0 3.4475 0 0

0 0 0 0 4.137 0

0 0 0 0 0 4.137








ε1

ε2

ε3

0

0

0





(All values in GPa)

S1 = Sxx = 40.4261 exx + 3.48665 eyy + 3.63041 ezz

S2 = Syy = 3.48665 exx + 9.75924 eyy + 3.797 ezz

S3 = Szz = 3.63041 exx + 3.797 eyy + 10.5728 ezz

S4 = Syz = 0

S5 = Sxz = 0

S6 = Sxy = 0

(2.16d) Equilibrium Equations and Boundary Conditions.
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4 

Now, substituting the stress components into the three equilibrium equations which
must be satisfied at all point inside the body:

∂Sxx

∂x
+
∂Syx

∂y
+
∂Szx

∂z
+ bx = 0 → ∂Sxx

∂x
= 0 → Sxx = c1 = c1(y, z) = constant

∂Sxy

∂x
+
∂Syy

∂y
+
∂Szy

∂z
+ by = 0 → ∂Syy

∂y
= 0 → Syy = c2 = c2(x, z) = constant

∂Sxz

∂x
+
∂Syz

∂y
+
∂Szz

∂z
+ bz = 0 → ∂Szz

∂z
= 0 → Szz = c3 = c3(x, y) = constant

Recall, all body forces are neglected.

Now in other to complete find the unknowns we need to apply stress boundary condi-
tions: 




Tx

Ty

Tz





=




Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz








nx

ny

nz





(a) On the surface defined by x = h, n̂ = î, and T = −σ1 î





Tx

Ty

Tz



 =





−σ1

0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







1
0
0



 =





Sxx

Sxy

Sxz





Thus,
Sxx(h, y, z) = −σ1

and from the stress-strain relationship,

Sxy(h, y, z) = Sxz(h, y, z) = 0
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(b) On the surface defined by x = −h, n̂ = −̂i, and T = σ1 î





Tx

Ty

Tz



 =





σ1

0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







−1
0
0



 =





−Sxx

−Sxy

−Sxz





Thus,
Sxx(−h, y, z) = −σ1

and from the stress-strain relationship,

Sxy(−h, y, z) = Sxz(−h, y, z) = 0

Yields the same results as in (a).

(c) On the surface defined by z = a, n̂ = k̂, and T = 0





Tx

Ty

Tz



 =





0
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







0
0
1



 =





Sxz

Syz

Szz





Thus,
Szz(x, y, a) = 0

and from the stress-strain relationship,

Syz(x, y, a) = Sxz(x, y, a) = 0

(d) On the surface defined by z = −a, n̂ = −k̂, and T = 0





Tx

Ty

Tz



 =





0
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







0
0
−1



 =





−Sxz

−Syz

−Szz





Thus,
Szz(x, y,−a) = 0

and from the stress-strain relationship,

Syz(x, y,−a) = Sxz(x, y,−a) = 0

Yields the same results as in (c).

(e) On the surface defined by y = b, n̂ = ĵ, and T = 0





Tx

Ty

Tz



 =





0
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







0
1
0



 =





Sxy

Syy

Syz





Thus,
Syy(x, b, z) = 0
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and from the stress-strain relationship,

Sxy(x, b, z) = Syz(x, b, z) = 0

(f) On the surface defined by y = −b, n̂ = −ĵ, and T = 0





Tx

Ty

Tz



 =





0
0
0



 =



Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz







0
−1
0



 =





−Sxy

−Syy

−Syz





Thus,
Syy(x,−b, z) = 0

and from the stress-strain relationship,

Sxy(x,−b, z) = Syz(x,−b, z) = 0

(2.16e) Stress and strain field.
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5 

From equilibrium conditions:

Sxx = c1 = c1(y, z) = constant Syy = c2 = c2(x, z) = constant Szz = c3 = c3(x, y) = constant

From stress boundary conditions,

Sxx(h, y, z) = −σ1 and c1 = −σ1

Syy(x, b, z) = 0 and c2 = 0

Szz(x, y, a) = 0 and c3 = 0
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Now, let us use the stress-strain relationships (using the Hooke’s Law):





ε1

ε2

ε3

ε4

ε5

ε6





= 10−9




0.0258987 −0.00673366 −0.00647467 0 0 0

−0.00673366 0.120861 −0.0410926 0 0 0

−0.00647467 −0.0410926 0.111564 0 0 0

0 0 0 0.290065 0 0

0 0 0 0 0.241721 0

0 0 0 0 0 0.241721








−σ1

0

0

0

0

0





Multiplying the above we get





exx

eyy

ezz

γyz

γxz

γxy





= σ1





−0.0258987

0.00673366

0.00647467

0

0

0





10−9

Thus, while there is no contact between the solid structure and the rigid walls, the state
of stress is

S =




Sxx 0 0

0 0 0

0 0 0




=




−σ1 0 0

0 0 0

0 0 0




Note that since the above is a principal state of stress, the result will be a principal
state of strain. Thus the associated state of strain is

e =




exx 0 0

0 eyy 0

0 0 ezz




= σ1




−0.0258987 0 0

0 0.00673366 0

0 0 0.00647467



× 10−9

Note that eyy 6= ezz. This implies that the block will reach two-opposite side rigid walls
either in the y or in the z direction first. The strain needed for the solid cube to make
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with the rigid wall is

eyy =
final expansion in y − initial expansion in y

initial expansion in y
=

(2 b+ 2 t)− (2 b)
2 b

=
2 (0.0381× 10−3)

0.127
= 0.0006

ezz =
final expansion in z − initial expansion in z

initial expansion in z
=

(2 a+ 2w)− (2 a)
2 a

=
2 (0.0381× 10−3)

0.127
= 0.0006

Thus
eyy = ezz = 0.0006

The needed pressure is calculated using both the second and third equation in the
Hooke’s Law

eyy = 0.00673366σ1 × 10−9 → σ1 = 89.1046 MPa

ezz = 0.00647467σ1 × 10−9 → σ1 = 92.6688 MPa

Thus, when σ = 89.1046 MPa, the block has already made contact with the rigid wall in the
y-direction; and when σ ≥ 92.6688 MPa the block will make contact with both walls (we
need to calculate this value).

End Example �
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Example 2.17.

Application 4: Nonisothermal Orthotropic Material

Redo Example 2.16 but considering a decrease in temperature of 100◦C from its initial
temperature.

The mechanical properties for Glass-Epoxy (Scothply 1002) are:

Exx = 38.612 GPa Eyy = 8.274 GPa Ezz = 8.9635 GPa

Gxy = 4.137 GPa Gxz = 4.137 GPa Gyz = 3.4475 GPa

αxx = 8.64 µm/m-◦C αyy = 22.14 µm/m-◦C αzz = 22.14 µm/m-◦C

νyx =
νxy

Exx

Eyy = 0.0557143 νzx =
νxz

Exx

Ezz = 0.0580357 νzy =
νyz

Eyy

Ezz = 0.368333

(2.17a) Assumed Displacement.
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1 

From the geometry of the problem it is assumed that at all points in the body the
displacement field (displacement boundary conditions) is:

U1(x, y, z) = u1(x)

V1(x, y, z) = v1(y)

W1(x, y, z) = w1(z)

(2.17b) Strains.
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2 

The resulting strain-displacement relationship is obtained using the Lagrange-Green
equations:

ε1 = exx = g1 =
∂u1

∂x

ε2 = eyy = g5 =
∂v1

∂y

ε3 = ezz = g9 =
∂w1

∂z

ε4 = 2 eyz = g6 + g8 = 0

ε5 = 2 exz = g3 + g7 = 0

ε6 = 2 exy = g2 + g4 = 0

(2.17c) Stresses.

 

Displacements 

Strains 

Stresses 

Boundary 
Conditions 

Kinematics 
Material Law 

Cauchy’s 
Relationship 

3 
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Now the stress-strain relationship for Hookean body is obtained using the Hooke’s law:





εxx

εyy

εzz

γyz

γxz

γxy





=




1
Exx

− νyx

Eyy

− νzx

Ezz

0 0 0

− νxy

Exx

1
Eyy

− νzy

Ezz

0 0 0

− νxz

Exx

− νyz

Eyy

1
Ezz

0 0 0

0 0 0
1
Gyz

0 0

0 0 0 0
1
Gxz

0

0 0 0 0 0
1
Gxy








Sxx

Syy

Szz

Syz

Sxz

Sxy





+





αxx

αyy

αzz

0

0

0





∆T





ε1
ε2
ε3
ε4
ε5
ε6





= 10−9




0.0258987 −0.00673366 −0.00647467 0 0 0

−0.00673366 0.120861 −0.0410926 0 0 0

−0.00647467 −0.0410926 0.111564 0 0 0

0 0 0 0.290065 0 0

0 0 0 0 0.241721 0

0 0 0 0 0 0.241721








Sxx

Syy

Szz

Syz

Sxz

Sxy





+





8.64

22.14

22.14

0

0

0





× 10−6 (−100)

Or in its inverted form:




S1

S2

S3

S4

S5

S6





= 109




40.4261 3.48665 3.63041 0 0 0

3.48665 9.75924 3.797 0 0 0

3.63041 3.797 10.5728 0 0 0

0 0 0 3.4475 0 0

0 0 0 0 4.137 0

0 0 0 0 0 4.137












ε1
ε2
ε3
0

0

0





−





8.64

22.14

22.14

0

0

0





× 10−6 (−100)
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Thus, (All values in GPa)

S1 = Sxx = 40.4261 exx + 3.48665 eyy + 3.63041 ezz − 40.4261αxx ∆T − 3.48665αyy ∆T − 3.63041αzz ∆T

= 40.4261 exx + 3.48665 eyy + 3.63041 ezz + 0.0506854

S2 = Syy = 3.48665 exx + 9.75924 eyy + 0.033026

= 3.48665 exx + 9.75924 eyy + 3.797 ezz − 3.48665αxx ∆T − 9.75924αyy ∆T − 3.797αzz ∆T

S3 = Szz = 3.63041 exx + 3.797 eyy + 10.5728 ezz − 3.63041αxx ∆T − 3.797αyy ∆T − 10.5728αzz ∆T

= 3.63041 exx + 3.797 eyy + 10.5728 ezz + 0.034951

S4 = Syz = 0

S5 = Sxz = 0

S6 = Sxy = 0

(2.17d) Equilibrium equations and boundary conditions.
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4 

Now, substituting the stress components into the three equilibrium equations which
must be satisfied at all point inside the body:

∂Sxx

∂x
+
∂Syx

∂y
+
∂Szx

∂z
+ bx = 0 → ∂Sxx

∂x
= 0 → Sxx = c1 = c1(y, z) = constant

∂Sxy

∂x
+
∂Syy

∂y
+
∂Szy

∂z
+ by = 0 → ∂Syy

∂y
= 0 → Syy = c2 = c2(x, z) = constant

∂Sxz

∂x
+
∂Syz

∂y
+
∂Szz

∂z
+ bz = 0 → ∂Szz

∂z
= 0 → Szz = c3 = c3(x, y) = constant
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Recall, all body forces are neglected.

(2.17e) Stress and Strain fields.
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5 

From stress boundary conditions,

Sxx(h, y, z) = −σ1 and c1 = −σ1

Syy(x, b, z) = 0 and c2 = 0

Szz(x, y, a) = 0 and c3 = 0

Now, let us use the stress-strain relationships (using the Hooke’s Law):





ε1
ε2
ε3
ε4
ε5
ε6





= 10−9




0.0258987 −0.00673366 −0.00647467 0 0 0

−0.00673366 0.120861 −0.0410926 0 0 0

−0.00647467 −0.0410926 0.111564 0 0 0

0 0 0 0.290065 0 0

0 0 0 0 0.241721 0

0 0 0 0 0 0.241721








−σ1

0

0

0

0

0





+





8.64

22.14

22.14

0

0

0





× 10−6 (−100)
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Multiplying the above we get





exx

eyy

ezz

γyz

γxz

γxy





= σ1





−0.0258987

0.00673366

0.00647467

0

0

0





10−9 +





−0.000864

−0.002214

−0.002214

0

0

0





Thus, while there is no contact between the solid structure and the rigid walls, the state
of stress is

S =




Sxx 0 0

0 0 0

0 0 0




=




−σ1 0 0

0 0 0

0 0 0




Note that since the above is a principal state of stress, the result will be a principal
state of strain. Thus the associated state of strain is

e =




exx 0 0

0 eyy 0

0 0 ezz




=σ1




−0.0258987 0 0

0 0.00673366 0

0 0 0.00647467



× 10−9

+




−0.000864 0 0

0 −0.002214 0

0 0 −0.002214




Note that eyy 6= ezz. This implies that the block will reach two-opposite side rigid walls
either in the y or in the z direction first. The strain needed for the solid cube to make
with the rigid wall is

eyy =
final expansion in y − initial expansion in y

initial expansion in y
= 0.0006

ezz =
final expansion in z − initial expansion in z

initial expansion in z
= 0.0006

Thus
eyy = ezz = 0.0006

The needed pressure is calculated using both the second and third equation in the
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Hooke’s Law

eyy = 0.00673366σ1 × 10−9 − 0.002214 → σ1 = 417.901 MPa

ezz = 0.00647467σ1 × 10−9 − 0.002214 → σ1 = 434.617 MPa

Thus, when σ = 417.901 MPa, the block has already made contact with the rigid wall in the
y-direction; and when σ ≥ 434.617 MPa, the block will make contact with both walls (we
need to calculate this value).

End Example �
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2.12 Suggested Problems

Problem 2.1.

The state of stress at a point is

σ =




−p τ τ

τ −p τ

τ τ −p




(2.191)

where p > 0 and τ > 0. Determine the state of principal strain for an isotropic and for an orthotropic
materials.

�
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Problem 2.2.

The state of stress at a point is

σ =




σ1 0 0

0 σ2 0

0 0 σ3




(2.192)

 

 

 

 x 

 y 

 z

O

A

B

C

Suppose the stress vector acting on the ACB plane is

T(ACB) =





50

10

20





MPa

1. Determine the state of strain if the material is steel and glass-epoxy (use values used in chapter).

2. Is this a case of plane strain, plane stress, or neither of these special cases.

3. Determine the strain vector acting along the AC segment.

�
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Problem 2.3.

The state of stress at a point is

σ =




10 20 0

20 −20 0

0 0 0



× 106 psi (2.193)

Find the principal strains if the material is Titanium (Ti3Al2.5V, UNS R56320; ASTM Grade 9; Half
6-4) using:

1. Eigenvalue approach.

2. Mohr’s circle.

�
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Problem 2.4.

Analysis of a particular body, made of Titanium (Ti3Al2.5V, UNS R56320; ASTM Grade 9; Half 6-4),
indicates that stresses for orthogonal interfaces associated with reference x-y-z at a given point are

σ =




3000 −1000 0

−1000 2000 2000

0 2000 0




kPa (2.194)

1. Determine the shear strain vector acting on the same interface in a direction parallel to the x-axis.

2. Determine the normal and shear strain vectors and magnitudes on the infinitesimal interface at
this point whose unit normal is

n̂s = 0.60 ĵ + 0.8 k̂ (2.195)

3. Determine the overall maximum shear strain at the given point.

�
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Problem 2.5.

Consider a solid structure of a Hookean material with negligible body forces and subject to evenly
distributed shear τo acting on the x-planes only. The block is bound only in the z-direction by rigid
walls at z = h, z = −h, but free to expand/contract in the x and y planes.

 

x 

z 

FRONT VIEW 
(Seen from x-axis) 

SIDE VIEW 
(Seen from y-axis) 

y 

z 

a a bb

h 

h 
τo τo 

Assume the orthotropic material is graphite-epoxy (T300/934). The geometric properties are:

2 a = 2 b = 2h = 0.200 m

What is the needed shear pressure τo if the maximum strain allowed in any given direction is 0.001?
�
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Problem 2.6.

Consider a solid structure of a Hookean material with negligible body forces and subject to evenly
distributed shear σo in the y-direction. The block is bound only in the y-direction by rigid wall at
y = −h, but free to expand/contract in the all other directions.

 

z 

y 

FRONT VIEW 
(Seen from z-axis) 

SIDE VIEW 
(Seen from x-axis) 

x 

y 

σo 

a a bb

h 

h 

σo 

Assume the orthotropic material is graphite-epoxy (T300/934). The geometric properties are:

2 a = 2 b = 2h = 0.200 m

What is the needed pressure, σo, if the maximum normal strain allowed in any given direction is 0.001?
�
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Problem 2.7.

Consider a solid structure of a Hookean material with negligible body forces and subject to evenly
distributed pressure σo in the x-direction. The block is bound in the y- and z-direction by rigid walls at
y = b+ 2t, y = −b− 2t, z = a+ w, z = −a− w, but free to expand/contract in the x-plane. to 20%

 

y 

z 

w 

w 

2t 2t

x 

z 

FRONT VIEW 
(Seen from x-axis) 

SIDE VIEW 
(Seen from y-axis) 

a 

a 

b b 
h h

σo 
σo 

Considering a increase in temperature of 100◦C from its initial temperature. Assume the orthotropic
material is graphite-epoxy (T300/934). The geometric properties are:

2 a = 2 b = 2h = 0.200 m t = w = 0.010 m

What is the needed pressure, σo, to make contact between the Hookean solid cube structure and all the
rigid walls?

�
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Chapter 3

Material Selection

3.1 Stress-Strain Diagrams

Usually the stress-strain diagrams are based on one-dimensional tension testing. The stress-strain dia-
grams are characteristic of the particular material being tested and conveys important information about
the mechanical properties and type of behavior. A stress-strain diagram for a typical structural steel in
tension is shown in Fig. 3.1. Strains are plotted on the horizontal axis and stresses on the vertical axis.
(In order to display all of the important features of this material, the strain axis in Fig. 3.1 is not drawn
to scale.) From hereon all stress properties obtained from tables will be characterized with S and σ the
ones we evaluate.

Figure 3.1: Stress-strain diagram for a typical structural steel in tension.

210



3.2. MATERIAL SELECTION 211

Proportional limit, Sp (A): Point where the stress-strain relationship stops to be proportional. The
diagram begins with a straight line from the origin O to point A, which means that the relationship
between stress and strain in this initial region is not only linear but also proportional.1 Beyond point
A, the proportionality between stress and strain no longer exists; hence the stress at A is called the
proportional limit.

Yield point, Sy (B or C): Point where as we increase the strain there is no increase in stress. With
an increase in stress beyond the proportional limit, the strain begins to increase more rapidly for each
increment in stress. Consequently, the stress-strain curve has a smaller and smaller slope, until, at point
B, the curve becomes horizontal. Beginning at this point, considerable elongation of the test specimen
occurs with no noticeable increase in the tensile force (from B to C). This phenomenon is known as
yielding of the material, and point B is called the yield point. The corresponding stress is known as the
yield stress of the steel. In the region from B to C, the material becomes perfectly plastic, which means
it deforms without an increase in the applied load.

Ultimate strength, Su (D): Maximum value in the stress-strain curve. After undergoing the large
strains that occur during yielding in the region BC, the steel begins to strain harden. During strain
hardening, the material undergoes changes in its crystalline structure, resulting in increased resistance of
the material to further deformation. Elongation of the test specimen in this region requires an increase
in the tensile load, and therefore the stress-strain diagram has a positive slope from C to D. The load
eventually reaches its maximum value, and the corresponding stress (at point D) is called the ultimate
stress. Further stretching of the bar is actually accompanied by a reduction in the load, and fracture
finally occurs at a point such as E.

3.2 Material Selection

Mechanical engineering design has two keystone objectives: (i) selection of the best possible material
and (ii) determination of the best possible geometry for each part.

Materials engineers’ has the task of developing new and better materials. However, mechanical
engineers must be effective in selecting the best available material for each application, considering all
important design criteria. Materials selection is typically carried out as a part of the intermediate design
stage, but in some cases must be considered earlier, during the preliminary design stage. The basic steps
in selection of candidate materials for any given application can be summarized as:

1. Analyzing the material-specific requirements of the application.

2. Assembling a list of requirement-responsive materials, with pertinent performance evaluation data,
rank-ordered so the ”best” material is at the top of the table! for each important application
requirement.

1Two variables are said to be proportional if their ratio remains constant. Therefore, proportional relationship may
be represented by a straight line through the origin. However, a proportional relationship is not the same as a linear
relationship.
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3. Matching the lists of materials responsive to the pertinent application requirements in order to
select the ”best” candidate materials for the proposed design.

Table 3.1: Potential Material-Specific Application Requirements

Requirement-Responsive Performance Evaluation Index Special Need?
Material Characteristic

1. Strength/volume ratio : Ultimate or yield strength :

2. Strength/weight ratio : Ultimate or yield strength/density :

3. Strength at elevated temperature : Strength loss/degree temperature :

4. Long-term dimensional stability : Creep rate at operating temperature :
at elevated temperature : :

5. Dimensional stability under : Strain/degree temperature change :
temperature fluctuation : :

6. Stiffness : Modulus of Elasticity :

7. Ductility : % elongation in 2 inches :

8. Ability to store energy elastically : Energy/unit volume at yield :

9. Ability to dissipate energy plastically : Energy/unit volume at rupture :

10. Wear resistance : Dimensionless loss at operating condition; :
: also hardness

11. Resistance to chemically : Dimensionless loss at operating :
reactive environment : environment

12. Resistance to nuclear : Strength or ductility change in operating :
radiation environment : environment

13. Desire to use specific manufacturing
process

: Suitability for specific process :

14. Cost constraints : Cost/unit weight; also machinability :

15. Procurement time constraints : Procurement time and effort :

3.2.1 Two-Selection Criteria

To methods are presented here: (i) Rank-Ordered-Data Table Method, (ii) Ashby Chart Method. Both
methods are widely used in material selection. The steps are summarized as follows:

1. Using Table 3.1 as a guide, together with known requirements imposed by operational or func-
tional constraints, postulated failure modes, market-driven factors, and/or management directives,
establish a concise specification statement.

2. Based on the information from step 1, and the specification statement, identify all special needs
for the application by writing a response of yes, no, or perhaps in Table 3.1.

3. This step is different for both methods:

Rank-Ordered-Data Table Method: For each item receiving a yes or perhaps, use Table 3.2
to identify the corresponding performance evaluation index, and consult rank-ordered Tables
3.2–3.19 for potential material candidates.
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Ashby Chart Method: For each item receiving a yes or perhaps, use Table 3.1 to identify the
corresponding performance evaluation index, and consult the pertinent Ashby charts shown
in Figures. Now identify a short list of highly qualified candidate materials to each selected
pair of performance parameters or application constraints.

4. Comparing the results in step 3, establish the two or three better candidate materials by finding
those near the tops of all the lists or charts.

5. Assign each performance index a weigh. Then from the two or three better candidate materials,
use the Pugh’s method to make a tentative selection for the material to be used.
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Table 3.2: Strength Properties of Selected Materials
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Table 3.3: Strength/Weight Ratios of Selected Materials
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Table 3.4: Strength at Elevated Temperatures for Selected Materials
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Table 3.5: Stress Rupture Strength Levels (psi) Corresponding to Various Rupture Times and Temper-
atures for Selected Materials
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Table 3.6: Creep Limited Maximum Stresses (psi) Corresponding to Various Strain Rates and Temper-
atures for Selected Materials
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Table 3.7: Coefficients of Thermal Expansion for Selected Materials
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Table 3.8: Stiffness Properties of Selected Materials
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Table 3.9: Ductility of Selected Materials
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Table 3.10: Modulus of Resilience R for Selected Materials Under Tensile Loading
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Table 3.11: Toughness Merit Number T for Selected Materials Under Tensile Loading
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Table 3.12: Hardness of Selected Materials
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Table 3.13: Galvanic Corrosion Resistance in Sea Water for Selected Materials
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Table 3.14: Corrosion-Fatigue Strength for Selected Materials
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Table 3.15: Nuclear Radiation Exposure to Produce Significant (over 10%) Changes in Properties of
Selected Materials
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Table 3.16: Suitability of Selected Materials for Specific Manufacturing Process
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Table 3.17: Approximate Material Cost for Selected Materials
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Table 3.18: Relative Machinability of Selected Materials
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Table 3.19: Thermal Conductivity Ranges for Selected Materials
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Example 3.1.

It is desired to design a pressure vessel that will leak before it breaks2. The reason for
this is that the leak can be easily detected before the onset of rapid crack propagation that
might cause an explosion of the pressure vessel due to brittle behavior. To accomplish the
leak-before-break goal, the vessel should be designed so that it can tolerate a crack having
a length, a, at least equal to the wall thickness, t, of the pressure vessel without failure by
rapid crack propagation. A specification statement for design of this thin-walled pressure
vessel has been written as follows:

The pressure vessel should experience slow through-the thickness crack propagation to cause
a leak before the onset of gross yielding of the pressure vessel wall.

From evaluation of this specification statement using Tables 3.1 and 3.2, the important
evaluation indices have been deduced to be high fracture toughness and high yield strength.

By combining (2-21) and (9-5), keeping in mind the ”separable” quality of the materials
parameter f3(M) discussed in Example 3.2, the materials-based performance index for this
case has been found to be

f3(M) =
Kc

Syp
(3.1)

It is also desired to keep the vessel wall as thin as possible (corresponds to selecting materials
with yield strength as high as possible).

a) Using the Ashby charts shown in Figures 3.1 through 3.6, select tentative material
candidates for this application.

b) Using the rank-ordered-data tables of Table 2.1 and Tables 3.3 through 3.20, select
tentative material candidates for this application.

c) Compare results of parts (a) and (b).

Use the following information to solve the problem,

Kc√
π S

= 10
√
mm S ≥ 40 MPa (3.2)

First note that from the problem statement:

From evaluation of this specification statement using Tables 3.1 and 3.2, the important
evaluation indices have been deduced to be high fracture toughness and high yield strength.

We can deduce that we are only interested in materials with high yielding (strength to
volume ratio) and ability to dissipate energy plastically (toughness). Note that the problem
specification statement does not involve stiffness.

2By break we mean onset of nominal gross-section yielding of the pressure vessel wall.
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Table 3.20: Potential Material-Specific Application Requirements

Potential Application Requirement Special Need?

1. Strength/volume ratio : YES

2. Strength/weight ratio : NO

3. Strength at elevated temperature : NO

4. Long-term dimensional stability at elevated temperature : NO

5. Dimensional stability under temperature fluctuation : NO

6. Stiffness : NO

7. Ductility : NO

8. Ability to store energy elastically : NO

9. Ability to dissipate energy plastically : YES

10. Wear resistance : NO

11. Resistance to chemically reactive environment : NO

12. Resistance to nuclear radiation environment : NO

13. Desire to use specific manufacturing process : NO

14. Cost constraints : NO

15. Procurement time constraints : NO

Solution Using Rank-Ordered-Data Tables
Thus for the performance evaluation we need Tables 3.3 and 3.12. Now let us make a short
list of candidate materials from each of these tables:

Table 3.3 (Page 132) For high yield strength:

1. Ultra-high-strength steel (AISI 4340)

2. Stainless steel (AM 350)

3. High-carbon steel

4. Graphite-epoxy composite

5. Ti-6Al-4V titanium

6. Ceramic

7. Nickel-based alloy (Inconel 601)

8. Medium-carbon steel

Table 3.12 (Page 137) For high toughness:

1. Nickel-based alloy (Inconel 601)

2. Stainless steel (AISI 304)

3. Phosphor bronze

4. Ultra-high-strength Steel (AISI 4340)

5. Stainless steel (AM 350)

6. Al 2024-T3

7. Low-carbon steel

8. Ti-6Al-4V titanium
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Surveying the above list, the three best candidate materials with the best potential appear
to be:

1. Nickel-based alloy (Inconel 601)

2. Stainless steel (AM 350)

3. Ultra-high-strength Steel (AISI 4340)

The above list has not being giving in order of priority. Titanium was not included because
was not listed in the top list of each table. However, nickel-based alloy was chosen because
in Table 3.12 was on the top of the list.

Let’s use the Pugh’s method and take the ultra-high-strength steel as our datum. We shall
use the following scoring system:

+2 meets criterion much better than datum

+1 meets criterion better than datum

0 meets criterion as well as datum

−1 meets criterion not as well as datum

−2 meets criterion much worse then the datum

Note that we take only those criteria relevant to the problem.

Table 3.21: Rank-Ordered
A B DATUM

Criteria Score (0-100%) Inconel 601 AM 350 AISI 4340

1. Yield strength 60 -2 -1 0

9. Toughness 40 2 -1 0

Total 100 0 -2 0

Total Positive — 2 0 0

Total Negative — -2 -2 0

Weighted Total — -40 -100 0

Thus the best candidate is the ultra-high-strength steel (AISI 4340).

Solution Using Ashby Charts

Given the performance index

Kc√
π S

= 10
√

mm S ≥ 40 MPa (3.3)

Figure 3.5 may be choosen to mark boundaries for the given performance index and the
bound on high yield strength materials. Figure 3.5 is the two-parameter Ashby chart for
plane strain fracture toughness, K/c, plotted versus failure strength, S. The content of the
chart roughly corresponds to the data included in Tables 2.1 and 3.4.
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We plot the red line that corresponds to:

Kc√
π S

= 10
√
mm → K2

c

π S2 = 100 mm (3.4)

and we limit our search to the above of the curve since we are interested to yield before
fracture.

 

Figure 3.2: The blue line represents the line of constant toughness to strength ratio and the green line
represent the strength bound.

The material candidates included within the search region are steels, Cu Alloys, and Al
Alloys. These “short-name” identifiers may be interpreted from Table 2-4 (Shigley’s 9th
Edition) as:

1. Steels

2. Copper alloys

3. Aluminum alloys

Since we are interested in a high yield strength, the recommended material should be a steel.

Comparison

Both procedures would agree upon Ultra-high-strength steel as a primary candidate material.
The second choice could be stainless steel.
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End Example �
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3.4 Suggested Problems

Problem 3.1.

It is desired to manufacture a fishing rod that is made of a light and stiff material. Using both the ranked-
order-data method and the Ashby charts, determine which is better, a rod made of plastic (without fiber
reinforcement) or a split-cane rod (bamboo fibers glued together).

�
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Problem 3.2.

It is desired to manufacture a engine support whose fundamental natural frequency should not exceed
ω = 2 rpm. The engine support can be modeled as uniformly simply-supported beam. The length L of
the member is 5.0 m, the width b=10.0 cm, and the depth h=20.0 cm. The cross-sectional moment of
inertia is

I =
b h3

12
= 66.67× 10-6 m4

The natural frequency of the support can be expressed as follows:

ωn =

√
k

m
k =

48E I
L3 m = ρ V (3.5)

where V is the total volume of the support, E the Young’s Modulus, and ρ the material density. It is
desired to suggest a reasonable material for this application.

�

c©2012 by Vijay K. Goyal. All Rights Reserved.



3.4. SUGGESTED PROBLEMS 240

Problem 3.3.

Suggested problems from chapter 3 of course textbook:

1. Problem 3.1: In addition to the original specifications, the clevis should be low-cost and capable
of high production rate.

2. Problem 3.2: Choose the most appropriate material for the bridge that should be light, low volume,
high static strength, high stiffness, and high corrosion resistant.

3. Problem 3.3: The support should have good strength at elevated temperature, low creep rate and
good stress rupture of elevated temperature (good creep rapture resistance).

�
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Chapter 4

Load Analysis

Instructional Objectives of Chapter 4

After completing this chapter, the student should be able to:

1. Fully understand the importance of units.

2. Determine load analysis of airplane structural components under both static and dy-
namic loading.

3. Draw load diagrams using common analytical and discrete solutions.

This chapter presents a brief review of Newton’s laws and Euler’s equations as applied to dynamically-
loaded and steady-loaded systems in 3-D. The concepts and methods used in this chapter are usually
presented in previous statics and dynamics courses. Students are encouraged to review their static and
dynamic course contents.

4.1 Newton’s Laws

Most of the problems in structural analysis deal with static and dynamic analyses. In fact, static
loading can be considered as a special case of the dynamic one. The most popular method for the
dynamic analysis is the Newtonian approach based on Newton’s laws and is generally used to obtain
information about internal forces. The three Newton’s Laws can be briefly summarized as follows:

Newton’s First Law Newton’s First Law states that a body at rest tends to remain at rest and a
body in motion at constant velocity will tend to maintain that velocity unless acted upon by an
external force.

Newton’s Second Law Newton’s Second Law states that the time rate of change of momentum of a
body is equal to the magnitude of the applied force and acts in the direction of the force.
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Newton’s Third Law Newton’s Third Law states that when two particles interact, a pair of equal
and opposite reaction forces will exist at their contact point. This force pair will have the same
magnitude and act along the same direction line, but have opposite sense.

4.2 Units

In all engineering problems, we must deal with units carefully. Each parameter in the problem may have
a specific unit system. A unit may be defined as a specified amount of a physical quantity by which
through comparison another quantity of the same kind is measured. It our job to ensure that we are
working in the proper unit system and make the corresponding conversions, should it be necessary.

4.2.1 Importance of Units

Equations from physics and engineering that relate physical quantities are dimensionally homogeneous.
Dimensionally homogeneous equations must have the same dimensions for each term. Newton’s second
law relates the dimensions force, mass, length, and time:

F α ma

[F ] =
[M ] [L]

[T ]2

(4.1)

If length and time are primary dimensions, Newton’s second law, being dimensionally homogeneous,
requires that both force and mass cannot be primary dimensions without introducing a constant of
proportionality that has dimension (and units).

Because physical quantities are related by laws and definitions, a small number of physical quantities,
called primary dimensions, are sufficient to conceive of and measure all others. Primary dimensions in
all systems of dimensions in common use length and time. Force is selected as a primary dimension in
some systems. Mass is taken as a primary dimension in others. For application in mechanics, we have
four basic systems of dimensions:

1. force [F ], mass [M ], length [L], time [T ]

2. force [F ], length [L], time [T ]

3. mass [M ], length [L], time [T ]

In system 1, length [L], time [T ], and both force [F ] and mass [M ] are selected as primary dimensions.
In this system, in Newton’s second law

F =
ma

gc
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where the constant of proportionality, gc, is not dimensionless. For Newton’s law to be dimensionally
homogeneous, the dimensions of gc must be:

gc =
[M ] [L]
[F ] [T ]2

In system 2, mass [M ] is a secondary dimension, and in Newton’s second law the constant of propor-
tionality is dimensionless. In system 3, force [F ] is a secondary dimension, and in Newton’s second law
the constant of proportionality is again dimensionless. The measuring units selected for each primary
physical quantities determine the numerical value of the constant of proportionality.

Secondary dimensions are those quantities measured in terms of the primary dimensions. For exam-
ple, if mass, length, and time are primary dimensions, area, density, and velocity would be secondary
dimensions.

4.2.2 Systems of Units

Four different systems of units can be identified:

1. Système International d’Unitès (SI)

mass : kilogram (kg)

length : meter (m)

temperature : Celsius (◦C) or Kelvin (◦K)

time : second (s)

force : newton (N)

2. English Engineering
mass : pound mass (lbm)

length : feet (ft)

temperature : Rankine (◦R)

time : second (s)

force : pound force (lb or lbf)

3. British Engineering: foot-pound-second (fps)

mass : slug (slug)

length : feet (ft)

temperature : Fahrenheit (◦F)

time : second (s)

force : pound force (lb)
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4. British Engineering: inch-pound-second (ips)

mass : slug (slug)

length : inch (in)

temperature : Fahrenheit (◦F)

time : second (s)

force : pound force (lb)
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Example 4.1.

A special payload package is to be delivered to the surface of the moon. A prototype of
the package, developed, constructed, and tested near Boston, has been determined to have
a mass of 24.0 kg. Assume gBoston = 9.77 m/sec2 and gmoon = 1.7 m/sec2. Show all your
work.

4.1a) Estimate the weight of the package, using the international system, as measured near
Boston.

4.1b) Estimate the weight of the package, using the international system, on the surface of
the moon.

4.1c) Reexpress the weights using fps and ips systems.

Let’s use Eq. (4.1),
F = ma → W = mg (4.2)

Thus,

4.1a) Estimate the weight of the package, using the international system, as measured near
Boston.

WBoston = mgBoston =
(

24.0 kg
)
·
(

9.77 m/sec2
)

= 234.48
kg· m
sec2 = 234.48 N

4.1b) Estimate the weight of the package, using the international system, on the surface of
the moon.

Wmoon = mgmoon =
(

24.0 kg
)
·
(

1.7 m/sec2
)

= 40.8
kg· m
sec2 = 40.8 N

4.1c) Reexpress the weights using fps and ips systems.

Using Tables,

WBoston =
(

234.48 N
)
·
( 1 lb

4.448 N

)
= 52.72 lb in both units

Wmoon =
(

40.8 N
)
·
( 1 lb

4.448 N

)
= 9.17 lb in both units

Alternative approach:
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Note that the mass can be expressed as follows,

mfps =
(

24.0 kg
)
·
(2.21 lbm

1.0 kg

)
·
( 1.0 slug

32.17 lbm

)
= 1.65 slug = 1.65

lb–sec2

ft

mips =
(

1.65
lb–sec2

ft

)
·
( 1.0 ft

12.0 in

)
= 0.1375

lb–sec2

in

and the gravitational constant at Boston and at the moon are

gBostonips =
(

9.77
m

sec2

)
·
(1000.0 mm

1.0 m

)
·
( 1.0 in

25.4 mm

)
= 384.65

in
sec2

gBostonfps =
(

384.65
in

sec2

)
·
( 1 ft

12 in

)
= 32.05

ft
sec2

gmoonips =
(

1.7
m

sec2

)
·
(1000.0 mm

1.0 m

)
·
( 1.0 in

25.4 mm

)
= 66.93

in
sec2

gmoonfps =
(

66.93
in

sec2

)
·
( 1 ft

12 in

)
= 5.58

ft
sec2

Thus we could have also obtained the results by,

Wmoon =
(

1.65 slugs
)
·
(

5.58
ft

sec2

)
= 362.70

slug–ft
sec2 = 9.20 lb

Wmoon =
(

0.1375
lb–sec2

in

)
·
(

66.93
in

sec2

)
= 9.20 lb

WBoston =
(

1.65 slugs
)
·
(

32.05
ft

sec2

)
= 52.88

slug–ft
sec2 = 52.88 lb

WBoston =
(

0.1375
lb–sec2

in

)
·
(

384.65
in

sec2

)
= 52.88 lb

End Example �
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4.3 Load Analysis

Many problems deal with constant velocity, or zero velocity (static), in such cases Newton’s Second Law
reduces to: ∑

Fx = 0
∑

Fy = 0
∑

Fz = 0

∑
Mx = 0

∑
My = 0

∑
Mz = 0

(4.3)

Note that the above is just a special case of the dynamic loading situation but with zero accelerations.

4.3.1 Internal Force Sign Convention

Here we will always assumes all unknown forces and moments on the system to be positive in sign as
shown in Figure 4.1, regardless of what one’s intuition or an inspection of the free-body diagram might
indicate as to their probable directions. However, all known force components are given their proper
signs to define their directions. The simultaneous solution of the set of equations that results will cause
all the unknown components to have the proper signs when the solution is complete. If the loads act on
the opposite direction it results in a sign reversal on that component in the solution.

 

y 

x 

z 

Myy

Mxx

Mxx

Myy 

Mzz

Mzz

Vz 

Vz
Nxx

Nxx
Vy

Vy

Positively-oriented 
surface 

Negatively-oriented 
surface 

Figure 4.1: Positive sign convention.

We will need to apply the second law in order to solve for the forces on assemblies of elements that
act upon one another. The six equations can be written in a 3-D system. In addition, as many (third-
law) reaction force equations as are necessary will be written and the resulting set of equations solved
simultaneously for the forces and moments. The number of second-law equations will be up to six times
the number of individual parts in a three-dimensional system (plus the reaction equations), meaning that
even simple systems result in large sets of simultaneous equations. The reaction (third-law) equations
are often substituted into the second-law equations to reduce the total number of equations to be solved
simultaneously.
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Example 4.2.

For the given problem obtain all the reactions at point O (clamped-end). Use the shown sign
convention (it is similar to the one used on class). The loads P and T act in the x-y plane.
The length of bar CB is L, of bar BA is 2L, and of bar OA is 3L.

 

y

y3 

z3 z x3 
O

3L x

A

2L 

x2 
y1 

y2 

z1 

x1 

3 

4 

T 

C B
z2 

L 
P 

Figure 4.2: Three-dimensional bar-structure.
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4.2a) Draw free-body diagrams of the each section OA, BA, CB.
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Myy2 

Mxx2 

Mzz2 

Vy2 
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Vz2 

Myy2 

Mzz2 

Mxx2 
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y3 

O 

Mxx3 

Mzz3 

Myy3 
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Vy3 

Vz3 
Nxx3 

Mzz3 

Myy3 

Mxx3 

Figure 4.3: Free body diagrams for the three-dimensional bar-structure.
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4.2b) Obtain the internal loads at B.

First of all, the coordinate system can be changed from bar to bar whenever we are con-
sistent are clear about what we are doing. In this context, let us use a local coordinate
system such that x-axis always goes along the main axis of the bar. In order to do so,
let us use subscript“1” to refer to the first bar, “2” for the second bar and “3” for the
third bar. This will avoid any confusion as to what coordinate system we are working
with.

Next, we proceed to find the loads at B:

+ ↑
∑

Fy = 0 ⇒ Vy1(x1) +
4
5
P = 0

Vy1(x1) = −4
5
P

Vy1(x1 = L) = −4
5
P

+−→
∑

Fx = 0 ⇒ Nxx1(x1) + 0 = 0

Nxx1(x1) = 0

Nxx1(x1 = L) = 0

+−→
∑

Fz = 0 ⇒ Vz1(x1) +
3
5
P = 0

Vz1(x1) = −3
5
P

Vz1(x1 = L) = −3
5
P
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+ 	
∑

MyB = 0 ⇒ Myy1(x1) +
3
5
P x1 = 0

Myy1(x1) = −3
5
P x1

Myy1(x1 = L) = −3
5
P L

+ 	
∑

MxB = 0 ⇒ Mxx1(x1)− T = 0

Mxx1(x1) = T

Mxx1(x1 = L) = T

+ 	
∑

MzB = 0 ⇒ Mzz1(x1)− 4
5
P x1 = 0

Mzz1(x1) =
4
5
P x1

Mzz1(x1 = L) =
4
5
P L

4.2c) Obtain the internal loads at A.

From action reaction at B:

Mxx2(x2 = 0) = Myy1(x1 = L) = −3
5
P L

Myy2(x2 = 0) = −Mxx1(x1 = L) = −T

Mzz2(x2 = 0) = Mzz1(x1 = L) =
4
5
P L

Nxx2(x2 = 0) = Vy1(x1 = L) = −4
5
P

Vy2(x2 = 0) = −Nxx1(x1 = L) = 0

Vz2(x2 = 0) = Vz1(x1 = L) = −3
5
P
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Next, we proceed to find the loads at A:

+ ↑
∑

Fy = 0 ⇒ −Vy2(x2 = 0) + Vy2(x2) = 0

Vy2(x2) = Vy2(x2 = 0)

Vy2(x2 = 2L) = Vy2(x2 = 0) = −Nxx1(x1 = L) = 0

+−→
∑

Fx = 0 ⇒ −Nxx2(x2 = 0) +Nxx2(x2) = 0

Nxx2(x2) = Nxx2(x2 = 0)

Nxx2(x2 = 2L) = Nxx2(x2 = 0) = Vy1(x1 = L) = −4
5
P

+−→
∑

Fz = 0 ⇒ −Vz2(x2 = 0) + Vz2(x2) = 0

Vz2(x2) = Vz2(x2 = 0)

Vz2(x2 = 2L) = Vz2(x2 = 0) = Vz1(x1 = L) = −3
5
P
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+ 	
∑

MyA = 0 ⇒ −Myy2(x2 = 0) +Myy2(x2)− Vz2(x2 = 0)x2 = 0

Myy2(x2) = Myy2(x2 = 0) + Vz2(x2 = 0)x2

Myy2(x2) = −T − 3
5
P x2

Myy2(x2 = 2L) = −T − 6
5
P L

+ 	
∑

MxA = 0 ⇒ −Mxx2(x2 = 0) +Mxx2(x2) = 0

Mxx2(x2) = Mxx2(x2 = 0) = Myy1(x1 = L)

Mxx2(x2 = 2L) = −3
5
P L

+ 	
∑

MzA = 0 ⇒ −Mzz2(x2 = 0) +Mzz2(x2) + Vy2(x2 = 0)x2 = 0

Mzz2(x2) = Mzz2(x2 = 0) + Vy2(x2 = 0)x2

Mzz2(x2) =
4
5
P L+ 0

Mzz2(x2 = 2L) =
4
5
P L

4.2d) Obtain the internal loads at O.

From action reaction at A:

Mxx3(x3 = 3L) = −Mzz2(x2 = 2L) = −4
5
P L

Myy3(x3 = 3L) = −Mxx2(x2 = 2L) =
3
5
P L

Mzz3(x3 = 3L) = −Myy2(x2 = 2L) = T +
6
5
P L

Nxx3(x3 = 3L) = −Vz2(x2 = 2L) =
3
5
P

Vy3(x3 = 3L) = −Nxx2(x2 = 2L) =
4
5
P

Vz3(x3 = 3L) = Vy2(x2 = 2L) = 0
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Next, we proceed to find the loads at O:

+ ↑
∑

Fy = 0 ⇒ −Vy3(x3 = 3L) + Vy3(x3) = 0

Vy3(x3 = 3L) = Vy3(x3)

Vy3(x3 = 3L) = Vy3(x3 = 0) = −Nxx2(x2 = 2L) =
4
5
P

+−→
∑

Fx = 0 ⇒ −Nxx3(x3 = 3L) +Nxx3(x3) = 0

Nxx3(x3 = 3L) = Nxx3(x3)

Nxx3(x3 = 3L) = Nxx3(x3 = 0) = −Vz2(x2 = 2L) =
3
5
P

+−→
∑

Fz = 0 ⇒ −Vz3(x3 = 3L) + Vz3(x3) = 0

Vz3(x3 = 3L) = Vz3(x3)

Vz3(x3 = 3L) = Vz3(x3 = 0) = Vy2(x2 = 2L) = 0
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+ 	
∑

MyO = 0 ⇒ −Myy3(x3 = 3L) +Myy3(x3)− Vz3(x3 = 3L)x3 = 3L

Myy3(x3) = Myy3(x3 = 3L) + Vz3(x3 = 3L)x3

Myy3(x3) =
3
5
P L+ 0

Myy3(x3 = 0) =
3
5
P L

+ 	
∑

MxO = 0 ⇒ −Mxx3(x3 = 3L) +Mxx3(x3) = 0

Mxx3(x3 = 3L) = Mxx3(x3) = −Mzz2(x2 = 2L)

Mxx3(x3 = 3L) = Mxx3(x3 = 0) = −4
5
P L

+ 	
∑

MzO = 0 ⇒ −Mzz3(x3 = 3L) +Mzz3(x3) + Vy3(x3 = 3L)x3 = 3L

Mzz3(x3) = Mzz3(x3 = 3L) + Vy3(x3 = 3L)x3

Mzz3(x3) = T +
6
5
P L+

4
5
P x3

Mzz3(x3 = 0) = T +
18
5
P L

End Example �
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4.4 Load Diagrams

In the most general case, a structural component may have all type of loadings: torsional, bending and
axial. Before we proceed, let us discuss three different sign conventions, which are typically used.

4.4.1 Sign Conventions

Stress Convention

In this course, problems will be solved using the following sign convention

 

Vy+dVyVy 

Mzz Mzz+dMzz 

 py(x) 

 y 

x

dx x 

O 

Figure 4.4: Equilibrium element supporting a general force system under the stress convention in the
x-y plane.

Sum of forces in the y-direction, will give us an equation for the shear:

+ ↑
∑

Fy = 0 ⇒ −Vy(x) + {Vy(x) + dVy(x)}+ py(x) dx = 0

divide by dx and take limdx→0

dVy(x)
dx

= −py(x) (4.4)

Note that we can integrate the above equation over the domain where shear is interested:

Vy(x) = −
∫
py(x) dx+ Vy0 (4.5)

Sum of moment at O, will give us an equation for the moment:

+ 	
∑

Mz = 0 ⇒ Vy(x)dx+ {Mzz(x) + dMzz(x)} −Mzz(x)− py(x) dx
dx

2
= 0
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divide by dx and take limdx→0

dMzz(x)
dx

= −Vy(x) (4.6)

Note that we can integrate the above equation over the domain where moment is interested:

Mzz(x) = −
∫
Vy(x) dx+Mzz0 (4.7)

where Mzz0 is found from boundary conditions.

Structural Convention

Problems can be solved using the following sign convention

 

Vy+dVy Vy

Mzz Mzz+dMzz 

 y 

x

dx x 

O 

 py(x) 

Figure 4.5: Equilibrium element supporting a general force system under the structural convention in
the x-y plane

Sum of forces in the y-direction, will give us an equation for the shear:

+ ↑
∑

Fy = 0 ⇒ Vy(x)− {Vy(x) + dVy(x)}+ py(x) dx = 0

divide by dx and take limdx→0

dVy(x)
dx

= py(x) (4.8)

Note that we can integrate the above equation over the domain where shear is interested:

Vy(x) =
∫
py(x) dx+ Vy0 (4.9)

Sum of moment at O, will give us an equation for the moment:

+ 	
∑

Mz = 0 ⇒ −Vy(x) dx+ {Mzz(x) + dMzz(x)} −Mzz(x)− py(x) dx
dx

2
= 0
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divide by dx and take limdx→0

dMzz(x)
dx

= Vy(x) (4.10)

Note that we can integrate the above equation over the domain where moment is interested:

Mzz(x) =
∫
Vy(x) dx+Mzz0 (4.11)

where Mzz0 is found from boundary conditions.

Elasticity Convention

Problems can be solved using the following sign convention

 

Vy+dVy Vy

Mzz Mzz+dMzz 

 y 

x

dx x 

O 

 py(x) 

Figure 4.6: Equilibrium element supporting a general force system under the elasticity convention in the
x-y plane

Sum of forces in the y-direction, will give us an equation for the shear:

+ ↑
∑

Fy = 0 ⇒ −Vy(x) + {Vy(x) + dVy(x)}+ py(x) dx = 0

divide by dx and take limdx→0

dVy(x)
dx

= −py(x) (4.12)

Note that we can integrate the above equation over the domain where shear is interested:

Vy(x) = −
∫
py(x) dx+ Vy0 (4.13)

Sum of moment at O, will give us an equation for the moment:

+ 	
∑

Mz = 0 ⇒ Vy(x) dx− {Mzz(x) + dMzz(x)}+Mzz(x)− py(x) dx
dx

2
= 0
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divide by dx and take limdx→0

dMzz(x)
dx

= Vy(x) (4.14)

Note that we can integrate the above equation over the domain where moment is interested:

Mzz(x) =
∫
Vy(x) dx+Mzz0 (4.15)

where Mzz0 is found from boundary conditions.

4.4.2 Linear Differential Equations of Equilibrium

Consider a small differential element dx and construct a free body diagram with the actual stress
distributions replaced by their statically equivalent internal resultants. Thus using the stress convention
and applying Newton’s Second Law the differential equations for equilibrium are found as:

dNxx

dx
= −px(x)

dVy

dx
= −py(x)

dVz

dx
= −pz(x)

dMxx

dx
= −mx(x)

dMyy

dx
= −my(x) + Vz

dMzz

dx
= −mz(x)− Vy

(4.16)

where px(x) is the distributed load in the axial direction (x-axis), py(x) the distributed load in the trans-
verse direction (y-axis), pz(x) the distributed load in the lateral direction (z-axis), mx(x) the distributed
moments about the x-axis, my(x) the distributed moments about the y-axis, and mz(x) the distributed
moments about the z-axis.

These equations are the first order ordinary differential equations that may be solved by direct
integration. The solution to these equations is:

Nxx(x) = Nxx(x1)−
∫ x

x1

px(ζ) dζ (4.17)

Vy(x) = Vy(x1)−
∫ x

x1

py(ζ) dζ (4.18)

Vz(x) = Vz(x1)−
∫ x

x1

pz(ζ) dζ (4.19)

Mxx(x) = Mxx(x1)−
∫ x

x1

mx(ζ) dζ (4.20)

Myy(x) = Myy(x1)−
∫ x

x1

{
my(ζ)− Vz(ζ)

}
dζ (4.21)

Mzz(x) = Mzz(x1)−
∫ x

x1

{
mz(ζ) + Vy(ζ)

}
dζ (4.22)

The first term on the right-hand side of the above equations are known as the boundary conditions; i.e.,
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if the beam is statically determinate there will exist some point along the x-axis x = x1 at which the
resultants are known. For the case of statically indeterminate, the boundary conditions may be found
using compatibility equations.

Example 4.3.

Aerospace engineers have idealized an aircraft structural component using the beam model as
shown in Fig. 4.7. The cantilever beam’s squared cross section is uniform. These engineers
need your help to analyze this component. Take a = 25 mm, b = 5 mm. Use the stress
convention and show all your steps.

y 

 

x 

z 

100 N/m 

1000 N  

1000 N 

y 

z 
100 N/m 

Cross-sectional 
view 

a  
a  

b  b  
 L 

Figure 4.7: Machine component for example below.

4.3a) Obtain axial load equation for Nxx(x) and shear equations for Vy(x) and Vz(x).

First obtain the reactions at the fixed end: (used positive stress convention discussed
in class)

 

x 

y 

z 

100 N/m 

1000 N  
 L 

MyyR 

MzzR 

MxxR 

VyR 

NxxR 

VzR 
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The internal shear loads at the fixed end are (all in newtons, assuming L in meters)

+ ↑
∑

Fy = 0 → −VyR − qo L = −VyR − 100L = 0 → VyR = −100L

+−→
∑

Fx = 0 → −NxxR + 0 = 0 → NxxR = 0

+−→
∑

Fz = 0 → −VzR + P = −VzR + 1000 = 0 → VzR = 1000

The internal moments at the fixed end are (all in N–m, assuming L in meters)

+ 	
∑

My = 0 → −MyyR − P L = −MyyR − 1000L = 0 → MyyR = −1000L

+ 	
∑

Mx = 0 → −MxxR − P a = −MxxR − 1000 (0.025) = 0 → MxxR = −25

+ 	
∑

Mz = 0 → −MzzR + qo L

(
L

2

)
= −MzzR − 100

L2

2
= 0 → MzzR = −50L2

Now, let us make an arbitrary cut at a distance x (used positive stress convention
discussed in class)

 

x 

y 

z 

100 N/m 

x 

MyyR 

MzzR 

MxxR 

VyR 

NxxR 

VzR 

Myy(x) 

Mxx(x) 

Mzz(x) 

Vy(x) 

Nxx(x) Vz(x)

The internal shear loads at the a distance x are (all in newtons, assuming L in meters)

+ ↑
∑

Fy = 0 → −VyR + Vy(x) +
∫ x

0

py(ζ) dζ = 0

Vy(x) = −
∫ x

0

py(ζ) dζ + VyR

= −
∫ x

0

(−100) dζ − 100L

= 100x− 100L

Vy(x) = 100L
{
−1 +

x

L

}
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+−→
∑

Fx = 0 → −NxxR +Nxx(x) = 0

Nxx(x) = NxxR

Nxx(x) = 0

+ ↑
∑

Fz = 0 → −VzR + Vz(x) = 0

Vz(x) = VzR

Vz(x) = 1000

4.3b) Obtain moment equations for Mxx(x), Myy(x) and Mzz(x).

The internal moments at the a distance x are (all in N–m, assuming L in meters)

+ 	
∑

My = 0 → −MyyR +Myy(x)−
∫ x

0

Vz(ζ) dζ = 0

−(−1000L) +Myy(x)−
∫ x

0

(1000) dζ = 0

1000L+Myy(x)− 1000x = 0

Myy(x) = 1000L
{
−1 +

x

L

}

+ 	
∑

Mx = 0 → −MxxR +Mxx(x) = 0

25 +Mxx(x) = 0

Mxx(x) = −25

+ 	
∑

Mz = 0 → −MzzR +Mzz(x) +
∫ x

0

Vy(ζ) dζ = 0

−
(
−50L2

)
+Mzz(x) +

∫ x

0

(−100L+ 100 ζ) dζ = 0

50L2 +Mzz(x)− 100Lx+ 50x2 = 0

Mzz(x) = 50L2

{
−1 + 2

( x
L

)
−
( x
L

)2
}

4.3c) Plot all axial, shear, and moment equations.

In general, it is convenient to plot nondimensional quantities. Thus let the length be
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normalize to one:
η =

x

L
0 < η < 1

and the nondimensional loads are:

M̄xx(η) =
Mxx(x)

1
= −25 N̄xx(η) = 0

M̄yy(η) =
Myy(x)
L

= −1000 + 1000 η V̄y(η) =
Vy(x)
L

= −100 + 100 η

M̄zz(η) =
Mzz(x)
L2 = −50 + 100 η − 50 η2 V̄z(η) =

Vz(x)
1

= 1000
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Figure 4.8: Dimensionless axial load distribution.
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Figure 4.9: Dimensionless shear (in the y–axis) load distribution.
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Figure 4.10: Dimensionless shear (in the z–axis) load distribution.

0.2 0.4 0.6 0.8

Mxx(η) 

1

-20

-10

10

20

η 
 

 

Figure 4.11: Dimensionless torsional load distribution.
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Figure 4.12: Dimensionless moment (about the y–axis) distribution.
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Figure 4.13: Dimensionless moment (about the z–axis) distribution.

End Example �
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Example 4.4.

Consider an idealization of the helicopter blade, show in Fig. 4.14, subject to the loading
shown in Fig. 4.15. The following data is given: 

z′ 

y′ 

2 

1 

3 

4 

2 in 10 in 5 in 

3 in 

0.5 in 

0.5 in 

Hallow

Cross-section Figure 4.14: Cross-section of the helicopter blade.

Figure 4.15: Loading on the helicopter blade.
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L(x, z) = 4.0
( x
L

)2

psi D(x) = 4.0
( x
L

)2

lb/in P = 10000 lb

where L(x, z) is a pressure applied to the bottom surface. The total length of the beam is
L = 200 in. Resolve all loads at the modulus-weighted centroid1 (as a function of x): (y∗c = 0,
z∗c=5.767 in).

First of all we concentrate the pressure load to a distributed load:
 

x 

z′ 

P 10 in 

py(x) 

200 in 

y′ 

pz(x) 

Fixed-end 

Figure 4.16: Replacing the pressure L(x, z) with a distributed load py(x).

py(x) =
∫ 10

0

L(x, z) dz = 40.0
( x
L

)2

lb/in

1This will be discussed in detail in the chapter ??.
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Now move all loads to the modulus-weighted centroid:

 

x 

200 in 

zc

10 in 

pz(x) 

P 

yc 

Mo 

mx(x) 

Fixed-end 

py(x) 

Figure 4.17: Locating all loads at the modulus-weighted centroid.

where,

mx(x) = − (7− z∗c ) py(x) = −0.001233x2 lb-in/in Mo = 10000(5.767) = 57670.0 lb-in

Thus the loads are:

px(x) = 0 py(x) = 40.0
( x
L

)2

lb/in pz(x) = 4.0
( x
L

)2

lb/in

mx(x) = −49.32
( x
L

)2

lb-in/in my(x) = 0 mz(x) = 0

The loads at x = x1 = 0 come from equilibrium of a differential element just after x = 0
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(x = 0+). Using the stress convention, we get:

Nxx(x)
∣∣∣
x1=0

− 10000 = 0 → Nxx(x)
∣∣∣
x1=0

= 10000 lb

Vy(x)
∣∣∣
x1=0

+ 0 = 0 → Vy(x)
∣∣∣
x1=0

= 0

Vz(x)
∣∣∣
x1=0

+ 0 = 0 → Vz(x)
∣∣∣
x1=0

= 0

Mxx(x)
∣∣∣
x1=0

+ 0 = 0 → Mxx(x)
∣∣∣
x1=0

= 0

Myy(x)
∣∣∣
x1=0

+ 57670 = 0 → Myy(x)
∣∣∣
x1=0

= −57670 lb-in

Mzz(x)
∣∣∣
x1=0

+ 0 = 0 → Mzz(x)
∣∣∣
x1=0

= 0

Now we proceed to obtain the internal loads. Integrating to obtain the axial internal load;

Nxx(x) = Nxx(x1)−
∫ x

x1

px(ζ) dζ = Nxx(0)−
∫ x

0

(0) dζ = Nxx(0) = 10000 lb

Vy(x) = Vy(x1)−
∫ x

x1

py(ζ) dζ = Vy(0)−
∫ x

0

{
40.0

(
ζ

L

)2
}
dζ = −0.000333333x3 lb

Vz(x) = Vz(x1)−
∫ x

x1

pz(ζ) dζ = Vz(0)−
∫ x

0

{
4.0

(
ζ

L

)2
}
dζ = −0.0000333333x3 lb

Mxx(x) = Mxx(x1)−
∫ x

x1

mx(ζ) dζ = Mxx(0)−
∫ x

0

{
−0.001233 ζ2} dζ

= 0.000411x3 lb-in

Myy(x) = Myy(x1)−
∫ x

x1

{
my(ζ)− Vz(ζ)

}
dζ = Myy(0)−

∫ x

0

(0− (−0.0000333333 ζ3)) dζ

= −57670− 0.0000833333x4 lb-in

Mzz(x) = Mzz(x1)−
∫ x

x1

{
mz(ζ) + Vy(ζ)

}
dζ = Mzz(0)−

∫ x

0

(0 + (−0.000333333 ζ3)) dζ

= 0.0000833333x4 lb-in

Note that in the above equations, x is measured in inches.

End Example �

c©2012 by Vijay K. Goyal. All Rights Reserved.



4.5. DISCRETE LOAD DIAGRAMS 271

4.5 Discrete Load Diagrams

For most aircraft, an analytical load expression may not available. The only information we may have
is the experimental data obtained from sensors located throughout the aircraft. For such cases we can
no longer obtain close-form load diagrams, but we have to use numerical techniques to obtain the load
diagrams. The points where we calculate the loads are called stations and are designated by their
distance x from the centerline of the airplane. We measure these distances along the wing rather than
horizontally because the air loads are perpendicular to the wing.

The method explained here can also be used when the analytical expression is available but using a
numerical method is desired.

First, we need an array with all locations where the data is measured. For an example, suppose we
want 10 intervals for the previous example, then we use the following locations

x = {0, 20, 40, 60, . . . , 180, 200} m

This is converted into small intervals:

∆x = {20, 20, 20, . . . , 20, 20} m

In this example all intervals have the same interval, but they could be different. The smaller the ∆xi
the better the approximation. At each location we calculate the distributed loads:

px(xi) py(xi) pz(xi)

mx(xi) my(xi) mz(xi)

The next example will illustrate the approach.
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Example 4.5.

The loads on an airplane wing cannot be represented by a simple equation. In fact, the data
we get from sensors is the lift coefficient. To illustrate this consider a typical commercial
airplane, shown Fig. 4.18, traveling at a cruise speed of 600 mi/hr and at an altitude of 35000
ft. The total span of the plane is 37.5 ft and the chord is 6 ft.

 

 

 

x 

y 

z 

Figure 4.18: A commercial airplane travel at cruise speed.

Table 4.1: Discrete spanwise data.
Distance from the center Airload data (lift coefficient)

Station number x (in) c`
1 0 0.876067
2 20 0.862050
3 40 0.841024
4 60 0.812990
5 80 0.777947
6 100 0.735896
7 120 0.686837
8 140 0.623760
9 160 0.560683
10 180 0.497606
11 200 0.406495
12 220 0.245299
13 225 0.000000

Determine the transverse shear and moment diagrams using the airload discrete data. The
measured lift coefficient at the stations is given by Table 4.1. Since this is the only data
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available (no information regarding drag coefficients), loads in all other directions can be
neglected.

As we can see from the example we have 13 stations (points). We compute the distance
between stations (intervals) as follows:

∆xi = xi+1 − xi

Hence,

∆x1 = x2 − x1 = 20− 0 = 20 ∆x2 = x3 − x2 = 40− 20 = 20

∆x3 = x4 − x3 = 60− 40 = 20 ∆x4 = x5 − x4 = 80− 60 = 20

∆x5 = x6 − x5 = 100− 80 = 20 ∆x6 = x7 − x6 = 120− 100 = 20

∆x7 = x8 − x7 = 140− 120 = 20 ∆x8 = x9 − x8 = 160− 140 = 20

∆x9 = x10 − x9 = 180− 160 = 20 ∆x10 = x11 − x10 = 200− 180 = 20

∆x11 = x12 − x11 = 220− 200 = 20 ∆x12 = x13 − x12 = 225− 220 = 5

Let us proceed to obtain the discrete load per inch of span at each location xi. This is done
by calculated the lift per unit span:

py(x) =
1
2
ρ∞ V 2

∞ c c`

The density st 35000 ft is 0.000737 slugs/ft3. The air speed is V∞ = 600 mi/hr = 880 ft/sec.
Hence, the load per inch of span at each station is given in Table 4.2.

Table 4.2: Discrete spanwise data.
Distance from the center Airload data

Station number x (in) pyi (lb/in)
1 0 125.0000
2 20 123.0000
3 40 120.0000
4 60 116.0000
5 80 111.0000
6 100 105.0000
7 120 98.0001
8 140 89.0001
9 160 80.0000
10 180 71.0000
11 200 58.0000
12 220 35.0000
13 225 0.0000
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Now we proceed with the solution of the shear differential equation in the y direction:

Vy(x) = Vy(0)−
∫ x

0

py(ζ) dζ

The value of the shear at any point is the area under the load curve from that point out to
the wing tip. We assume that the load curve is a series of straight lines between the known
points, and we calculate the area under the curve as the sum of the areas of trapezoids:

Vy(x) = Vy(0)−
∫ x

0

py(ζ) dζ → Vy(xj) ≈ Vy0 −
j∑

i=1

py,avei ∆xi

We obtain the area of the trapezoids as the product of the average height, py,ave, and the
base, ∆x. Hence, we need to obtain the average values for each distributed load (all given in
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[lb/in]):

py,ave1 =
py1 + py2

2
= 124.0000

py,ave2 =
py2 + py3

2
= 121.5000

py,ave3 =
py3 + py4

2
= 118.0000

py,ave4 =
py4 + py5

2
= 113.5000

py,ave5 =
py5 + py6

2
= 108.0000

py,ave6 =
py6 + py7

2
= 101.5000

py,ave7 =
py7 + py8

2
= 93.5001

py,ave8 =
py8 + py9

2
= 84.5001

py,ave9 =
py9 + py10

2
= 75.5000

py,ave10 =
py10 + py11

2
= 64.5000

py,ave11 =
py11 + py12

2
= 46.5000

py,ave12 =
py12 + py13

2
= 17.5000

The change in the shear ∆Vy between two stations is equal to the area of the load curve
between the stations. Hence, (all given in [lb]):

∆Vy1 = −py,ave1 ∆x1 = −2480.0000

∆Vy2 = −py,ave2 ∆x2 = −2430.0000

∆Vy3 = −py,ave3 ∆x3 = −2360.0000

∆Vy4 = −py,ave4 ∆x4 = −2270.0000

∆Vy5 = −py,ave5 ∆x5 = −2160.0000

∆Vy6 = −py,ave6 ∆x6 = −2030.0000

∆Vy7 = −py,ave7 ∆x7 = −1870.0000

∆Vy8 = −py,ave8 ∆x8 = −1690.0000

∆Vy9 = −py,ave9 ∆x9 = −1510.0000

∆Vy10 = −py,ave10 ∆x10 = −1290.0000

∆Vy11 = −py,ave11 ∆x11 = −930.0010

∆Vy12 = −py,ave12 ∆x12 = −87.5001

We obtain the shear Vy by adding all ∆Vyi ’s values. Before we proceed we need to calculate
the shear at the root. We use the equation:

Vy(x) = Vy(0)−
∫ x

0

py(ζ) dζ → Vy(L)
∣∣∣
TIP

= Vy(0)
∣∣∣
ROOT

−
∫ L

0

py(ζ) dζ

c©2012 by Vijay K. Goyal. All Rights Reserved.



4.5. DISCRETE LOAD DIAGRAMS 276

There is no load applied at the tip; hence,

Vy(L)
∣∣∣
TIP

= 0

The shear force at the root is then calculated as follows:

0 = Vy(0)−
∫ x

0

py(ζ) dζ → Vy(0)
∣∣∣
ROOT

=
∫ L

0

py(ζ) dζ ≈
j∑

i=1

py,avei ∆xi

or

Vy0 = Vy(0) = −
j∑

i=1

∆Vyi

Hence,

Vy0 = −
j∑

i=1

∆Vyi = 21107.5 lb

The shear force at each station i is (all given in [lb]):

x1 = 0 Vy1 = Vy0 = 21107.5000

x2 = 20 Vy2 = ∆Vy1 + Vy1 = 18627.5000

x3 = 40 Vy3 = ∆Vy2 + Vy2 = 16197.5000

x4 = 60 Vy4 = ∆Vy3 + Vy3 = 13837.5000

x5 = 80 Vy5 = ∆Vy4 + Vy4 = 11567.5000

x6 = 100 Vy6 = ∆Vy5 + Vy5 = 9407.5100

x7 = 120 Vy7 = ∆Vy6 + Vy6 = 7377.5000

x8 = 140 Vy8 = ∆Vy7 + Vy7 = 5507.5000

x9 = 160 Vy9 = ∆Vy8 + Vy8 = 3817.5000

x10 = 180 Vy10 = ∆Vy9 + Vy9 = 2307.5000

x11 = 200 Vy11 = ∆Vy10 + Vy10 = 1017.5000

x12 = 220 Vy12 = ∆Vy11 + Vy11 = 87.5001

x13 = 225 Vy13 = ∆Vy12 + Vy12 = 0.0000

In nondimensional form,

η =
x

L
V̄yi =

Vyi

max[Vy1 , Vy2 , ..., Vy13 ]
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Table 4.3: Shear load values at the stations.
Distance from Shear Nondimensional Nondimensional

the center Load location Shear Load
Station number x (in) Vyi (lb) η V̄yi

1 0 21107.5000 0.0000 1.
2 20 18627.5000 0.0889 0.882506
3 40 16197.5000 0.1778 0.767381
4 60 13837.5000 0.2667 0.655573
5 80 11567.5000 0.3556 0.548028
6 100 9407.5100 0.4444 0.445695
7 120 7377.5000 0.5333 0.34952
8 140 5507.5000 0.6222 0.260926
9 160 3817.5000 0.7111 0.18086
10 180 2307.5000 0.8000 0.109321
11 200 1017.5000 0.8889 0.0482056
12 220 87.5001 0.9778 0.00414545
13 225 0.0000 1.0000 0.

 50 100 150 200
x

5000

10 000

15 000

20 000

Vy x

Vyx vs. x

Now, we proceed with the solution of the moment differential equation about the z axis:

Mzz(x) = Mzz(0)−
∫ x

0

{
mz(ζ) + Vy(ζ)

}
dζ

Note that there is no distributed moments about the z-axis; hence,

Mzz(x) = Mzz(0)−
∫ x

0

{
Vy(ζ)

}
dζ

The change in the bending moment, ∆Mzz, between two stations is equal to the area under
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the shear curve. We also assume this area is trapezoidal and we compute is by multiplying
the average shear values between two stations times the distance between the stations.

Mzz(x) = Mzz(0)−
∫ x

0

{
Vy(ζ)

}
dζ → Mzz(xj) ≈Mzz0 −

j∑

i=1

{
Vy,avei

}
∆xi

Hence, we need to obtain the average values for shear Vyi (all given in [lb]):

Vy,ave1 =
Vy1 + Vy2

2
= 19867.5

Vy,ave2 =
Vy2 + Vy3

2
= 17412.5

Vy,ave3 =
Vy3 + Vy4

2
= 15017.5

Vy,ave4 =
Vy4 + Vy5

2
= 12702.5

Vy,ave5 =
Vy5 + Vy6

2
= 10487.5

Vy,ave6 =
Vy6 + Vy7

2
= 8392.5

Vy,ave7 =
Vy7 + Vy8

2
= 6442.5

Vy,ave8 =
Vy8 + Vy9

2
= 4662.5

Vy,ave9 =
Vy9 + Vy10

2
= 3062.5

Vy,ave10 =
Vy10 + Vy11

2
= 1662.5

Vy,ave11 =
Vy11 + Vy12

2
= 552.5

Vy,ave12 =
Vy12 + Vy13

2
= 43.7501

We compute the change in the bending moment using the trapezoidal rule of numerical
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integration (all given in [lb-in]:

∆Mzz1 = −Vy,ave1 ∆x1 = −397350.0000

∆Mzz2 = −Vy,ave2 ∆x2 = −348250.0000

∆Mzz3 = −Vy,ave3 ∆x3 = −300350.0000

∆Mzz4 = −Vy,ave4 ∆x4 = −254050.0000

∆Mzz5 = −Vy,ave5 ∆x5 = −209750.0000

∆Mzz6 = −Vy,ave6 ∆x6 = −167850.0000

∆Mzz7 = −Vy,ave7 ∆x7 = −128850.0000

∆Mzz8 = −Vy,ave8 ∆x8 = −93250.0000

∆Mzz9 = −Vy,ave9 ∆x9 = −61250.0000

∆Mzz10 = −Vy,ave10 ∆x10 = −33250.0000

∆Mzz11 = −Vy,ave11 ∆x11 = −11050.0000

∆Mzz12 = −Vy,ave12 ∆x12 = −218.7500

We obtain the moment Mzz by adding all ∆Mzzi ’s values. Before we proceed we need to
calculate the moment at the root. We use the equation:

Mzz(x) = Mzz(0)−
∫ x

0

{
Vy(ζ)

}
dζ

Mzz(x) = Mzz(0)−
∫ x

0

{
Vy(ζ)

}
dζ → Mzz(L)

∣∣∣
TIP

= Mzz(0)
∣∣∣
ROOT

−
∫ L

0

{
Vy(ζ)

}
dζ

There is no moment applied at the tip, hence,

Mzz(L)
∣∣∣
TIP

= 0

The moment at the root is then calculated as follows:

0 = Mzz(0)−
∫ x

0

Vy(ζ) dζ → Mzz(0)
∣∣∣
ROOT

=
∫ L

0

Vy(ζ) dζ ≈
j∑

i=1

Vy,avei ∆xi

or

Mzz0 = Mzz(0) = −
j∑

i=1

∆Mzzi

Hence,

Mzz0 = −
j∑

i=1

∆Mzzi = 2.00547× 106 lb-in
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The moment at each station i is (all given in [lb-in]):

x1 = 0 Mzz1 = Mzz0 = 2.00547× 106

x2 = 20 Mzz2 = ∆Mzz1 +Mzz1 = 1.60812× 106

x3 = 40 Mzz3 = ∆Mzz2 +Mzz2 = 1.25987× 106

x4 = 60 Mzz4 = ∆Mzz3 +Mzz3 = 959519

x5 = 80 Mzz5 = ∆Mzz4 +Mzz4 = 705469

x6 = 100 Mzz6 = ∆Mzz5 +Mzz5 = 495719

x7 = 120 Mzz7 = ∆Mzz6 +Mzz6 = 327869

x8 = 140 Mzz8 = ∆Mzz7 +Mzz7 = 199019

x9 = 160 Mzz9 = ∆Mzz8 +Mzz8 = 105769

x10 = 180 Mzz10 = ∆Mzz9 +Mzz9 = 44518.8

x11 = 200 Mzz11 = ∆Mzz10 +Mzz10 = 11268.8

x12 = 220 Mzz12 = ∆Mzz11 +Mzz11 = 218.75

x13 = 225 Mzz13 = ∆Mzz12 +Mzz12 = 0.0000

In nondimensional form,

η =
x

L
V̄yi =

Mzzi

max[Mzz1 ,Mzz2 , ...,Mzz13 ]

Table 4.4: Moment load values at the stations.
Distance from Moment Nondimensional Nondimensional

the center Moment location Moment
Station number x (in) Mzzi [lb-in] η M̄zzi

1 0. 2.00547× 106 0. 1.
2 20. 1.60812× 106 0.0888889 0.801867
3 40. 1.25987× 106 0.177778 0.628217
4 60. 959519. 0.266667 0.478451
5 80. 705469. 0.355556 0.351773
6 100. 495719. 0.444444 0.247184
7 120. 327869. 0.533333 0.163487
8 140. 199019. 0.622222 0.099238
9 160. 105769. 0.711111 0.0527402
10 180. 44518.8 0.8 0.0221987
11 200. 11268.8 0.888889 0.00561901
12 220. 218.75 0.977778 0.000109077
13 225. 0. 1. 0.
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End Example �
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Example 4.6.

Consider the idealized helicopter blade od Example 4.4. Use five interval elements approxi-
mation, to determine the load diagrams.

From Example 4.4, we found that the loads acting on the helicopter blade are:

px(x) = 0 py(x) = 0.001x2 lb/in pz(x) = 0.0001x2 lb/in

mx(x) = −0.001233x2 lb-in/in my(x) = 0 mz(x) = 0

Since we want five element approximation, let us divide the interval of 0 < x < 200 into
identical five elements:

∆x =
xroot − xtip

5
=

200− 0
5

= 40 in

Hence,
∆x1 = ∆x2 = ∆x3 = ∆x4 = ∆x5 = 40

The locations are
x1 = 0

x2 = 40

x3 = 80

x4 = 120

x5 = 160

x6 = 200

Let us proceed to obtain the discrete distributed loads at each location xi:

x1 = 0 px1 = px(x1) = 0 py1 = py(x1) = 0.0 pz1 = pz(x1) = 0.00

x2 = 40 px2 = px(x2) = 0 py2 = py(x2) = 1.6 pz2 = pz(x2) = 0.16

x3 = 80 px3 = px(x3) = 0 py3 = py(x3) = 6.4 pz3 = pz(x3) = 0.64

x4 = 120 px4 = px(x4) = 0 py4 = py(x4) = 14.4 pz4 = pz(x4) = 1.44

x5 = 160 px5 = px(x5) = 0 py5 = py(x5) = 25.6 pz5 = pz(x5) = 2.56

x6 = 200 px6 = px(x6) = 0 py6 = py(x6) = 40.0 pz6 = pz(x6) = 4.00
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Let us proceed to obtain the discrete distributed moments at each location xi:

x1 = 0 mx1 = mx(x1) = 0.0000 my1 = my(x1) = 0 mz1 = mz(x1) = 0

x2 = 40 mx2 = mx(x2) = −1.9728 my2 = my(x2) = 0 mz2 = mz(x2) = 0

x3 = 80 mx3 = mx(x3) = −7.8912 my3 = my(x3) = 0 mz3 = mz(x3) = 0

x4 = 120 mx4 = mx(x4) = −17.7552 my4 = my(x4) = 0 mz4 = mz(x4) = 0

x5 = 160 mx5 = mx(x5) = −31.5648 my5 = my(x5) = 0 mz5 = mz(x5) = 0

x6 = 200 mx6 = mx(x6) = −49.3200 my6 = my(x6) = 0 mz6 = mz(x6) = 0

The tip load values are

P = 10000 lb Mo = 10000(5.767) = 57670 lb-in

Now in order to calculate the axial load along the wing’s major axis, let us use Simpson’s
integration rule. We start we the solution of the axial differential equation:

Nxx(x) = Nxx(0)−
∫ x

0

px(ζ) dζ → Nxx(xj) ≈ Nxx0 −
j∑

i=1

px,avei ∆xi

Hence, we need to obtain the average values for each distributed load:

px,ave1 =
px1 + px2

2
= 0

px,ave2 =
px2 + px3

2
= 0

px,ave3 =
px3 + px4

2
= 0

px,ave4 =
px4 + px5

2
= 0

px,ave5 =
px5 + px6

2
= 0

Thus
∆Nxx1 = −px,ave1 ∆x1 = 0

∆Nxx2 = −px,ave2 ∆x2 = 0

∆Nxx3 = −px,ave3 ∆x3 = 0

∆Nxx4 = −px,ave4 ∆x4 = 0

∆Nxx5 = −px,ave5 ∆x5 = 0

Hence,
Nxx0 = Nxx(0) = P = 10000
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x1 = 0 Nxx1 = Nxx0 = 10000

x2 = 40 Nxx2 = ∆Nxx1 +Nxx1 = 10000

x3 = 80 Nxx3 = ∆Nxx2 +Nxx2 = 10000

x4 = 120 Nxx4 = ∆Nxx3 +Nxx3 = 10000

x5 = 160 Nxx5 = ∆Nxx4 +Nxx4 = 10000

x6 = 200 Nxx6 = ∆Nxx5 +Nxx5 = 10000

In nondimensional form,

η =
x

L
N̄xxi =

Nxxi

P

η1 = 0.0 N̄xx1 = 1

η2 = 0.2 N̄xx2 = 1

η3 = 0.4 N̄xx3 = 1

η4 = 0.6 N̄xx4 = 1

η5 = 0.8 N̄xx5 = 1

η6 = 1.0 N̄xx6 = 1

Compare to the exact nondimensional equation

N̄xx(η) =
Nxx(x)
P

= 1

The following plot shows the discrete method (points in red) and the exact solution (line in
blue):

p1a = ListPlotATransposeA9 xx
ccccccc
Lo

, Nxd=E, PlotStyle → 8Hue@.02D, PointSize@.01D<,

AxesLabel → 8η, "N
¯

xxHηL"<, DisplayFunction → IdentityE;

p1 = Plot@Nxp@ηD, 8η, 0, 1.0<, PlotStyle → 8Hue@.6D, PointSize@.4D<,
AxesLabel → 8η, "N

¯
xxHηL"<, DisplayFunction → IdentityD;

Show@p1, p1a, DisplayFunction → $DisplayFunction, PlotLabel →

StyleForm@"N
¯

xxHηL vs. η", "Section"DD;
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Now we proceed with the solution of the shear differential equation in the y direction:

Vy(x) = Vy(0)−
∫ x

0

py(ζ) dζ → Vy(xj) ≈ Vy0 −
j∑

i=1

py,avei ∆xi
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Hence, we need to obtain the average values for each distributed load:

py,ave1 =
py1 + py2

2
= 0.8

py,ave2 =
py2 + py3

2
= 4.0

py,ave3 =
py3 + py4

2
= 10.4

py,ave4 =
py4 + py5

2
= 20.0

py,ave5 =
py5 + py6

2
= 32.80

Thus
∆Vy1 = −py,ave1 ∆x1 = −32.0

∆Vy2 = −py,ave2 ∆x2 = −160.0

∆Vy3 = −py,ave3 ∆x3 = −416.0

∆Vy4 = −py,ave4 ∆x4 = −800.0

∆Vy5 = −py,ave5 ∆x5 = −1312.0

Hence,
Vy0 = Vy(0) = 0

x1 = 0 Vy1 = Vy0 = 0

x2 = 40 Vy2 = ∆Vy1 + Vy1 = −32.0

x3 = 80 Vy3 = ∆Vy2 + Vy2 = −192.0

x4 = 120 Vy4 = ∆Vy3 + Vy3 = −608.0

x5 = 160 Vy5 = ∆Vy4 + Vy4 = −1408.0

x6 = 200 Vy6 = ∆Vy5 + Vy5 = −2720.0

In nondimensional form,

η =
x

L
V̄yi =

Vyi

P

η1 = 0 V̄y1 = 0.0

η2 = 0.2 V̄y2 = −0.0032

η3 = 0.4 V̄y3 = −0.0192

η4 = 0.6 V̄y4 = −0.0608

η5 = 0.8 V̄y5 = −0.1408

η6 = 1.0 V̄y6 = −0.2720

Compare to the exact nondimensional equation

V̄y(η) =
Vy(x)
P

= −0.266667 η3

The following plot shows the discrete method (points in red) and the exact solution (line in
blue):
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In[182]:=

p2a = ListPlotATransposeA9 xx
ccccccc
Lo

, Vyd=E, PlotStyle → 8Hue@.02D, PointSize@.01D<,

AxesLabel → 8η, "V
¯

yHηL"<, DisplayFunction → IdentityE;

p2 = Plot@Vyp@ηD, 8η, 0, 1.0<, PlotStyle → 8Hue@.6D, PointSize@.05D<,
AxesLabel → 8η, "V

¯
yHηL"<, DisplayFunction → IdentityD;

Show@p2, p2a, DisplayFunction → $DisplayFunction, PlotLabel →

StyleForm@"V
¯

yHηL vs. η", "Section"DD;
Null

0.2 0.4 0.6 0.8 1
η

-0.25

-0.2

-0.15

-0.1

-0.05

V¯yHηL V
èè

yHhL vs. h

Example_3.5.nb 24

Now, we proceed with the solution of the shear differential equation in the z direction:

Vz(x) = Vz(0)−
∫ x

0

pz(ζ) dζ → Vz(xj) ≈ Vz0 −
j∑

i=1

pz,avei ∆xi

Hence, we need to obtain the average values for each distributed load:

pz,ave1 =
pz1 + pz2

2
= 0.08

pz,ave2 =
pz2 + pz3

2
= 0.40

pz,ave3 =
pz3 + pz4

2
= 1.04

pz,ave4 =
pz4 + pz5

2
= 2.00

pz,ave5 =
pz5 + pz6

2
= 3.28

Thus
∆Vz1 = −pz,ave1 ∆x1 = −3.20

∆Vz2 = −pz,ave2 ∆x2 = −16.00

∆Vz3 = −pz,ave3 ∆x3 = −41.60

∆Vz4 = −pz,ave4 ∆x4 = −80.00

∆Vz5 = −pz,ave5 ∆x5 = −131.20

Hence,
Vz0 = Vz(0) = 0
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x1 = 0 Vz1 = Vz0 = 0

x2 = 40 Vz2 = ∆Vz1 + Vz1 = −3.20

x3 = 80 Vz3 = ∆Vz2 + Vz2 = −19.20

x4 = 120 Vz4 = ∆Vz3 + Vz3 = −60.80

x5 = 160 Vz5 = ∆Vz4 + Vz4 = −140.80

x6 = 200 Vz6 = ∆Vz5 + Vz5 = −272.00

In nondimensional form,

η =
x

L
V̄zi =

Vzi

P

η1 = 0.0 V̄z1 = 0

η2 = 0.2 V̄z2 = −0.00032

η3 = 0.4 V̄z3 = −0.00192

η4 = 0.6 V̄z4 = −0.00608

η5 = 0.8 V̄z5 = −0.01408

η6 = 1.0 V̄z6 = −0.02720

Compare to the exact nondimensional equation

V̄z(η) =
Vz(x)
P

= −0.026667 η3

The following plot shows the discrete method (points in red) and the exact solution (line in
blue):

In[186]:=

p3a = ListPlotATransposeA9 xx
ccccccc
Lo

, Vzd=E, PlotStyle → 8Hue@.02D, PointSize@.01D<,

AxesLabel → 8η, "V
¯

zHηL"<, DisplayFunction → IdentityE;

p3 = Plot@Vzp@ηD, 8η, 0, 1.0<, PlotStyle → 8Hue@.6D, PointSize@.03D<,
AxesLabel → 8η, "V

¯
zHηL"<, DisplayFunction → IdentityD;

Show@p3, p3a, DisplayFunction → $DisplayFunction, PlotLabel →

StyleForm@"V
¯

zHηL vs. η", "Section"DD;
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Now, we proceed with the solution of the torsional differential equation about the x axis:

Mxx(x) = Mxx(0)−
∫ x

0

mx(ζ) dζ → Mxx(xj) ≈Mxx0 −
j∑

i=1

mx,avei ∆xi
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Hence, we need to obtain the average values for each distributed moment:

mx,ave1 =
mx1 +mx2

2
= −0.9864

mx,ave2 =
mx2 +mx3

2
= −4.932

mx,ave3 =
mx3 +mx4

2
= −12.8232

mx,ave4 =
mx4 +mx5

2
= −24.66

mx,ave5 =
mx5 +mx6

2
= −40.4424

Thus
∆Mxx1 = −mx,ave1 ∆x1 = 39.456

∆Mxx2 = −mx,ave2 ∆x2 = 197.28

∆Mxx3 = −mx,ave3 ∆x3 = 512.928

∆Mxx4 = −mx,ave4 ∆x4 = 986.4

∆Mxx5 = −mx,ave5 ∆x5 = 1617.7

Hence,
Mxx0 = Mxx(0) = 0

x1 = 0 Mxx1 = Mxx0 = 0

x2 = 40 Mxx2 = ∆Mxx1 +Mxx1 = 39.456

x3 = 80 Mxx3 = ∆Mxx2 +Mxx2 = 236.736

x4 = 120 Mxx4 = ∆Mxx3 +Mxx3 = 749.664

x5 = 160 Mxx5 = ∆Mxx4 +Mxx4 = 1736.06

x6 = 200 Mxx6 = ∆Mxx5 +Mxx5 = 3353.76

In nondimensional form,

η =
x

L
M̄xxi =

Mxxi

Mo

η1 = 0.0 M̄xx1 = 0

η2 = 0.2 M̄xx2 = 0.000684169

η3 = 0.4 M̄xx3 = 0.00410501

η4 = 0.6 M̄xx4 = 0.0129992

η5 = 0.8 M̄xx5 = 0.0301034

η6 = 1.0 M̄xx6 = 0.0581543

Compare to the exact nondimensional equation

M̄xx(η) =
Mxx(x)
Mo

= 0.057014 η3

The following plot shows the discrete method (points in red) and the exact solution (line in
blue):
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ü Moment 

In[189]:=

p4a = ListPlotATransposeA9 xx
ccccccc
Lo

, Mxxd=E, PlotStyle → 8Hue@.02D, PointSize@.01D<,

AxesLabel → 8η, "M
¯

xxHηL"<, DisplayFunction → IdentityE;

p4 = Plot@Mxxp@ηD, 8η, 0, 1.0<, PlotStyle → 8Hue@.6D, PointSize@.03D<,
AxesLabel → 8η, "M

¯
xxHηL"<, DisplayFunction → IdentityD;

Show@p4, p4a, DisplayFunction → $DisplayFunction, PlotLabel →

StyleForm@"M
¯

xxHηL vs. η", "Section"DD;
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Now, we proceed with the solution of the moment differential equation about the y axis:

Myy(x) = Myy(0)−
∫ x

0

{
my(ζ)− Vz(ζ)

}
dζ → Myy(xj) ≈Myy0 −

j∑

i=1

{
my,avei − Vz,avei

}
∆xi

Hence, we need to obtain the average values for each distributed moment and Shear Vz:

my,ave1 =
my1 +my2

2
= 0.0 Vz,ave1 =

Vz1 + Vz2

2
= −1.6

my,ave2 =
my2 +my3

2
= 0.0 Vz,ave2 =

Vz2 + Vz3

2
= −11.20

my,ave3 =
my3 +my4

2
= 0.0 Vz,ave3 =

Vz3 + Vz4

2
= −40.00

my,ave4 =
my4 +my5

2
= 0.0 Vz,ave4 =

Vz4 + Vz5

2
= −100.80

my,ave5 =
my5 +my6

2
= 0.0 Vz,ave5 =

Vz5 + Vz6

2
= −206.4

Thus
∆Myy1 = −

{
my,ave1 − Vz,ave1

}
∆x1 = −64.0

∆Myy2 = −
{
my,ave2 − Vz,ave2

}
∆x2 = −448.0

∆Myy3 = −
{
my,ave3 − Vz,ave3

}
∆x3 = −1600.0

∆Myy4 = −
{
my,ave4 − Vz,ave4

}
∆x4 = −4032.0

∆Myy5 = −
{
my,ave5 − Vz,ave5

}
∆x5 = −8256.0

Hence,
Myy0 = Myy(0) = −57670
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x1 = 0 Myy1 = Myy0 = −57670.0

x2 = 40 Myy2 = ∆Myy1 +Myy1 = −57734.0

x3 = 80 Myy3 = ∆Myy2 +Myy2 = −58182.0

x4 = 120 Myy4 = ∆Myy3 +Myy3 = −59782.0

x5 = 160 Myy5 = ∆Myy4 +Myy4 = −63814.0

x6 = 200 Myy6 = ∆Myy5 +Myy5 = −72070.

In nondimensional form,

η =
x

L
M̄yyi =

Myyi

Mo

η1 = 0.0 M̄yy1 = −1.00000

η2 = 0.2 M̄yy2 = −1.00111

η3 = 0.4 M̄yy3 = −1.00888

η4 = 0.6 M̄yy4 = −1.03662

η5 = 0.8 M̄yy5 = −1.10654

η6 = 1.0 M̄yy6 = −1.2497

Compare to the exact nondimensional equation

M̄yy(η) =
Myy(x)
Mo

= −1− 0.231201 η4

The following plot shows the discrete method (points in red) and the exact solution (line in
blue):

In[192]:=

p5a = ListPlotATransposeA9 xx
ccccccc
Lo

, Myyd=E, PlotStyle → 8Hue@.02D, PointSize@.01D<,

AxesLabel → 8η, "M
¯

yyHηL"<, DisplayFunction → IdentityE;

p5 = Plot@Myyp@ηD, 8η, 0, 1.0<, PlotStyle −> 8Hue@.6D, PointSize@.03D<,
AxesLabel → 8η, "M

¯
yyHηL"<, DisplayFunction → IdentityD;

Show@p5, p5a, DisplayFunction → $DisplayFunction,
PlotRange → 880, 1.0<, 80, −1.5<<, PlotLabel →

StyleForm@"M
¯

yyHηL vs. η", "Section"DD;
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Lastly, we proceed with the solution of the moment differential equation about the z axis:

Mzz(x) = Mzz(0)−
∫ x

0

{
mz(ζ) + Vy(ζ)

}
dζ → Mzz(xj) ≈Mzz0 −

j∑

i=1

{
mz,avei + Vy,avei

}
∆xi
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Hence, we need to obtain the average values for each distributed moment and Shear Vy:

mz,ave1 =
mz1 +mz2

2
= 0 Vy,ave1 =

Vy1 + Vy2

2
= −16

mz,ave2 =
mz2 +mz3

2
= 0 Vy,ave2 =

Vy2 + Vy3

2
= −112

mz,ave3 =
mz3 +mz4

2
= 0 Vy,ave3 =

Vy3 + Vy4

2
= −400

mz,ave4 =
mz4 +mz5

2
= 0 Vy,ave4 =

Vy4 + Vy5

2
= −1008

mz,ave5 =
mz5 +mz6

2
= 0 Vy,ave5 =

Vy5 + Vy6

2
= −2064

Thus
∆Mzz1 = −

{
mz,ave1 + Vy,ave1

}
∆x1 = 640

∆Mzz2 = −
{
mz,ave2 + Vy,ave2

}
∆x2 = 4480

∆Mzz3 = −
{
mz,ave3 + Vy,ave3

}
∆x3 = 16000

∆Mzz4 = −
{
mz,ave4 + Vy,ave4

}
∆x4 = 40320

∆Mzz5 = −
{
mz,ave5 + Vy,ave5

}
∆x5 = 82560

Hence,
Mzz0 = Mzz(0) = 0

x1 = 0 Mzz1 = Mzz0 = 0

x2 = 40 Mzz2 = ∆Mzz1 +Mzz1 = 640

x3 = 80 Mzz3 = ∆Mzz2 +Mzz2 = 5120

x4 = 120 Mzz4 = ∆Mzz3 +Mzz3 = 21120

x5 = 160 Mzz5 = ∆Mzz4 +Mzz4 = 61440

x6 = 200 Mzz6 = ∆Mzz5 +Mzz5 = 144000

In nondimensional form,

η =
x

L
M̄zzi =

Mzzi

Mo

η1 = 0.0 M̄zz1 = 0.00000

η2 = 0.2 M̄zz2 = 0.0110976

η3 = 0.4 M̄zz3 = 0.088781

η4 = 0.6 M̄zz4 = 0.366222

η5 = 0.8 M̄zz5 = 1.06537

η6 = 1.0 M̄zz6 = 2.49697

Compare to the exact nondimensional equation

M̄zz(η) =
Mzz(x)
Mo

= 2.31201 η4
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The following plot shows the discrete method (points in red) and the exact solution (line in
blue):

In[195]:=

p6a = ListPlotATransposeA9 xx
ccccccc
Lo

, Mzzd=E, PlotStyle → 8Hue@.02D, PointSize@.01D<,

AxesLabel → 8η, "M
¯

zzHηL"<, DisplayFunction → IdentityE;

p6 = Plot@Mzzp@ηD, 8η, 0, 1.0<, PlotStyle → 8Hue@.6D, PointSize@.03D<,
AxesLabel → 8η, "M

¯
zzHηL"<, DisplayFunction → IdentityD;

Show@p6, p6a, DisplayFunction → $DisplayFunction,
PlotRange → 880, 1.0<, 80, 2.5<<, PlotLabel →

StyleForm@"M
¯

zzHηL vs. η", "Section"DD;
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As we increase the number of intervals, the solutions approaches to the exact solution. As
for an example, consider the plot for M̄zz with 20 intervals:

In[195]:=

p6a = ListPlotATransposeA9 xx
ccccccc
Lo

, Mzzd=E, PlotStyle → 8Hue@.02D, PointSize@.01D<,

AxesLabel → 8η, "M
¯

zzHηL"<, DisplayFunction → IdentityE;

p6 = Plot@Mzzp@ηD, 8η, 0, 1.0<, PlotStyle → 8Hue@.6D, PointSize@.03D<,
AxesLabel → 8η, "M

¯
zzHηL"<, DisplayFunction → IdentityD;

Show@p6, p6a, DisplayFunction → $DisplayFunction,
PlotRange → 880, 1.0<, 80, 2.5<<, PlotLabel →

StyleForm@"M
¯

zzHηL vs. η", "Section"DD;
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End Example �
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4.7 Suggested Problems

Problem 4.1.

At a small planet of an unknown galaxy called TEXTBOOK, there is a group of engineering working
with a different unit system. The system is called the word-unit-system (WUS ). The force is measured
in LETTER and time is measured in WORD. It is known that:

1 LETTER = 1
PAGE·CHAPTER

WORD2 (4.23)

where

1 PAGE = 1
LETTER·WORD2

CHAPTER
(4.24)

At TEXTBOOK, Newton’s Second Law holds,

F = ma

The conversion to our unit system can be obtained by using the following data:

1 LETTER = 1.5 Newtons

1 PAGE = 2.0 slugs

1 CHAPTER = 10 inches

For the known information, obtain the following,

a) Determine the units for mass in WUS.

b) Determine the units for length in WUS.

c) Find the relationship between the acceleration in the SI and the WUS.

d) Find the relationship between the mass moment of inertia in the fps and the WUS.

e) The gravitational constant at our planet is known as 9.81 m/sec2. Convert our gravitational constant
to the WUS.

�
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4.7. SUGGESTED PROBLEMS 295

Problem 4.2.

The wing of the aircraft can be modeled as a cantilever beam and the wing’s uniform cross section is
given. If d = 18 in, determine the load profiles about the aerodynamic center of the idealized wing box.

Assume point O enters first in contact with the wing.

�

Problem 4.3.

Solve problem 3.2 but change the loads to:

py(x) = 100

√
1−

( x
L

)2

lb/in

pz(x) = −25

√
1−

( x
L

)2

lb/in

where L = 180 inches. Write a computer code using a programming language to determine all the load
profiles about the aerodynamic center (assume quarter cord from the leading edge). Solve exact solution
by hand and using the computer code. Also, solve the problem using Trapezoid Integration Rule (use
5, 10, and 20 intervals). On the same plot include exact solution, and the 5, 10, 20 interval numerical
solution. Give a printout of your well-explained computer code. The code should provide the plots,
which must be well-label plots for each load profile.

�
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Problem 4.4.

Determine all internal loads for the following cantilevered beam:

�

Problem 4.5.

One of the advanced airplanes that NASA is considering for carrying a large number of passengers is the
Inboard-Wing Airplane. As shown in the figure the concept calls for the airplane to have two fuselages
at the wing tips and the engine in the middle. Assuming the aerodynamic lift acting on the wing, per
unit length, to be given by

p(x) = po

(
1−

(x
b

)2
)

(4.25)

Here x is measured from the middle of the wing. The wing span is 2 b. Assume, the weight of the engine
is 0.06W and the weight of the each of the fuselages to be 0.47W ; W being the total weight of the
aircraft.

 

Engine 

Fuselage 1 Fuselage 2 

right wing left wing 
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Determine:

1. Value of po such that the aircraft is in level flight.

2. Dimensionless shear force and moment diagrams neglecting wing weight.

3. Dimensionless Shear Force and Moment diagrams including wing weight.

�
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Chapter 5

Analysis and Design of Beams

Instructional Objectives of Chapter 5

After completing this chapter, the student should be able to:

1. Discuss the consequences and apply the elementary beam theory: Euler-Bernoulli Beam
Theory.

2. Identify the critical location and point in the beam.

3. Design beam under axial, bending, shear and torsional loads.

For many structural problems, it can be cumbersome to work with the three-dimensional model or
even challenging to obtain an analytical solution. However, we can model most structural components
using one- and two-dimensional model by using beams, plates or shells. In fact, we can often idealize
many aerospace structural components as using beams. A beam can be defined as a structure having
one of its dimensions much larger than the other two. The axis of the beam is defined along that longer
dimension and the cross-section normal to this axis is assumed to smoothly vary along the span of the
beam. Some examples of aeronautical structures modeled as thin-walled beams are wings and fuselages.

In this chapter we discuss the beam theory to analyze various types of beams. Beam theory is the
solid mechanics theory describing beams and it plays an important role in structural analysis as it is
a simple tool to analyze numerous structures. Although nowadays we have three-dimensional finite
element computer codes to analyze loads and deflections, beam models help us in the pre-design stage
as they provide valuable insight into the behavior of the structure. Such calculations are also very useful
in validating computational solutions.

298



5.1. PROPERTIES OF PLANE AREAS 299

5.1 Properties of Plane Areas

5.1.1 Area

The total area bound by an area, A, of a bounded plane object is defined as the integral over the area
of an element dA,

A =
∫∫

A

dA

5.1.2 First Moments of Area

The first moment of area bound by an area, A, of a bounded plane object is defined as the integral of
the distance parallel over the area of an element dA,

Qy =
∫∫

A

z dA Qz =
∫∫

A

y dA

5.1.3 Centroid of an Area

The centroid of an area is a geometric center of the cross section. The point in a member at the
intersection of two perpendicular axes so located that the moments of the areas on opposite sides of an
axis about that axis is zero.

yc =
Qz

A
zc =

Qy

A

5.1.4 Second Moments of Area

The second moment of area bound by an area, A, of a bounded plane object is defined as the integral
of the distance parallel squared over the area of an element dA,

Iyy =
∫∫

A

z2 dA Izz =
∫∫

A

y2 dA Iyz =
∫∫

A

y z dA

The above moments of inertia are defined about the centroid. To define the moment of inertia about
the another coordinate system we can use the parallel axis theorem:

Īyy = Iyy + z2
c A

Īzz = Izz + y2
c A

Īyz = Iyz + yc zcA
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5.2. BEAM THEORY 300

The polar moment of inertia is defined as

Ixx = Iyy + Izz

5.1.5 Radius of Gyration

A distance known as the radius of gyration is occasionally encountered in mechanics. Radius of gyration
of a plane area is defined as the square root of the moment of inertia of the area divided by the area
itself:

ry =

√
Iyy

A
rz =

√
Izz
A

in which ry and rz denote the radius of gyration with respect to y and z axes, respectively. Although the
radius of gyration of an area does not have an obvious physical meaning, we may consider it to be the
distance (from the reference axis) at which the entire area could be concentrated and still have the same
moment of inertia as the original area. The radius of gyration about the another coordinate system is
be defined as

r̄2
y = z2 + r2

y

r̄2
z = y2 + r2

z

5.2 Beam Theory

In structural analysis, we have several beam theories based on various assumptions, and they lead to
different levels of accuracy. One of the simplest and most useful of these theories was first described
by Euler and Bernoulli and it is known as the Euler-Bernoulli beam theory. Before we proceed, let us
define our sign convection and then go into the details of the Euler-Bernoulli beam theory assumptions
and consequences. Afterwards we will discuss a more general beam theory known as the Timoshenko
Beam Theory and Elasticity solution via Airy’s Stress function.

5.2.1 Basic Considerations

In the previous chapter, we showed that to solve any problem involving an elastic body we are indeed
solving the elasticity field (15 unknowns and 15 equations). When we study beams, this is not an
exception: we are indeed solving the 15 unknowns by using 15 equations described by the elasticity field:

1. First, we need to ensure that the stresses and forces on any element of the beam satisfies the
equations of equilibrium.

2. Second, we use the proper constitutive law that best describes the material behavior under a
given state of stress.
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3. Third, we need to ensure that the obtained strains are such that the resulting deflections of the
members are compatible with each other.

4. Finally, if the system is subject to a temperature change, we may have to account for thermal
expansions or contractions that can give rise to significant stresses and strains, so-called thermal
effects.

As we will see later, many of the 15 unknown are zero as a consequence of beam theory assumptions.

5.2.2 Principle of Saint-Venant

Before we proceed, let us present a very useful assumption in our beam analysis: The Saint-Venant’s
principle. Saint-Venants principle is used to justify approximate solutions to boundary value problems
in linear elasticity. For an example, when solving problems involving bending or axial deformation of
slender beams and rods, one does not prescribe loads in detail. Instead, the resultant forces acting on the
ends of a rod is specified, or the magnitudes of point forces acting on a beam. Saint Venants principle
used to justify this approach.

Definition

Note that most solutions only provide average stresses at a section. Since, at concentrated forces and
abrupt changes in cross section, irregular local stresses (and strains) arise, only at distance about equal
to the depth of the member from such disturbances are the stresses in agreement with the mechanics of
materials. This is due to SaintVenant’s Principle: The stress of a member at points away from points
of load application may be obtained on the basis of a statically equivalent loading system; that is, the
manner of force application on stresses is significant only in the vicinity of the region where the force is
applied. In other words, it is to say that the manner in which the forces are distributed over a region is
important only in the vicinity of the region. This is also valid for the disturbances caused by the changes
in the cross section. The mechanics of materials approach is therefore best suited for relatively slender
members.

Applications and Limitations

The solution to the beam problem is quite complex when considering some definite distribution of surface
forces on the end sections of the beam. Hence, we use Saint-Venants principle to justify the approximate
solutions to boundary value problems in linear elasticity. It allows us to simplify the solution of many
problems by altering the boundary conditions while keeping the systems of applied forces statically
equivalent. We can obtain a satisfactory approximate solution to our problem.

We should keep in mind that the Saint Venants Principle does not yield any details about individual
stress components at any specific point in an elastic body although we often want such information.
Saint-Venant himself limited his principle to the problem of extension, torsion and flexure of prismatic
and cylindrical bodies.
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It should be pointed out that Saint-Venants principle should be handled with care when working
with composites structures, which are strongly anisotropic and inhomogeneous materials. The main
reason is that the end effects decay more slowly in anisotropic and inhomogeneous structures than in
isotropic and homogeneous ones. The knowledge of characteristic decay length for end effects or local
loadings is also important in numerical (i.e., finite elements) modeling of complex composite structures.
In order to explain how the stress-strain fields depend on the distribution of tractions and anisotropy of
material, we may examine an arbitrary distribution of tractions acting in a small region on the surface
of an orthotropic elastic half-plane and analyze the generated stress and displacement fields. However,
this is beyond the topic of this book.

5.2.3 Internal Force Sign Convention

 

y 

x 

z 

Myy

Mxx

Mxx

Myy 

Mzz

Mzz

Vz 

Vz
Nxx

Nxx
Vy

Vy

Positively-oriented 
surface 

Negatively-oriented 
surface 

Figure 5.1: Sign convention for stress resultants on a beam cross section.

The sign convention will be consistent with the sign convention established for stress components, in
chapter 2. We will use a rectangular coordinate system whose x-axis always coincides with, or is parallel
to, the beam’s axis. The y-axis and z-axis are the cross-sectional axis. The y-axis will be the transverse
axis and the z-axis the lateral axis. On any cross section of the beam, the internal stress distribution
generally gives rise to a resultant force and a couple, each being vectors with three components. These
components are shown in Fig. 5.1.

5.2.4 Resultant Forces and Moments

The goal of the beam theory is to obtain a one-dimensional model of the three-dimensional structure
which involves only sectional quantities, i.e. quantities solely dependent on the span-wise variable x.
Now, we will describe the three-dimensional stress field, of a one-dimensional beam model, in terms of
cross-sectional stresses called stress resultants.

Before we proceed, we should know that most general beams include: multiaxial bending, combined
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dA

Sxx 

y, V(x,y,z) 

x, U(x,y,z) 

z, W(x,y,z) 

dy 

dz dx 

z 

y 

Sxy 

Sxz 

Figure 5.2: Stresses acting on a beam’s cross-sectional differential volume.

axial and bending load, nonhomogeneous material makeup, thermal loads, and response to shear and
torsion. With this in mind, consider a general beam’s cross-section, as shown in Fig. 5.2. At the
intersection of the x-axis with the cross-section, we obtain the three internal stretching resultants
defined by the cutting plane as follow:

Nxx = Nxx(x) =
∫

y

∫

z

Sxx dy dz =
∫∫

A

Sxx dA

Vy = Vy(x) =
∫

y

∫

z

Sxy dy dz =
∫∫

A

Sxy dA

Vz = Vz(x) =
∫

y

∫

z

Sxz dy dz =
∫∫

A

Sxz dA

Also, at the intersection of the x-axis with the cross-section, we obtain the three internal coupling
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resultants defined by the cutting plane as follow:

Mxx = Mxx(x) =
∫

y

∫

z

(Sxz y − Sxy z) dy dz =
∫∫

A

(Sxz y − Sxy z) dA

Myy = Myy(x) =
∫

y

∫

z

Sxx z dy dz =
∫∫

A

Sxx z dA

Mzz = Mzz(x) = −
∫

y

∫

z

Sxx y dy dz = −
∫∫

A

Sxx y dA

Note that these internal resultants act on the positive face because the x-axis is coming out of it.
Therefore, they must also be positive when they act in their respective negative coordinate axis directions
on a negative face. In addition, these resultant loads are applied, generally, at the centroid and functions
of the beams major axis, i.e., x-axis. The stresses are applied at a point but the load are applied over
the entire cross-section.
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5.3 Euler-Bernoulli Beam Theory

The bending elastic theory of beams is based on the following assumptions:

1. The beam has a constant and prismatic cross-section. It is made of a flexible and homogenous
material that has the same modulus of elasticity in both tension and compression. In other words,
it shortens or elongates equally for the same state of stress.

2. The material is isotropic and linearly elastic. Thus, Hooke’s law is applicable. The relation-
ship between the stress and strain is directly proportional. The beam is not stressed beyond its
proportional limit.

3. Plane sections within the beam before bending remain plane after bending. This assumption
ensures that the axial strain exx is a linear function of the cross-sectional coordinates y and z.

4. The neutral plane of a beam is a plane whose length is unchanged by the beam’s deformation.
This ensures that there will be no shear strain: γxy = γxz = 0. Since the material is isotropic:
Sxy = Sxz = 0

5. Normal stresses Syy and Szz are negligible. Also, the shear stress Syz is negligible.

These assumptions are known as the Euler-Bernoulli assumptions for beams. Experimental measure-
ments show that these assumptions are valid for long, slender beams1 made of isotropic materials with
solid cross-sections. We should keep in mind that the Euler-Bernoulli beam theory does not apply when
any of the above conditions is not met.

1Slender beams are those beams with their length typically greater than 15-20 times the largest cross-sectional dimension
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Figure 5.3: Decomposition of the axial displacement field.

5.3.1 Displacement Field

Consider a set of unit vectors î, ĵ, and k̂ with coordinates x, y, and z. This set of axes is attached
at a point of the beam cross-section, x is along the axis of the beam, and y-z define the plane of the
cross-section. Then, let U(x, y, z), V (x, y, z) and W (x, y, z) be the displacement of an arbitrary point of
the beam in the x, y and z directions, respectively. The displacement vector R of a point is defined as

R = U(x, y, z) î + V (x, y, z) ĵ +W (x, y, z) k̂ (5.1)

Now we proceed to determine the directional displacements U(x, y, z), V (x, y, z) and W (x, y, z) that
satisfy Euler-Bernoulli beam theory:

1. First, Euler-Bernoulli assumption states that the cross-section is undeformable in its own plane.
Hence, the displacement field in the plane of the cross-section consists solely of two rigid body
translations v(x) and w(x):

V (x, y, z) = v(x)

W (x, y, z) = w(x)

2. Second, Euler-Bernoulli assumption states that the cross-section remains plane after deformation.
This implies an axial displacement field consisting of a rigid body translation u(x), and two rigid
body rotations ϕy(x) and ϕz(x), as shown in Fig. 5.3.

As a consequence, the one-dimensional displacement field reduces to

U(x, y, z) = u(x)− y ϕz(x) + z ϕy(x) (5.2a)

V (x, y, z) = v(x) (5.2b)

W (x, y, z) = w(x) (5.2c)

where u(x) is the axial displacement, v(x) the transverse displacement, w(x) the lateral displacement,
ϕy(x) the rotation of the transverse normals with respect to x, and ϕz(x) the in-plane rotation. All
these displacements and rotations are measured at the midsurface.
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5.3.2 Curvatures

 

ρ 
φz 

∆s 

P 

Q
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y, v 

φz 

∆v 

∆x 

Figure 5.4: Definition of curvature

During bending, a beam bends in the form of a curve. The curvature κzz (more precisely, its inverse,
the radius of curvature) helps us to determine the strain in any fiber of the beam. To understand the
concept of curvature of a curve, let us consider the displacement v, in the y-direction, as a function of
x. We can define the curvature κzz at a point P of a curve in the v-x plane with s, the length of the arc
measured along the curve, as follows:

κzz =
1
ρz

=
dϕz

ds

where ϕz is the angle between the line tangent to the curve and the x-axis, and ρz is the radius of
curvature at P. Now let us consider another point Q in the neighborhood of P at a distance ∆s. As the
point Q approaches P, we can write

cosϕz = lim
∆s→0

∆x
∆s

=
dx

ds

sinϕz = lim
∆s→0

∆v
∆s

=
dv

ds

Note that

ds =
√
dv2 + dx2 = dx

√
1 +

(
dv

dx

)2

where
v′ =

dv

dx
= slope of the curve at P
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Thus

cosϕz =
dx

ds
=

1√
1 +

(
dv

dx

)2
=

√√√√√
1

1 +
(
dv

dx

)2

sinϕz =
dv

ds
=

dv

dx

√
1 +

(
dv

dx

)2
=
dv

dx

√√√√√
1

1 +
(
dv

dx

)2

Thus,

tanϕz =
dv

dx

Taking the derivative of tanϕz with respect to ds:

d tanϕz

ds
=

d

ds

(
dv

dx

)
=
dx

ds

d

dx

(
dv

dx

)
= cosϕz

(
d2v

dx2

)

sec2 ϕz

dϕz

ds
= cosϕz

(
d2v

dx2

)
→ dϕz

ds
= cos3 ϕz

(
d2v

dx2

)

Thus

dϕz

ds
=
d2v

dx2




1

1 +
(
dv

dx

)2




3/2

For beam analysis, it is safe to assume that the rotation of the beam is very small:

dv

dx
� 1

As a consequence
ds ≈ dx

and
dϕz

ds
≈ d2v

dx2 = v′′

Thus the curvature and radius of curvature for small beam rotations in the x-y plane is given by

κzz =
1
ρz

≈ v′′

Similarly, the curvature and radius of curvature for small beam rotations in the x-z plane is given by

κyy =
1
ρy

≈ −w′′
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5.3.3 Strains-displacement Equations

Now let us proceed to evaluate the displacement gradients for the Euler-Bernoulli Beam Theory:

g1 =
∂U

∂x
= u′ − y ϕ′z + z ϕ′y g4 =

∂U

∂y
= −ϕz g7 =

∂U

∂z
= ϕy

g2 =
∂V

∂x
=
∂v

∂x
g5 =

∂V

∂y
= 0 g8 =

∂V

∂z
= 0

g3 =
∂W

∂x
=
∂w

∂x
g6 =

∂W

∂y
= 0 g9 =

∂W

∂z
= 0

Thus, the strain-displacement equations for normal strains are

exx =
∂U

∂x
=
du

dx
− y dϕz

dx
+ z

dϕy
dx

eyy =
∂V

∂y
= 0

ezz =
∂W

∂z
= 0

The strain-displacement equations for shear strains are

γxy =
∂U

∂y
+
∂V

∂x
= −ϕz +

dv

dx

γxz =
∂U

∂z
+
∂W

∂x
= ϕy +

dw

dx

γyz =
∂W

∂y
+
∂V

∂z
= 0 + 0 = 0

Recall that the Euler-Bernoulli hypothesis states that plane sections remain plane after deformation,
thus no shear strain will be present:

γxy = 0 = −ϕz +
dv

dx
→ ϕz =

dv

dx

γxz = 0 = ϕy +
dw

dx
→ ϕy = −dw

dx

Thus

exx =
∂U

∂x
=
du

dx
− y d

2v

dx2 − z
d2w

dx2

Let us proceed to physically understand the above strain equations. In order to do so, consider Figure 5.5.
Based on the Euler-Bernoulli hypothesis, the deformed shape in the x-y plane is shown by A′B′C′D′ of
a beam differential element ABCD, of length dx. Note that the fibers towards the top of the element
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are under compression and those towards the bottom of the differential element are under tension. This
means, there is a fiber in the differential element which will stay unstrained, say the fiber PQ. The
complete deformation of the beam can then be expressed by the displacement v of this unstretched fiber
(called neutral axis) in the y-direction.

 

x 

y, v 

ρz 

∆φz 

B′ 

A′ D′

C′

Q′ 

P′

R′

S′ 

A 

C 

P 

R 

B

D

Q

Sy 

dx 

Figure 5.5: Bending of a beam element of length dx in the x-y plane.

Note that the transverse deflection v is positive if it is in the positive y-direction. As the length of
the differential element approaches zero, the deformed shape of the beam approaches a circle of radius
ρz, given as

1
ρz

≈ d2v

dx2

The axial strain in any fiber, say RS before deformation and R′S′ after deformation, lying at a distance
y from the neutral axis, can be written as:

exx(y) =
R′S′ −RS

RS

Note that
RS = PQ = P′Q′
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Thus

exx(y) =
R′S′ −PQ

PQ
=

R′S′ −P′Q′

P′Q′

=
(ρz − y) ∆z − ρz ∆z

ρz ∆z

= − y

ρz

≈ −y d
2v

dx2

Note that the axial strain exx due to a displacement in the x-y plane is a linear function of y. Using
similar arguments, the axial strain ezz for a fiber at a distance z from the unstretched fiber can be written
as

exx(z) = − z

ρy

≈ −z d
2w

dx2

In addition, axial strain in the x-direction is given by

exx(x) = lim
∆x→0

∆u
∆x

=
du

dx

Thermal axial strain in the x-direction is given by

exx = α∆T

The total axial strain in the x-direction is:

exx =
du

dx
− y d

2v

dx2 − z
d2w

dx2 + α∆T = u′ − y v′′ − z w′′ + α∆T (5.3)

and the mechanical axial strain in the x-direction is:

exx =
du

dx
− y d

2v

dx2 − z
d2w

dx2 = u′ − y v′′ − z w′′ (5.4)

Note that this is true only if the bending moments are caused by pure couples and axial loads. Theses
applied couples must have no axial or torsional component to produce twist about the beam’s longitudinal
axis, x.

In general, we write the strains in terms of the midsurface strains as follows:

exx = ε◦xx − y κ◦zz + z κ◦yy + α∆T (5.5)

where the mid-plane strains are defined as follow:

ε◦xx =
du

dx

κ◦yy =
dϕy
dx

κ◦zz =
dϕz
dx
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For the Euler-Bernoulli beam assumptions, we derived the midplane strains as:

ε◦xx =
du

dx

κ◦yy =
dϕy
dx
≈ −d

2w

dx2

κ◦zz =
dϕz
dx
≈ d2v

dx2

5.3.4 Stress-Strain Equations

Note that since the deformations and rotations are small, the PK2 stresses become:

S ≈ σ

Hence, from this point forward we will use cauchy’s stresses throughout our beam analysis.

The Euler-Bernoulli theory imposes a state of uniaxial strain in a beam, with exx being the only
nonzero strain. The Poisson effect, requires that

eyy = ezz = −ν exx

The assumed deformation field has obvious errors even for small deformation. For instance, in the case
of a thin beam (b � L) and with no loading on the sides of the beam, we expect that the stresses Szz

would be very close to zero. However, for a Hookean material the stresses show that




Sxx

Syy

Szz





=
E

(1 + ν)(1− 2 ν)




1− ν ν ν

ν 1− ν ν

ν ν 1− ν








exx

0

0





=
E

(1 + ν)(1− 2 ν)





1− ν

ν

ν




exx

Now, when we take Szz into account, we should note that there are zero tractions on the bottom
surface of the beam and that we can consider the direct stress Szz at the surface of contact for load pz
to be negligibly small compared to bending and stretching stress Sxx. Accordingly, for h� L, the stress
Szz should be very small. Hooke’s law, however, gives:

Szz = − E ν

(1 + ν)(1− 2 ν)
exx

If we use a constitutive law wherein ν = 0, we will get the desired zero value for the stresses Syy and
Szz. Therefore, in elementary beam theory (Euler-Bernoulli), the Poisson effect is ignored.
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Hence, setting ν = 0 and substituting the strains into the Hooke’s Law we get:




Sxx

Syy

Szz





=
E

(1 + 0)(1− 2 (0))




1− 0 0 0

0 1− 0 0

0 0 1− 0








exx

0

0





= E





exx

0

0





and
Sxy = G (0) = 0 Sxz = G (0) = 0 Syz = G (0) = 0

Using the Hookean stress-strain relationship we get

Sxx = E exx = E
(
ε◦xx − y κ◦zz + z κ◦yy − α∆T

)
(5.6)

5.3.5 Neutral Axis

The neutral axis is a line in the cross section of a beam along which no bending stresses occur. Thus at
the neutral axis we have zero strain and therefore zero stress in absence of axial loads. The neutral axis
is perpendicular to the line of applied force. The neutral axis passes through the centroid for uniform
elastic beams with symmetric cross-sections.

5.3.6 Axial Stresses for Linear Thermoelastic Homogeneous Beams

To continue with our discussion of the elementary beam theory, let us consider a beam with homogeneous
material properties; i.e., assume that they can be functions of x, y, and z coordinate location. Let us
also assume the following:

1. Suppose also that the beam can be heated or cooled such that the change in temperature ∆T is a
function of location in the beam.

2. The transverse components of normal stresses Syy and Szz are negligible compared to axial stress
Sxx.

3. Cross-sections remain planar and normal to the centroid axis of deformation.

Therefore, strain-displacement equation, Eq. (5.4) is still valid. Thus, the linear thermoelastic stress-
strain relationship becomes

Sxx = E exx = E
(
ε◦xx − y κ◦zz + z κ◦yy − α∆T

)
(5.7)

where it should be noted that the modulus E and thermal coefficient may be a function of x, y, and z:

E = E(x, y, z) α = α(x, y, z)
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Substituting into the stress resultant equations we get:

Nxx =
∫∫

A

Sxx dA =
∫∫

A

E
(
ε◦xx − y κ◦zz + z κ◦yy − α∆T

)
dA

Vy =
∫∫

A

Sxy dA = 0

Vz =
∫∫

A

Sxz dA = 0

Substituting into the couple resultant equations we get:

Mxx =
∫∫

A

(Sxz y − Sxy z) dA = 0

Myy =
∫∫

A

Sxx z dA =
∫∫

A

E
(
ε◦xx − y κ◦zz + z κ◦yy − α∆T

)
z dA

Mzz = −
∫∫

A

Sxx y dA = −
∫∫

A

E
(
ε◦xx − y κ◦zz + z κ◦yy − α∆T

)
y dA

where dA = dy dz. Because the modulus E can be dependent on location in the cross section, it cannot
be taken outside the integral as it was in the theory of homogeneous beams2. Moreover, we can obtain
can express the above internal resultants as functions of the cross-sectional properties. In order to
accomplish this, let us factor our from the internal resultant equations an arbitrary constant E, with
the same units as modulus and called the reference modulus, as follows:

Nxx = E

∫∫

A

(
ε◦xx − y κ◦zz + z κ◦yy − α∆T

)
dA

= E ε◦xx

∫∫

A

dA− E κ◦zz
∫∫

A

y dA+ E κ◦yy

∫∫

A

z dA− E
∫∫

A

ξ α∆T dA

Myy = E

∫∫

A

(
ε◦xx − y κ◦zz + z κ◦yy − α∆T

)
z dA

= E ε◦xx

∫∫

A

z dA− E κ◦zz
∫∫

A

y z dA+ E κ◦yy

∫∫

A

z2 dA− E
∫∫

A

ξ α∆T z dA

2Although the Euler-Bernoulli theory assumes that the beam is homogeneous, it can be shown that this is acceptable
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Mzz = −E
∫∫

A

(
ε◦xx − y κ◦zz + z κ◦yy − α∆T

)
y dA

= −E ε◦xx

∫∫

A

y dA+ E κ◦zz

∫∫

A

y2 dA− E κ◦yy

∫∫

A

y z dA+ E

∫∫

A

ξ α∆T y dA

Now we use the plane area definitions, to determine all modulus weighted sectional properties:

Qy =
∫∫

A

z dA 1st moment of area of the cross section about the y-axis

Qz =
∫∫

A

y dA 1st moment of area of the cross section about the z-axis

Iyy =
∫∫

A

z2 dA moment of inertia of the cross section about the y-axis

Izz =
∫∫

A

y2 dA moment of inertia of the cross section about the z-axis

Iyz =
∫∫

A

y z dA moment of inertia of the cross section relative to the centroid

Furthermore, let the thermal loads be define as,

N t
xx = E

∫∫

A

ξ α∆T dA

M t
yy = E

∫∫

A

ξ α∆T z dA

M t
zz = E

∫∫

A

ξ α∆T y dA

Thus the internal force and moments are

Nxx +N t
xx = E Aε◦xx − EQy κ

◦
zz + EQz κ

◦
yy

Myy +M t
yy = EQy ε

◦
xx − E Iyz κ

◦
zz + E Iyy κ

◦
yy

Mzz −M t
yy = EQz ε

◦
xx + E Izz κ

◦
zz − E Iyz κ

◦
yy

c©2012 by Vijay K. Goyal. All Rights Reserved.



5.3. EULER-BERNOULLI BEAM THEORY 316

or in matrix form




Nxx +N t
xx

Myy +M t
yy

Mzz −M t
zz





= E




A Qy Qz

Qy Iyz Iyy

Qz −Izz −Iyz








ε◦xx

−κ◦zz

κ◦yy





for actual coordinates (5.8)

These equations express a general linear relationship between the sectional stress resultants and the
cross-sectional strains. Thus, they are the constitutive laws for the cross-section of the beam, and the
matrix on the right hand side of Eq. 5.8 is called the sectional stiffness matrix. Clearly, these equations
are fully coupled: all of the sectional strains affect the values of each of the sectional stress and couple
resultants.

For homogeneous beams we use the modulus weighted x centroidal axis; i.e., the x-axis is passed
through the modulus weighted centroid:

yc =
Qz

A
=

1
A

∫∫

A

y dA zc =
Qy

A
=

1
A

∫∫

A

z dA

By transforming the x-axis in this way, it will follow that ȳc = z̄c = 0 and the internal resultant equations
reduce to





Nxx +N t
xx

Myy +M t
yy

Mzz −M t
zz





= E




A 0 0

0 Iyz Iyy

0 −Izz −Iyz








ε◦xx

−κ◦zz

κ◦yy





for centroidal coordinates (5.9)

In order to obtain the strain,

exx = ε◦xx − y κ◦zz + z κ◦yy =
[

1 y z
]





ε◦xx

−κ◦zz

κ◦yy





we need to obtain the inverse of Eq. (5.9). For simplicity let us define

∆I =

∣∣∣∣∣∣

Iyz Iyy

−Izz −Iyz

∣∣∣∣∣∣
= Iyy Izz − (Iyz)

2

and the second moment of area ratios as:

Ryy =
∆I

Iyy

Rzz =
∆I

Izz
Ryz =

∆I

Iyz
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Then inverse of Eq. (5.9) can be easily shown to be





ε◦xx

−κ◦zz

κ◦yy





=
1
E




1
A

0 0

0 − 1
Ryz

− 1
Ryy

0
1
Rzz

1
Ryz








Nxx +N t
xx

Myy +M t
yy

Mzz −M t
zz





(5.10)

Thus, the axial strain for general homogeneous beams with thermal loads is

exx =
[

1 y z
]





ε◦xx

−κ◦zz

κ◦yy





=
1
E

{
1 y z

}




1
A

0 0

0 − 1
Ryz

− 1
Ryy

0
1
Rzz

1
Ryz








Nxx +N t
xx

Myy +M t
yy

Mzz −M t
zz





(5.11)

Then axial stress for general homogeneous beams with thermal loads can be written as

Sxx = E exx = E
(
ε◦xx − y κ◦zz + z κ◦yy − α∆T

)

Sxx =
{

1 y z
}




1
A

0 0

0 − 1
Ryz

− 1
Ryy

0
1
Rzz

1
Ryz








Nxx +N t
xx

Myy +M t
yy

Mzz −M t
zz




− E α∆T (5.12)

where E = E(y, z) is the Young’s modulus of the material where the stress value is desired. Recall that
the origin of the y-z plane coincides with the centroid of the cross section. Furthermore, for cross-section
with an axis of symmetry with respect to one of the cross-sectional axis:

Iyz = 0 → 1
Rzz

=
1
Iyy

,
1
Ryy

=
1
Izz
,

1
Ryz

= 0

Thus the axial stress and strain for homogeneous beams, with symmetric cross-sections, subject to
thermal loads can be written as

exx =
1
E

{
1 y z

}




1
A

0 0

0 0 − 1
Ryy

0
1
Rzz

0








Nxx +N t
xx

Myy +M t
yy

Mzz −M t
zz





(5.13)
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Sxx =
{

1 y z
}




1
A

0 0

0 0 − 1
Ryy

0
1
Rzz

0








Nxx +N t
xx

Myy +M t
yy

Mzz −M t
zz




− E α∆T (5.14)

where




ε◦xx

−κ◦zz

κ◦yy





=
1
E




1
A

0 0

0 0 − 1
Ryy

0
1
Rzz

0








Nxx +N t
xx

Myy +M t
yy

Mzz −M t
zz





(5.15)

5.3.7 Equations of Equilibrium

In section 4.4.2 we got the following expressions for the equations of equilibrium:

dNxx

dx
= −px(x)

dVy

dx
= −py(x)

dVz

dx
= −pz(x)

dMxx

dx
= −mx(x)

dMyy

dx
= −my(x) + Vz

dMzz

dx
= −mz(x)− Vy

(5.16)

where px(x) is the distributed load in the axial direction (x-axis), py(x) the distributed load in the
transverse direction (y-axis), pz(x) the distributed load in the transverse direction (z-axis), mx(x) the
distributed moments about the x-axis, my(x) the distributed moments about the y-axis, and mz(x) the
distributed moments about the z-axis.

These equations are the first order ordinary differential equations that may be solved by direct
integration. The solution to these equations is:

Nxx(x) = Nxx(x1)−
∫ x

x1

px(ζ) dζ (5.17)

Vy(x) = Vy(x1)−
∫ x

x1

py(ζ) dζ (5.18)

Vz(x) = Vz(x1)−
∫ x

x1

pz(ζ) dζ (5.19)

Mxx(x) = Mxx(x1)−
∫ x

x1

mx(ζ) dζ (5.20)

Myy(x) = Myy(x1)−
∫ x

x1

{
my(ζ)− Vz(ζ)

}
dζ (5.21)

Mzz(x) = Mzz(x1)−
∫ x

x1

{
mz(ζ) + Vy(ζ)

}
dζ (5.22)
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The first term on the right-hand side of the above equations are known as the boundary conditions; i.e.,
if the beam is statically determinate there will exist some point along the x-axis x = x1 at which the
resultants are known. For the case of statically indeterminate, the boundary conditions may be found
using compatibility equations.
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5.4 Symmetric cross-section about one axis

Suppose we have a symmetric cross-section of an isotropic beam and the beam can be analyzed using
Euler-Bernoulli hypothesis. Consider a case of pure bending with Myy = 0, thus,

σxx = −Mzz

Izz
y (5.23)

5.4.1 Maximum Bending Stresses

Consider the following figure:
 

 

 

x 

y 

z c2

c1

Mzz 

y 

Recall at the neutral axis there is no bending:

y = 0 Mzz > 0 σxx = −Mzz

Izz
(0) = 0 (5.24)

The maximum bending compression stress is:

y = c1 Mzz > 0 σxx = −Mzz

Izz
(c1) = −Mzz

Izz
c1 < 0 ∴ σxx

∣∣∣
compression

=
Mzz

Izz
c1

The maximum bending tension stress is:

y = −c2 Mzz > 0 σxx = −Mzz

Izz
(−c2) =

Mzz

Izz
c2 > 0 ∴ σxx

∣∣∣
tension

=
Mzz

Izz
c2
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Note that the the maximum bending stress in tension and compression do not necessarily have the same
magnitude:

if c1 = c2 → σxx

∣∣∣
compression

= σxx

∣∣∣
tension

if c1 > c2 → σxx

∣∣∣
compression

< σxx

∣∣∣
tension

if c1 < c2 → σxx

∣∣∣
compression

> σxx

∣∣∣
tension

 

 

 

c2

c1

y 

z x 

σc

σt

Mzz 

5.4.2 Summary: Pure Bending of Beams

The equation

σxx = −Mzz

Izz
y (5.25)

is limited to:

1. symmetric cross sections

2. moment acting in plane of symmetry

3. uniform bending

4. Euler-Bernoulli’s assumptions:

(a) plane sections remain plane

(b) plane sections remain normal to reference surface

(c) normal lines are inextensible

5. small deflections and slopes

6. no axial force

7. normal stresses in beams of linearly elastic material:
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(a) normal stress distribution is linear

(b) z-axis is the neutral axis

(c) maximum normal stresses at

y = c1 → σmax1 = −Mzz

Izz
c1 and y = −c2 → σmax2 =

Mzz

Izz
c2

 

σmax1

σmax2

It should be clear that the limitations of the present derivations consist in that the plane sections,
in general, do not remain plane. We have shear forces associated with nonuniform bending (out-of-
plane distortion, known as warping). However, normal stresses calculated by the flexure formula are not
significantly altered by the presence of shear stresses and associated warping. Thus flexure formula gives
results that are accurate in regions away from stress concentrations.

For design purposes we often define the stresses in terms of the section moduli as follows:

y = c1 σmax1 = −Mzz

Izz
c1 = −Mzz

Izz
c1

= −Mzz

Z1

y = −c2 σmax2 = −Mzz

Izz
(−c2) =

Mzz

Izz
c2

=
Mzz

Z2

where the section moduli is defines as

Z1 =
Izz
c1

Z2 =
Izz
c2

For doubly symmetric cross-sectional shapes:

c1 = c2 = c

and
σmaxo = σmax2 = −σmax1 =

Mzz

Izz
c =

Mzz

Izz
c

=
Mzz

Z
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For efficient use of material:

1. place material as far away from neutral axis as possible

2. the large Z, the larger Mzz that can be resisted for a given allowable stress.

Table 5.1 was taken from Mechanical Design of Machine Elements and Machines by Jack A. Collins,
2003. John Wiley.
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Table 5.1: Properties of Plane Cross-Sections
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Example 5.1.

Figure 5.6: Beam’s Cross Section

Figure 1a shows the first 50 inches of a 200-inch long cantilever beam. Applied loads act as
shown through the centroid G (which in this case coincides with the shear center) of the free
end. Calculate the bending stress distribution on the section at 50 inches from the free end.

We must calculate the area moments of inertia about the centroid G. To do so, we divide
the cross section into three rectangles (Figure b) and use the parallel axis theorems. Thus,
second moments of area are

Iyy = Iyy1 + Iyy2 + Iyy3

=
{

1
12

(8) (1)3

}
+
{

1
12

(1) (8)3 + (8× 1)(1.5)2

}
+
{

1
12

(1) (8)3 + (8× 1)(−1.5)2

}

= 122.0 in4
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Izz = Izz1 + Izz2 + Izz3

=
{

1
12

(1) (8)3

}
+
{

1
12

(8) (1)3 + (8× 1)(4.5)2

}
+
{

1
12

(8) (1)3 + (8× 1)(−4.5)2

}

= 368 in4

Iyz = Iyz1 + Iyz2 + Iyz3

= {(0)}+ {(0) + (8)(4.5)(1.5)}+ {(0) + (8)(−4.5)(−1.5)}

= 108 in4

The shear forces on the section can be calculated by taking sum of forces

+ ↑
∑

Fy = 0 = Vy + 10000 lb → Vy = −10000 lb

+→
∑

Fz = 0 = Vz + 1000 lb → Vz = −1000 lb

The bending moments on the section can be calculated by taking sum of moments at the
free end

+ 	
∑

My = 0 = Myy + (1000 lb)(50 in) → Myy = −50000 lb–in

+ 	
∑

Mz = 0 = Mzz − (10000 lb)(50 in) → Mzz = 500000 lb–in

Substituting the bending moments and second moments of inertia into Eq. (5.12), we get

σxx = −1673 y + 1071 z (5.26)

The maximum axial stress on the section is

σxx

∣∣∣
max

= 11, 040 psi at y = −5 in, z = 2.5 in (5.27)

The neutral axis of this section is defined by those points for which

σxx = 0 → y = 0.6403 z (5.28)

End Example �
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Example 5.2.

For example in Section 4.3: Students have approximated a machine component using a beam
model as shown in Fig. 5.7. The cantilever beam’s squared cross section is uniform. These
engineers need your help to analyze this component and they have a five-day deadline to
complete the analysis. Take a = 25 mm, b = 5 mm. Use the stress convention and show all
your steps.

y 

 

x 

z 

100 N/m 

1000 N  

1000 N 

y 

z 
100 N/m 

Cross-sectional 
view 

a  
a  

b  b  
 L 

Figure 5.7: Machine component for example below.

What is the value for the maximum normal stress and where is it located at?

Using the flexure formula:

σxx =
{

1 y z
}




1
A

0 0

0 − 1
Ryz

− 1
Ryy

0
1
Rzz

1
Ryz








Nxx

Myy

Mzz





For our problem:

Nxx = 0 Iyz = 0 ∆I =
(
Iyy Izz − I2

yz

)
=

16 a4 b4

9
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Thus,

σxx = −Mzz

Izz
y +

Myy

Iyy

z

= −
{

75 (L− x)2

2 a3 b

}
y −

{
750 (L− x)

a b3

}
z

= −4.8× 108 (L− x)2
y − 2.4× 1011 (L− x) z

From the plots we see that the maximum moments occur at the fixed-end and thus the
maximum normal stress will also occur at this point:

x = 0 → σxx = −4.8× 108 L2 y − 2.4× 1011 Lz

Maximum normal stress will occur at:

y = −a z = −b → σxx = 1200L+ 12L2 MPa

End Example �
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5.5 Transverse Shear Stress

Shear stress3 is a stress state where the shape of a material tends to change (usually by sliding forces or
torque by transversely-acting forces) without particular volume change. The shape change is evaluated
by measuring the change of the angle’s magnitude (shear strain). In laboratory testing, shear stress is
achieved by torsion of a specimen. Direct shear of a specimen by a moment induces shear stress, as
well as tensile and compressive stress. Structural members subjected in pure shear stress are the torsion
bars and the driving shafts in automobiles. Riveted joints and some bolts are also subjected mainly to
shear stress. Cantilevers, beams, consoles and column heads are subject in composite loading, consising
of shear, tensile and compressive stress. Also constructions in soil can fail due to shear, e.g. the weight
of an earth fill dam or dike may cause the subsoil to collapse, like a small landslide.

5.5.1 Bending of Symmetric Beams with Shear

For small members in shear, it is customary to assume shear is uniformly distributed over the entire
area:

τ =
Vy

Aave

However, this assumption is not permissible for many beam cross sections. The vertical shearing stress
at any point in a beam may be determined from the horizontal shearing stress at that cross-section.

Shear Stress due to Shear Loads

In addition to the bending (axial) stress which develops in a loaded beam, there is also a shear stress
which develops, including both a vertical shear stress, τxy, and a horizontal (longitudinal) shear stress,
τyx. It was shown that at any given point in the beam, the values of vertical shear stress and the
horizontal shear stress must be equal:

τxy = τyx

As a result it is usual to discuss and calculate the horizontal shear stress in a beam (and simply remember
that the vertical shearing stress is equal in value to the horizontal shear stress at any given point).

Let us derive an expression for the horizontal shear stress, τyx. In order to do so, let us cut a section
dx long out of the left end of the beam. The internal horizontal forces acting on the section are shown
in Fig. 5.8. In the side view of section dx, the bending moment is larger on the right hand face of the
section by an amount dMzz.

Now let us take a top slice of section dx. Since the forces are different between the top of the section
and the bottom of the section (less at the bottom) there is a differential (shearing) force which tries to
shear the section, shown in Fig. 5.9, horizontally. This means there is a shear stress on the section, and
in terms of the shear stress, the differential shearing force, F , can be written as F times the longitudinal

3According to Wikipedia
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x 

y 

z 

Mzz 

dx 

y 

z x 

Mzz+ dMzz 

dx 
Mzz

Figure 5.8: Side view of element dx of a beam.

area of the section (t dx). Thus,
−Fyx + Fxx − dFxx = 0

Using a two-term Taylor expansion:

dFxx = Fxx +
dFxx

dx
dx

The forces are
Fxx =

∫∫

A

σxx dA

Fyx = τyx t dx

and

dFxx = Fxx +
dFxx

dx
dx =

∫∫

A

σxx dA+
(∫∫

A

dσxx

dx
dA

)
dx

Thus equilibrium in the x-direction gives

−Fyx + Fxx − dFxx = 0

−τyx t dx+
∫∫

A

σxx dA−
{∫∫

A

σxx dA+
(∫∫

A

dσxx

dx
dA

)
dx

}
= 0

−τyx t dx−
(∫∫

A

dσxx

dx
dA

)
dx = 0

Now the average shear stress on the lower face of the element over the finite width t is

τyx t dx = −
(∫∫

A

dσxx

dx
dA

)
dx → τyx = −1

t

∫∫

A

dσxx

dx
dA (5.29)

Recall the normal bending stress, σxx for a symmetric cross-section of an isotropic beam under the
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x 
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Figure 5.9: Element of a beam showing shear stress.

Euler-Bernoulli hypothesis and with Myy = 0, is

σxx = −Mzz

Izz
y

Thus

τyx = −1
t

∫∫

A

dσxx

dx
dA = −1

t

∫∫

A

d

dx

(
−Mzz

Izz
y

)
dA =

1
Izz t

∫∫

A

dMzz

dx
y dA

To obtain the correct sign for the shear stress, let us examine the top horizontal cut taken above the
neutral axis. The area formed from the horizontal cut is also above the neutral axis. We can then say
the following:

Vy > 0 → dMzz

dx
= −Vy → dMzz

dx
< 0 → dMzz < 0 (5.30)

Then
τyx =

1
Izz t

∫∫

A

−dMzz

dx
y dA

Also, recall
dMzz(x)
dx

= −Vy(x)

Thus
τyx =

1
Izz t

∫∫

A

Vy y dA =
Vy

Izz t

∫∫

A

y dA =
VyQz

Izz t
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For static equilibrium,

τxy = τyx =
VyQz

Izz t

Recall Izz is the moment of inertia about the neutral axis of the entire undeformed cross section stemming
from the use of the flexure formula, Vy the shear force at location along the beam where we wish to find
from the horizontal shear stress, t the width of the beam at point where we wish to determine the shear
stress, and Qz the first moment of area about the y-axis. The first moment of area about the y-axis is
defined as

Qz =
∫∫

A

y dA =
∑

ȳ A

where A is the cross-sectional area of top portion of the neutral axis and ȳ the distance to centroid of
A, measured from neutral axis.

Usually we talk in terms of shear flow, which is defined as

qxy =
VyQz

Izz
(5.31)

The shear stress is then defined as
τxy =

qxy

t
=
VyQz

Izz t
(5.32)

and the total shear force as
Fxy = qxy s =

VyQz

Izz
s (5.33)

where s is the measure of the total distance to the location of the desired shear force. The minus sign in
the shear stress indicates that the shear flow acts downwards (in the negative y-direction). However, to
be consistent with our sign convention, we take the shear stress upwards and the that is the motivation
we keep the sign.
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Maximum Shear Stress for Several Cross-Sections

The maximum shear stress acts at the neutral axis. It can be shown that the maximum shear stresses
for the following common cross-sections are:

 

Solid rectangular: τmax =
3
2
Vy

A

 

Solid circular: τmax =
4
3
Vy

A

 

Hollow circular: τmax =
2Vy

A

 

I-web: τmax =
Vy

Aweb
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5.5.2 Shear Stress due to Torsional Load

Theory

In most, mechanical engineering applications, torque applied to beam comes as a result of the beam
been attached to a power source or an applied load. The beam in such a case is called shaft and the
torque T applied is then the moment about the shaft’s axis, i.e.,

Mxx = T

 

y 

x 
z 

Mxx=T

Positively-oriented
surface 

Negatively-oriented
surface 

y 

z

x 

y

z 
x

r

When it is associated to a power source, then the torque can be calculated using the following
relationship:

T =
396000 Ẇhp

ω
=

63025 Ẇhp

n
for ips unit system

where T is the torque in lb–in, n the shaft speed in rpm (rev/min), ω the angular velocity in rad/min,
and Ẇhp the source’s power measured in horsepower. In the SI units,

T =
60000 Ẇkw

ω
=

9549 Ẇkw

n
for SI unit system

where T is the torque in N–m, n the shaft speed in rpm (rev/min), ω the angular velocity in rad/min,
and Ẇkw the source’s power measured in kilowatts.

When it is associated to an applied load, then the torque is

T = F d

where F is the applied force and d the distance from the force to the neutral axis.

The magnitude of the shear stress at distance r (distance from the neutral axis to the point the shear
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F

d

y 

x
z 

F 

y

z
Mxx=T 

x 

will be calculated) is

τtorsion =
T r

Jxx

(5.34)

where Jxx is the polar moment of inertia of the cross-sectional area and is defined as:

Jxx =
∫∫

A

r2 dA =
∫∫

A

(
y2 + z2

)
dA =

∫∫

A

y2 dA+
∫∫

A

z2 dA = Iyy + Izz (5.35)

The maximum shear stress for circular cross-sections is found at r = c, where c is the cross-sectional
radius. The same is not true for noncircular cross-sections.
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The sign and direction it determined depending on the desired location of the shear stress. As for
an example,

 

 

 

y

z

T
x

A 

B 

C

D

The shear stress is

at A: τxz = +τtorsion =
T c

Jxx

at B: τxy = −τtorsion = −T c
Jxx

at C: τxz = −τtorsion = −T c
Jxx

at D: τxy = +τtorsion =
T c

Jxx

Maximum Shear Stress for Several Cross-Sections

The above equations are based under the assumptions used in the analysis are:

1. The bar is acted upon by a pure torque, and the sections under consideration are remote from the
point of application of the load and from a change in diameter.

2. Adjacent cross sections originally plane and parallel remain plane and parallel after twisting, and
any radial line remains straight.

3. The material obeys Hooke’s law.

For cases bars of non circular cross section, the above equations should not be used because cross-
sectional planes distort significantly when bars of noncircular cross sections are twisted. Although the
development of equations for torsional shearing stress in noncircular cross sections is complicated, one
means of analysis in such cases is by utilizing the membrane analogy. Three important observations
have been established for interpreting results from the membrane analogy:

1. The tangent to a contour line (line of constant elevation) at any point on the deflected membrane
gives the direction of the torsional shearing stress vector at the corresponding point in the cross
section of the twisted bar.

2. The maximum slope of the membrane at any point on the deflected membrane is proportional to
the magnitude of the shearing stress at the corresponding point in the cross section of the twisted
bar.
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3. The volume enclosed between the datum base-plane and the contoured surface of the deflected
membrane is proportional to the torque on the twisted bar.

All of these observations may be readily verified analytically for a twisted bar of circular cross section.
Experimental agreement with the observations for noncircular shapes is excellent. Thus, typically it is
possible to formulate an expression for maximum shearing stress in a noncircular bar subject to torque
T as

τmax =
T c

Jxx

=
T
Jxx

c

=
T

Q

where Q is function of the cross-sectional geometry. These are given in Table 5.2.
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Table 5.2: Geometric expressions for various cross-section shapes in torsion

Shape Jxx Q

a b3
{

16
3
− 3.36

(
b

a

) (
1− b4

12 a4

)}
8 a2 b2

3 a+ 1.8 b

2.25 a4 a4

0.6

2 t (a− t)2 (b− t)2

a+ b− 2 t
2 t (a− t) (b− t)

t (a− t)3 2 t (a− t)2

 

y 

z 
b

b

aa
π a3 b3

a2 + b2
π a b2

2

π a3 b3

a2 + b2

{
1−

(
1− t

a

)4
}

π a b2

2

{
1−

(
1− t

a

)4
}

1
3
P t3 (t� P )

P 2 t2

3P + 1.8 t
(t� P )

P is the length of the median line. The back dots indicate the location of maximum shear stress
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Example 5.3.

Design of Torsionally Loaded Shafts

Experimental power measurements made on a new-style rotary garden tiller indicate that un-
der full load conditions the internal combustion engine must supply 4.3 horsepower, steadily,
to the mechanical drive train. Power is transmitted through a solid 0.50-inchdiameter round
steel shaft rotating at 1800 rpm. It is being proposed to replace the round steel shaft with a
solid square shaft of the same material. Evaluate the proposal by determining the following
information:

(a) What is the steady full-load torque being transmitted by the round steel shaft?

(b) What is the maximum stress in the round shaft, what type of stress is it, and where
does it occur?

(c) Assuming that the measurements of power transmitted by the round shaft were made
under full load, as specified, what design-allowable stress was probably used for the
shaft?

(d) What design-allowable stress should be used in estimating the size required for the
proposed square shaft?

(e) What size should the proposed square shaft be made to be “equivalent” to the existing
round shaft in resisting failure?

Solution:

(a) What is the steady full-load torque being transmitted by the round steel shaft?

Using equation

T =
63025 Ẇhp

n
=

(63025)(4.3)
1800

= 150.6 lb–in

(b) What is the maximum stress in the round shaft, what type of stress is it, and where
does it occur?

The torque on the round shaft produces torsional shearing stress that reaches a maxi-
mum value all around the outer surface. The magnitude of the maximum shearing stress
is

τmax =
T

Q

where

Q =
π d3

16
Thus

τmax =
T

Q
=

16T
π d3 =

16 (150.6)
π (0.50)3 = 6136 psi

c©2012 by Vijay K. Goyal. All Rights Reserved.



5.5. TRANSVERSE SHEAR STRESS 340

(c) Assuming that the measurements of power transmitted by the round shaft were made
under full load, as specified, what design-allowable stress was probably used for the
shaft?

Since the design objective is to size the part so that the maximum stress under “design
conditions” is equal to the design-allowable stress τall:

τall = τmax = 6136 psi

(d) What design-allowable stress should be used in estimating the size required for the pro-
posed square shaft?

Since the material for the square shaft is the same as for the round shaft, the designal-
lowable shearing stress should be the same. Hence, for the square shaft

τall = 6136 psi

(e) What size should the proposed square shaft be made to be “equivalent” to the existing
round shaft in resisting failure?

The proposed square shaft is in the category of a noncircular bar subjected to torsion;
hence,

Qcircular =
T

τall
=

150.6
6136

= 0.025 in3

For the square shaft, case 3 of Table 4.4 may be utilized by setting a = b, giving

Qsquared =
5
3
a3 = 1.67 a3

Equating Qcircular = Qsquared gives

Qcircular = Qsquared → 0.025 in3 = 1.67 a3 → a = 0.25 in

Hence the dimension.s of each side of the square should be

s = 2 a = 0.50 in

End Example �
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5.5.3 Total Shear Stress: Torsional Load and Shear Load

The total shear at a point is determined by superposition:

τ = τtorsion + τshear load (5.36)

It is extremely important to watch out for signs: we must be consistent with our sign convention.

Thus in the presence of shear and torsional loads

 

 

 

y

z

T
x

A 

B 

C

DVy 

The shear stress is

at A: τxz =
T

Q
at B: τxy = −T

Q
+
VyQz

Izz t

at C: τxz = −T
Q

at D: τxy =
T

Q
+
VyQz

Izz t
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5.6 Design of Beams and shafts

• Draw the load diagrams whenever possible.

• Locate the critical points (points where the loads have maximum values along the beam or shaft’s
axis).

• Obtain the state of stress acting at critical points of the cross section.

• Obtain the allowable stress.

σallowable =
Syield

nSF

τallowable =
Syield

nSF

• Obtain the geometrical stress properties from tables.

Z =
Mzz

σall

Q =
T

τall

• Find the principal stress.

• Solve the problem.

Note that these equations are quite useful:

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ , σeq =
√
I2
σ1
− 3 Iσ2 =

√
σ2

xx + 3 τ2

where τ is τxy or τxz.
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Example 5.4.

DESIGN OF SHAFT FOR COIL SUTTER

The following example is obtained from Hamrock (2005). Given: Flat rolled sheets are pro-
duced in wide rolling mills, but many products are manufactured from strip stock. Figure
bellow depicts a coil slitting line, where large sheets are cut into ribbons or strips.

 

 

 

Operator’s 
console 

Two-roll  
tension stand 

Recoiler 

Slitter Entry pinch 
Rolls and guide 
table 

Peeler

Coil-loading car 

Payoff reel 
(uncoiler) 

Figure below shows a shaft supporting the cutting blades. The rubber rollers ensure that
the sheet does not wrinkle. For such slitting lines the shafts that support the slitting knives
are a highly stressed and critical component.

 

 

 

Rubber roller 
Steel spacers 

Key 
Driveshaft 

Lower driveshaft 
Rubber rollers 

Lower slitter blade 
Steel spacers  
(behind slitter blade) 

Slitter blade 
Setscrew 

Collar 

Collar 

Figure below is a free-body diagram of a shaft for a short slitting line where a single blade
is placed in the center of the shaft and a motor drives the shaft through a pulley at the far
right end.
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d 

 10 in  10 in  5 in    6 in

 500 lb  
 180 lb   540 lb 

RB 

RA 

y 

x

y 

z

F 

T 

Find: If the maximum allowable shear stress is 6000 psi and the largest gage sheet causes a
blade force of 500 lb, what shaft diameter d is needed?

First of all note that the goal is to obtain the maximum overall shear stress τmax acting at
the critical location of the shaft. This maximum overall shear stress will be a function of the
shaft’s diameter d. Thus

τmax = τall

and we can solve for d. Let us think of a five-step solution:

(a) Obtain the reaction forces.

(b) Obtain and plot the shear, moment, and torque diagrams.

(c) Determine the critical location(s) of the shaft.

(d) Obtain the state of stress of the cross-section at each critical location and use the
eigenvalue approach to determine the maximum allowable shear stress. Solve for the
diameter.

(e) Choose the optimum diameter and discuss your results.
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Solution:

(a) Obtain the reaction forces.

It should be clear that the total force exerted by the pulley is:

F = 180 lb + 540 lb = 720 lb

The reactions are found through statics:

+ ↑
∑

Fy = 0 = RA − 500 lb−RB + 720 lb

+ 	
∑

Mz

∣∣
at reaction RA

= 0 = −(500 lb)(10 in)− (RB)(20 in) + (720 lb)(15 in)

Solving the above system of equations, we find that the reaction forces are:

RA = 430 lb RB = 650 lb

The positive sign indicated that the reaction forces are shown in Figure were assumed
correctly.
In addition to the above, there is a constant torque along the shaft’s axis. This torque
is calculated using a free body diagram and our sign convention: 

 

 

 180 lb  

 540 lb 

x

y 

z

720 lb 

y 

T

 6 in 

xT 

+ 	
∑

Mx

∣∣
positive in the x-axis

= 0 = −T (x) + (540 lb)(6 in)− (180 lb)(6 in)

Thus there is a torque of 2160 lb–in between the pulley and the knife blade. Now the
free body diagram is

y 

720 lb500 lb 650 lb

 

430 lb
5 in10 in 10 in

2160 lb-in2160 lb-in x
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(b) Obtain and plot the shear, moment, and torque diagrams.

Let us start with shear Vy(x).
The equation for shear for 0 < x < 10 (x measured from the reaction A) is

+ ↑
∑

Fy = 0 ⇒ Vy1(x) + 430 lb = 0

Vy1(x) = −430 lb

The equation for shear for 10 < x < 20 (x measured from the reaction A) is

+ ↑
∑

Fy = 0 ⇒ Vy2(x) + 430 lb− 500 lb = 0

Vy2(x) = 70 lb

The equation for shear for 20 < x < 25 (x measured from the reaction A) is

+ ↑
∑

Fy = 0 ⇒ Vy3(x) + 430 lb− 500 lb− 650 lb = 0

Vy3(x) = 720 lb

Now find the moment equations Mzz(x). Recall

dMzz(x)
dx

= −Vy(x) ⇒ Mzz(x) = −
∫

Vy(x) dx+Mzz0

The equation for moment for 0 < x < 10 (x measured from the reaction A) is

Mzz1(x) = −
∫

Vy1(x) dx+Mzz1a = −
∫

(−430) dx+Mzz1a = 430x+Mzz1a

Using boundary conditions:

Mzz1(x)
∣∣
x=0

= 0 = Mzz1a

Thus
Mzz1(x) = 430x [lb–in]

The equation for moment for 10 < x < 20 (x measured from the reaction A) is

Mzz2(x) = −
∫

Vy2(x) dx+Mzz2a = −
∫

(70) dx+Mzz2a = −70x+Mzz2a

Using boundary conditions:

Mzz2(x)
∣∣
x=10

= Mzz1(x)
∣∣
x=10

→ −700 +Mzz2a = 4300 → Mzz2a = 5000

Thus
Mzz2(x) = −70x+ 5000 [lb–in]

The equation for moment for 20 < x < 25 (x measured from the reaction A) is

Mzz3(x) = −
∫

Vy3(x) dx+Mzz3a = −
∫

(720) dx+Mzz3a = −720x+Mzz3a
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Using boundary conditions:

Mzz3(x)
∣∣
x=20

= Mzz2(x)
∣∣
x=20

→ −14400 +Mzz3a = 3600 → Mzz3a = 18000

Thus
Mzz3(x) = −720x+ 18000 [lb–in]
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(c) Determine the critical location(s) of the shaft.

It is clear that the maximum shear occurs just to the left of the pulley and equals 720
lb (x = 20+ in). The maximum bending moment is 4300 lb–in (x = 10+ in). Thus the
critical locations in the shaft are: the location in the shaft where the moment is largest
(x = 10+ in) and the location where the shear is largest (x = 20+ in → 25 in).

(d) Obtain the state of stress of the cross-section at each critical location and use the
eigenvalue approach to determine the maximum allowable shear stress. Solve for the
diameter.

i) Location of maximum bending moment: x = 10+ in.

 

 

 

y

z 

T
x

A 

B 

C

DVy 

Mzz 

At this cross-section, the loads are:

Vy = 70 lb Mzz = 4300 lb–in T = Mxx = 2160 lb–in

First of all, note that:

X at points A and C the shear stress due to shear load (Vy) is zero

X at points A and C the normal stress due to bending is critical

X at points B and D the normal stress due to bending is zero

X at points B and D the shear stress due to shear load is maximum

X at points A, B, C, and D the shear stress due torsional load exits

X at all points the normal stress due axial load is zero (does not exit)

X σyy = σzz = τyz = 0

At the point A, we only have normal stress due to bending. At point A, there
is no shear stress due to shear load. However, the shear stress is due to the torque
exerted on the pulley. Thus

σxx = −Mzz

Izz
y where y = c = +

d

2
→ σxx =

Mzz

Izz
c

σxx = −Mzz

Z
where Z =

π d3

32

σxx = − (4300)
π d3

32

= −43800
d3
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and
τxz =

T r

Jxx

where r = c =
d

2
→ τxz =

T c

Jxx

τxz =
T

Q
where Q =

π d3

16

τxz =
(2160)
π d3

16

=
11000
d3

The state of stress is

σA =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =

1
d3



−43800 0 11000

0 0 0
11000 0 0


 psi

Now we proceed to evaluate the principal stresses. The stresses invariants are

Iσ1 = σxx + σyy + σzz = −43800
d3

Iσ2 = σxx σyy + σzz σxx + σyy σzz − τ2
xy − τ2

yz − τ2
zx = −

(
11000
d3

)2

Iσ3 = σxx σyy σzz + 2 τxy τyz τzx − σxx τ
2
yz − σyy τ

2
zx − σzz τ

2
xy = 0

The characteristic equation is

λ3 − Iσ1 λ
2 + Iσ2 λ = λ

(
λ2 − Iσ1 λ+ Iσ2

)
= 0

The principal stresses can be obtained analytically:

λ1 =
Iσ1

2
+

1
2

√
I2
σ1
− 4 Iσ2 =

2607
d3

λ2 =
Iσ1

2
− 1

2

√
I2
σ1
− 4 Iσ2 = −46407.34

d3

λ3 = 0

Since d > 0, then

σ1 =
2607
d3 , σ2 = 0, σ3 = −46407.34

d3

The overall maximum shear stress is

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ =
24507.17

d3
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Thus,

τmax = τall
24507.17

d3 = 6000 → d = 1.60 in

At the point C, we only have normal stress due to bending. At point C, there
is no shear stress due to shear load. However, the shear stress is due to the torque
exerted on the pulley. Thus

σxx = −Mzz

Izz
y where y = −c = −d

2
→ σxx =

Mzz

Izz
c

σxx =
Mzz

Z
where Z =

π d3

32

σxx =
(4300)
π d3

32

=
43800
d3

and
τxz = −T r

Jxx

where r = c =
d

2
→ τxz = −T c

Jxx

τxz = −T
Q

where Q =
π d3

16

τxz = − (2160)
π d3

16

= −11000
d3

The state of stress is

σC =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =

1
d3




43800 0 −11000
0 0 0

−11000 0 0


 psi

Now we proceed to evaluate the principal stresses. The stresses invariants are

Iσ1 = σxx + σyy + σzz =
43800
d3

Iσ2 = σxx σyy + σzz σxx + σyy σzz − τ2
xy − τ2

yz − τ2
zx = −

(
11000
d3

)2

Iσ3 = σxx σyy σzz + 2 τxy τyz τzx − σxx τ
2
yz − σyy τ

2
zx − σzz τ

2
xy = 0

The characteristic equation is

λ3 − Iσ1 λ
2 + Iσ2 λ = λ

(
λ2 − Iσ1 λ+ Iσ2

)
= 0
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The principal stresses can be obtained analytically:

λ1 =
Iσ1

2
+

1
2

√
I2
σ1
− 4 Iσ2 =

46407.34
d3

λ2 =
Iσ1

2
− 1

2

√
I2
σ1
− 4 Iσ2 = −2607

d3

λ3 = 0

Since d > 0, then

σ1 =
46407.34

d3 , σ2 = 0, σ3 = −2607
d3

The overall maximum shear stress is

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ =
24507.17

d3

Thus,

τmax = τall
24507.17

d3 = 6000 → d = 1.60 in

Note that at Point C gives the same result as point A.
At point B, the bending stress is zero and the stress is due to torsional and shear
loads. The torsion-induced shear stress is subtracted from this shear stress. Thus,
the total shear is

τxy = −T c
Jxx

+
VyQz

Izz t

At point B the shear stress due to shear load is maximum and for a circular cross
section is:

τxy

∣∣
max shear

=
4
3
Vy

A
=

4 (70)

3
(
π d2

4

) =
119
d2

Thus
τxy = −T

Q
+

4
3
Vy

A
= −11000

d3 +
119
d2

However, the maximum shear stress will occur at D. At one end of the shaft, the
torsion-induced shear stress is subtracted from this shear stress; at the other end,
the effects are cumulative. Thus at point D, the total shear is

τxy =
T c

Jxx

+
VyQz

Izz t

At point D the shear stress due to shear load is maximum and for a circular cross
section is:

τxy

∣∣
max shear

=
4
3
Vy

A
=

4 (70)

3
(
π d2

4

) =
119
d2
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Thus
τxy =

T

Q
+

4
3
Vy

A
=

11000
d3 +

119
d2

σD =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




0
119
d2 +

11000
d3 0

119
d2 +

11000
d3 0 0

0 0 0


 psi (5.37)

The principal stresses are

σ1 =
119
d2 +

11000
d3

σ2 = 0

σ3 = −119
d2 −

11000
d3

The overall maximum shear stress is

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ =
119
d2 +

11000
d3

Thus,

τmax = τall
119
d2 +

11000
d3 = 6000 → d = 1.22 in

It was not necessary to obtain the diameter for shear since, shear load is not max-
imum at x = 10+. This is the motivation for verifying x = 20+, where shear is
maximum. However, the previous analysis was done for completeness.

ii) Location of maximum shear: x = 20+ in → 25 in. Let us choose x = 25 in
because the bending moment is zero and the the bending stress vanishes, greatly
simplifying our results. (However, one should also always evaluate at x = 20+ in to
ensure the accuracy of the results.)

 

 

 

y

z 

T
x

A 

B 

C

DVy 

Mzz 

At this cross-section, the loads are:

Vy = 720 lb Mzz = 0 lb–in T = Mxx = 2160 lb–in

First of all, note that:

X at points A and C the shear stress due to shear load (Vy) is zero

c©2012 by Vijay K. Goyal. All Rights Reserved.



5.6. DESIGN OF BEAMS AND SHAFTS 354

X at points A and C the normal stress due to bending is zero (no bending moment)
X at points B and D the normal stress due to bending is zero
X at points B and D the shear stress due to shear load is maximum
X at points A, B, C, and D the shear stress due torsional load exits
X at all points the normal stress due axial load is zero (does not exit)
X σyy = σzz = τyz = 0

As stated previously, the maximum shear stress will occur at D. At one end of the
shaft, the torsion-induced shear stress is subtracted from this shear stress; at the
other end, the effects are cumulative. Thus, the total shear is

τxy =
T c

J
+
VyQz

Izz t

At point D the shear stress is due to shear load is maximum and for a circular cross
section:

τxy

∣∣
max shear

=
4
3
Vy

A
=

4 (720)

3
(
π d2

4

) =
1222
d2

Thus
τxy =

T

Q
+

4
3
Vy

A
=

11000
d3 +

1222
d2

σB =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




0
1222
d2 +

11000
d3 0

1222
d2 +

11000
d3 0 0

0 0 0


 psi (5.38)

The principal stresses are

σ1 =
1222
d2 +

11000
d3

σ2 = 0

σ3 = −1222
d2 −

11000
d3

The overall maximum shear stress is

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ =
1222
d2 +

11000
d3

Thus,

τmax = τall
1222
d2 +

11000
d3 = 6000 → d = 1.279 in

(e) Choose the optimum diameter and discuss your results.

As in most shaft applications the normal stresses due to bending determine the shaft
diameter, so that a shaft with a diameter not less than 1.60 in should be used. A number
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of points should be made regarding this analysis:

X When the normal stress due to bending was calculated, the shear stress due to
shear was neglected, even though there was shear in the shaft at that location.
However, the distribution of normal stress is such that it is extreme at the top and
the bottom, where the shear stress is zero.

X When the maximum shear stress due to vertical shear was calculated, the effects of
bending were ignored. The bending stress is zero at the neutral axis, the location
of the maximum shear stress.

X There are two general shaft applications. Some shafts are extremely long, as in this
problem, whereas others are made much shorter to obtain compact designs. A coil
slitter can have shafting more than 20 ft long, but more supporting bearings would
be needed for stiffness. This shaft was used only as an illustrative example; in actu-
ality the supporting bearings would be placed much closer to the load application,
and more than two bearing packs would probably be appropriate.

X The 10-in clearance between the leftmost bearing and the slitting knives is totally
unnecessary and would lead to larger shaft deflections.

End Example �
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Example 5.5.

DESIGN OF SHAFT A circular-steel solid one-inch diameter shaft is loaded by the four

 

 

 

250 lb 200 lb

300 lb 150 lb

5 in 5 in 5 in 

1000 lb-in 1000 lb-in

25 lb 75 lb 50 lb 

y 

x

vertical forces (an upward vertical force of 250 lb at x = 0 in, a downward vertical force of 300
lb at x = 5 in, a downward vertical force of 150 lb at x = 10 in, an upward vertical force of
200 lb at x = 15 in), three axial forces (an outward axial force of 25 lb at x = 0 in, an inward
axial force of 75 lb at x = 5 in, an outward axial force of 50 lb at x = 10 in), and torques
(an inward torque of 1000 lb–in at x = 5 in, an outward torque of 1000 lb–in at x = 15 in)
as shown in Figure, which result from the actions of helical gears and shaft’s rolling-element
bearing supports. All loads are applied at the shafts neutral axis. Give dimensional units to
all answers, including plots.

(a) Determine the cross sectional area Ax, the second moment of inertia Izz, and the polar
moment of inertia Jxx.

(b) Draw the shear force diagram: Vy(x) for 0 < x < 15.

(c) Draw the bending moment diagram: Mzz(x) for 0 < x < 15.

(d) Draw the normal force diagram: Nxx(x) for 0 < x < 15.

(e) Using the above information determine the location(s) in the shaft’s axis (x-axis) where
the stresses are critical. Justify your answer with a sentence or two.

(f) For the cross-section at x = 5+, determine the state of stress at points A, B, C, D, and
E.

(g) For each state of stress (points A, B, C, D, and E), determine the maximum normal
stress and maximum shear stress.

(h) What is the critical cross-sectional stress location at x = 5+?
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250 lb 
x=5+ in 

25 lb 

y 

x

300 lb

1000 lb-in 

75 lb 

y

z x 

A

B

C

D 
E

x=5+ in 

(a) Determine the cross sectional area Ax, the second moment of inertia Izz, and the polar
moment of inertia Jxx.

Using Table 4.2 (page 171)

Ax =
π d2

4
=
π

4
= 0.785 in2

Izz =
π d4

64
=

π

64
= 0.0491 in4

Jxx = Izz + Iyy =
π d4

32
=

π

32
= 0.0982 in4

(b) Draw the shear force diagram: Vy(x) for 0 < x < 15.

(c) Draw the bending moment diagram: Mzz(x) for 0 < x < 15.
We proceed to calculate the shear. Note that because of discontinuity in shear at x = 5
and x = 10, we calculate the shear in three sections.
The equation for shear is (0 ≤ x ≤ 5)

 

 

 

Vy1 
Mzz1 

x 
250 lb 

+ ↑
∑

Fy = 0 ⇒ Vy1(x) + 250 = 0 (5.39)
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Vy1(x) = −250 lb (5.40)

The equation for moment is

Mzz1(x) = −
∫
Vy1(x)dx+Mz10

= −
∫

(−250)dx+Mz10 = 250x+Mz10

Mz10 is found from boundary conditions: at x = 0 the value of the moment should be
zero (There are no external moments):

Mzz1

∣∣
x=0

+ 0 = 0 ⇒ Mzz1

∣∣
x=0

= 0

Then
Mzz1(0) = Mz10 = 0

Mzz1(x) = 250x lb-in (5.41)

The equation for shear is (5 ≤ x ≤ 10) 

 

 

Vy2 
Mzz2 

x 
250 lb 

300 lb 

+ ↑
∑

Fy = 0 ⇒ Vy2(x) + 250− 300 = 0 (5.42)

Vy2(x) = 50 lb (5.43)

The equation for moment is

Mzz2(x) = −
∫
Vy2(x)dx+Mz20

= −
∫

(50)dx+Mz20 = −50x+Mz20

Mz20 is found from boundary conditions: at x = 5 :

Mzz1

∣∣
x=5

= Mzz2

∣∣
x=5

⇒ Mzz2

∣∣
x=5

= Mzz1(5) = 1250
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Then

Mzz2(5) = 1250 → −50 (5) +Mz20 = 1250 → Mz20 = 1500

Mzz2(x) = −50x+ 1500 lb-in (5.44)

The equation for shear is (10 ≤ x ≤ 15)
 

 

 

Vy3 
Mzz3 

x 
250 lb 

300 lb 150 lb 

+ ↑
∑

Fy = 0 ⇒ Vy3(x) + 250− 300− 150 = 0 (5.45)

Vy3(x) = 200 lb (5.46)

The equation for moment is

Mzz3(x) = −
∫
Vy3(x)dx+Mz30

= −
∫

(200)dx+Mz30 = −200x+Mz30

Mz30 is found from boundary conditions: at x = 10 :

Mzz2

∣∣
x=10

= Mzz3

∣∣
x=10

⇒ Mzz2

∣∣
x=10

= Mzz2(10) = 1000

Then

Mzz3(10) = 1000 → −200 (10) +Mz30 = 1000 → Mz30 = 3000

Mzz3(x) = −200x+ 3000 lb-in (5.47)

The moment diagram is

(d) Draw the normal force diagram: Nxx(x) for 0 < x < 15.

We proceed to calculate the axial force. Note that because of discontinuity in axial at
x = 5 and x = 10, we calculate the axial force in three sections.

The equation for axial force is (0 ≤ x ≤ 5)

+→
∑

Fx = 0 ⇒ Vx1(x) + 25 = 0 (5.48)
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The shear diagram is

 

 

 
 
 
 
 

2 4 6 8 10 12 14

-300

-200

-100

100

200

 

x, [in]

Vy(x), [lb] 

 

 

 
 
 
 
 

2 4 6 8 10 12 14

200

400

600

800

1000

1200

1400

 
x, [in]

Mzz(x), [lb-in] 

Vx1(x) = −25 lb (5.49)

The equation for axial force is (5 ≤ x ≤ 10)

+→
∑

Fx = 0 ⇒ Vx2(x) + 25− 75 = 0 (5.50)

Vx2(x) = 50 lb (5.51)

The equation for axial force is (10 ≤ x ≤ 15)

 

 

 

x

25 lb Vx3 75 lb 50 lb 
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x 

25 lb Vx1  

 

 

x

25 lb Vx2 75 lb 

+→
∑

Fx = 0 ⇒ Vx3(x) + 25− 75 + 50 = 0 (5.52)

Vx3(x) = 0 lb (5.53)
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The axial load diagram is

 

 

 
 
 

2 4 6 8 10 12 14

-20

20

40

60

 

x, [in]

Vx(x), [lb] 

Although not asked, the torque diagram is
 

 

2 4 6 8 10 12 14

200

400

600

800

1000

1200

1400

 
 
 
 

x, [in]

T(x), [lb-in] 
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(e) Using the above information determine the location(s) in the shaft’s axis (x-axis) where
the stresses are critical. Justify your answer with a sentence or two.

At first it is not clear where the critical location is; the shear force is highest between
0 < x < 5, but the moment is highest at x = 5. Also, the torque is highest in the
range 5 < x < 10, and the axial load in tensile between 5 < x < 10 but compressive for
0 < x < 5. It seems like 5− < x < 5+ is the critical point the shaft.

In practice, a design engineer must analyze all potential critical locations to determine
the most critical one. That is the motivation to choose x = 5+ in the next question.
However, one should check each critical location to determine whether the structure is
safe or not.

(f) For the cross-section at x = 5+, determine the state of stress at points A, B, C, D, and
E.

 

 

 

250 lb 
x=5+ in 

25 lb 

y 

x

300 lb

1000 lb-in 

75 lb 

y

z x 

A

B

C

D 
E

x=5+ in 

Hint: Recall

σ =



σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


 =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz




Thus find
σA, σB, σC, σD, σE

Before we proceed note that at x = 5+ the loads are:

Vy = 50 lb Mzz = 1250 lb–in T = 1000 lb–in P = 50 lb

and since points A, B, C, D, and E are point where either the shear or normal stresses
are maximum, let us proceed to obtain the absolute value of these stresses and then we
will study each point.

First of all, note that:

X at points A and C the shear stress due to shear load (Vy) is zero

X at points A and C the normal stress due to bending is critical
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X at points B, E and D the normal stress due to bending is zero, but not the normal
stress due to axial load.

X at points B, E and D the shear stress due to shear load is maximum

X at point E the shear stress due to torsional load is zero

X at points A, B, C, and D the shear stress due torsional load exits

X at all points the normal stress due axial load exits

X σyy = σzz = τyz = 0

For magnitude of normal stress due to normal force is

σxx

∣∣
axial

=
P

Ax

= 63.66 psi

For magnitude of normal stress due to bending is

σxx

∣∣
bending

=
Mzz c

Izz
=
Mzz

Z
= 12732 psi

For magnitude of shear stress due to vertical shear load is

τxy

∣∣
shear

=
4
3
Vy

Ax

= 84.88 psi

For magnitude of shear stress due to torsion is

τ
∣∣
torsion

=
T c

Jxx

=
T

Q
= 5093 psi

At point A:

y = c = +
d

2
r = c =

d

2

τ
∣∣
torsion

=
T r

Jxx

=
T

Q
σxx

∣∣
bending

= −Mzz y

Izz
= −Mzz

Z

σxx = σxx

∣∣
bending

+ σxx

∣∣
axial

= −Mzz

Z
+

P

Ax

= −12732 + 63.66 = −12668.7 psi

and
τxz = τ

∣∣
torsion

=
T

Q
= 5093 psi

σA =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =



−12668.7 0 5093

0 0 0
5093 0 0


 psi (5.54)

At point C:

y = −c = −d
2

r = c =
d

2

τ
∣∣
torsion

=
T r

Jxx

= −T
Q

σxx

∣∣
bending

=
Mzz y

Izz
=
Mzz

Z
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σxx = σxx

∣∣
bending

+ σxx

∣∣
axial

=
Mzz

Z
+

P

Ax

= 12732 + 63.66 = 12796.1 psi

and
τxz = τ

∣∣
torsion

= −T
Q

= −5093 psi

σC =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




12796.1 0 −5093
0 0 0

−5093 0 0


 psi (5.55)

At point B:

y = 0 r = c =
d

2

τ
∣∣
torsion

=
T r

Jxx

=
T

Q
σxx

∣∣
bending

=
Mzz y

Izz
= 0

σxx = σxx

∣∣
bending

+ σxx

∣∣
axial

= 0 +
P

Ax

= 0 + 63.66 = 63.66 psi

and

τxy = τ
∣∣
torsion

+ τxy

∣∣
shear

= −T
Q

+
4
3
Vy

Ax

= −5093 + 84.88 = −5008.08 psi

σB =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




63.66 −5008.08 0
−5008.08 0 0

0 0 0


 psi (5.56)

At point D:

y = 0 r =
d

2

τ
∣∣
torsion

=
T r

Jxx

=
T

Q
σxx

∣∣
bending

=
Mzz y

Izz
= 0

σxx = σxx

∣∣
bending

+ σxx

∣∣
axial

= 0 +
P

Ax

= 0 + 63.66 = 63.66 psi

and
τxy = τ

∣∣
torsion

+ τxy

∣∣
shear

=
T

Q
+

4
3
Vy

Ax

= 5093 + 84.88 = 5177.84 psi

σD =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




63.66 5177.84 0
5177.84 0 0

0 0 0


 psi (5.57)

At point E:
y = 0 r = 0
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τ
∣∣
torsion

=
T r

Jxx

= 0 σxx

∣∣
bending

=
Mzz y

Izz
= 0

σxx = σxx

∣∣
bending

+ σxx

∣∣
axial

= 0 +
P

Ax

= 0 + 63.66 = 63.66 psi

and
τxy = τ

∣∣
torsion

+ τxy

∣∣
shear

= 0 +
4
3
Vy

Ax

= 0 + 84.88 = 84.88 psi

σE =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




63.66 84.88 0
84.88 0 0

0 0 0


 psi (5.58)

(g) For each state of stress (points A, B, C, D, and E), determine the maximum normal
stress and maximum shear stress. (Hint: Using eigenvalue approach to determine the
principal stresses.)

At point A:

σA =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =



−12668.7 0 5093

0 0 0
5093 0 0


 psi (5.59)

The stress invariants are

Iσ1 = σxx + σyy + σzz = −12668.7 psi

Iσ2 = σxx σyy + σzz σxx + σyy σzz − τ2
xy − τ2

yz − τ2
zx = −2.59382× 107 psi2

Iσ3 = σxx σyy σzz + 2 τxy τyz τzx − σxx τ
2
yz − σyy τ

2
zx − σzz τ

2
xy = 0

The characteristic equation is

λ3 − Iσ1 λ
2 + Iσ2 λ = λ

(
λ2 − Iσ1 λ+ Iσ2

)
= 0

The principal stresses are

σ1 = 1793.51 psi σ2 = 0 σ3 = −14462.2 psi

The overall maximum shear stress is

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 8127.88 psi

At point B:

σB =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




63.66 −5008.08 0
−5008.08 0 0

0 0 0


 psi (5.60)
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The stress invariants are

Iσ1 = σxx + σyy + σzz = 63.66 psi

Iσ2 = σxx σyy + σzz σxx + σyy σzz − τ2
xy − τ2

yz − τ2
zx = −2.50808× 107 psi2

Iσ3 = σxx σyy σzz + 2 τxy τyz τzx − σxx τ
2
yz − σyy τ

2
zx − σzz τ

2
xy = 0

The characteristic equation is

λ3 − Iσ1 λ
2 + Iσ2 λ = λ

(
λ2 − Iσ1 λ+ Iσ2

)
= 0

The principal stresses are

σ1 = 5040.01 psi σ2 = 0 σ3 = −4976.35 psi

The overall maximum shear stress is

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 5008.18 psi

At point C:

σC =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




12796.1 0 −5093
0 0 0

−5093 0 0


 psi (5.61)

The stress invariants are

Iσ1 = σxx + σyy + σzz = 12796.1 psi

Iσ2 = σxx σyy + σzz σxx + σyy σzz − τ2
xy − τ2

yz − τ2
zx = −2.29382× 107 psi2

Iσ3 = σxx σyy σzz + 2 τxy τyz τzx − σxx τ
2
yz − σyy τ

2
zx − σzz τ

2
xy = 0

The characteristic equation is

λ3 − Iσ1 λ
2 + Iσ2 λ = λ

(
λ2 − Iσ1 λ+ Iσ2

)
= 0

The principal stresses are

σ1 = 14475.6 psi σ2 = 0 σ3 = −1779.56 psi

The overall maximum shear stress is

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 8177.59 psi
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At point D:

σD =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




63.66 5177.84 0
5177.84 0 0

0 0 0


 psi (5.62)

The stress invariants are

Iσ1 = σxx + σyy + σzz = 63.66 psi

Iσ2 = σxx σyy + σzz σxx + σyy σzz − τ2
xy − τ2

yz − τ2
zx = −2.681× 107 psi2

Iσ3 = σxx σyy σzz + 2 τxy τyz τzx − σxx τ
2
yz − σyy τ

2
zx − σzz τ

2
xy = 0

The characteristic equation is

λ3 − Iσ1 λ
2 + Iσ2 λ = λ

(
λ2 − Iσ1 λ+ Iσ2

)
= 0

The principal stresses are

σ1 = 5209.77 psi σ2 = 0 σ3 = −5146.11 psi

The overall maximum shear stress is

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 5177.94 psi

At point E:

σE =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




63.66 84.88 0
84.88 0 0

0 0 0


 psi (5.63)

The stress invariants are

Iσ1 = σxx + σyy + σzz = 63.66 psi

Iσ2 = σxx σyy + σzz σxx + σyy σzz − τ2
xy − τ2

yz − τ2
zx = −7205.06 psi2

Iσ3 = σxx σyy σzz + 2 τxy τyz τzx − σxx τ
2
yz − σyy τ

2
zx − σzz τ

2
xy = 0

The characteristic equation is

λ3 − Iσ1 λ
2 + Iσ2 λ = λ

(
λ2 − Iσ1 λ+ Iσ2

)
= 0

The principal stresses are

σ1 = 122.486 psi σ2 = 0 σ3 = −58.82 psi
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The overall maximum shear stress is

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 90.65 psi
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(h) What is the critical cross-sectional stress location at x = 5+?
From consideration of these elements, we conclude that the element at location C is
critical because it has the largest normal and maximum shear stress. One can also show
that the von Mises stresses are highest at this point:

σeA =
√
I2
σ1
− 3 Iσ2 = 15437.3 psi

σeB =
√
I2
σ1
− 3 Iσ2 = 8674.47 psi

σeC =
√
I2
σ1
− 3 Iσ2 = 15542 psi

σeD =
√
I2
σ1
− 3 Iσ2 = 8968.51 psi

σeE =
√
I2
σ1
− 3 Iσ2 = 160.212 psi

The above is an alternative identifying the cross-sectional’s most critical point.

End Example �
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5.7 Stress Concentration

So far, the basic stress analysis calculations we have performed assume smooth components with uniform
sections and no irregularities. However, in practice almost all engineering components have some changes
in their sections and/or shape. As for an example, shoulders on shafts, oil holes, key ways and screw
threads.

Any discontinuity changes the stress distribution in the vicinity of the discontinuity and as a conse-
quence the basic stress analysis equations no longer apply. Stress as these discontinuities are sometimes
called stress raisers and they cause local increase of stress, commonly referred to as stress concentration.

5.7.1 Stress Concentration Factor

Let the actual maximum stress at the discontinuity be σt, and the stress without the discontinuity
(called nominal stress) be σN. As an example, consider a plate subject to axial load P and a uniform
cross-sectional area A: The nominal stress will be given by

 

 

 

P P 

A

h

b

σN =
P

A
=

P

b h
(5.64)

Now consider the same plate subject to the same load P but with a hole of diameter d in the middle:

 

 

 

P P 

h

b

Then the actual stress will be given by

σt =
P

At

=
P

(b− d)h
(5.65)

Thus from the above example it is clear that

σt ≥ σN → σt

σN

≥ 1 (5.66)
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P P 

At 

h

bd

In general, the theoretical or geometric stress concentration factor Kt is used to relate the actual maxi-
mum stress σt at the discontinuity to the nominal stress σN as follows

Kt =
σt

σN

→ Kt ≥ 1 (5.67)

In published information relating to stress concentration values the nominal stress may be defined on
either the original gross cross section or on the reduced net cross section and care needs to be taken that
the correct nominal stress is used. The subscript “t” indicates that the stress concentration value is a
theoretical calculation based only on the geometry of the component and discontinuity.

5.7.2 Stress Concentration Charts

As stated the stated the stress concentration factor is a function of the type of discontinuity (hole,
fillet, groove), the geometry of the discontinuity, and the type of loading being experienced. The stress
concentration factor will depend on the type of loading. In static loading, stress-concentration factors
are applied as follows:

1. Ductile materials: the stress concentration factor is not usually applied to predict the critical
stress, because plastic strain in the region of the stress is localized and has a strengthening effect.
In these cases, we use the following expression:

σt

∣∣
axial
' σN

∣∣
axial

σt

∣∣
bending

' σN

∣∣
bending

τt
∣∣
torque

' τN
∣∣
torque

2. Brittle materials: The geometric stress concentration factor Kt is applied to the nominal stress
before comparing it with strength. In these cases, we use the following expression:

σt

∣∣
axial

= Kta σN

∣∣
axial

σt

∣∣
bending

= Ktb σN

∣∣
bending

τt
∣∣
torque

= Kts τN
∣∣
torque

Figures of the course textbook help us determine the stress concentration factor.

From these charts a number of observations can be made about the stress concentration factor:

a) The stress concentration factor is independent of the part’s material properties.
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b) The stress concentration factor is significantly affected by geometry.

c) The stress concentration factor is affected by the type of discontinuity.

These observations are relevant in reducing stresses in a part.

In some problems the actual maximum stress may be taken as the allowable stress

σallowable =
Syield

nSF

and for these cases the problem becomes a design oriented problem, where the exact dimensions need to
be picked to avoid failure.

5.7.3 When to Use Stress Concentration Values

To apply stress concentration calculations, the part and notch geometry must be known. However where
a part is known to contain cracks, the geometry of these may not be known and in any case as the notch
radius tends to zero, as it does in a crack, then the stress concentration value tends to infinity and the
stress concentration is no longer a helpful design tool. In these cases Fracture Mechanics techniques are
used and these techniques will be discussed later in the course.

Where the geometry is known, then for brittle materials, stress concentration values should be used.
In the case of ductile materials that are subject only to one load cycle during their lifetime (fairly unusual
in Mechanical Engineering) it is not necessary to use stress concentration factors as local plastic flow
and work hardening will prevent failure provided the average stress is below the yield stress.

Not all ductile materials are ductile under all conditions, many become brittle under some circum-
stances. The most common cause of brittle behavior in materials normally considered to be ductile is
being exposed to low temperatures. For ductile materials subjected to cyclic loading the stress concen-
tration factor has to be included in the factors that reduce the fatigue strength of a component.

Some materials are not as sensitive to notches as implied by the theoretical stress concentration
factor. For these materials a reduced value of Kt is used: Kf. In these materials the maximum stress is:

σt = Kf σN (5.68)

The notch sensitivity, q, is defined as:

q =
Kf − 1
Kt − 1

(5.69)

where q takes values between 0 and 1. This will be discussed later when working with fatigue analysis.
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Example 5.6.

Shaft analysis
A shaft is supported by bearings at locations A and B and is loaded with a downward 1000
N force at E, as shown in Figure. Fillets at C and D are identical. The distance between A
and C is 70 mm and D and B is 70 mm. Identify the critical location and find the maximum
stress at the most critical shaft fillet.

Solution:

First, let us assume: (i) the shaft remains straight; (ii) the material is homogeneous, isotropic
and perfectly elastic. We need to plot the shear and moment diagrams to determine the
critical location. Thus we proceed to obtain the reaction forces first:

+ 	MB = 0 = −RA (750) + 1000 (250) → RA = 333 N

+ ↑
∑

Fy = 0 = RA +RB − 1000 = 333 +RB − 1000 → RB = 667 N

We should obtain the shear and moment equation for each section with discontinuities. This
shaft has load and geometric discontinuities, thus:

section AC : Vy1(x) = −333 Mzz1(x) = 333x

section CE : Vy2(x) = −333 Mzz2(x) = 333x

section ED : Vy3(x) = 667 Mzz3(x) = 500− 667x

section DB : Vy3(x) = 667 Mzz3(x) = 500− 667x

c©2012 by Vijay K. Goyal. All Rights Reserved.



5.7. STRESS CONCENTRATION 375

 
 
 

         

0.2 0.4 0.6 0.8

-400

-200

200

400

600

 
       

            0.2 0.4 0.6 0.8

25

50

75

100

125

150

175

 

Vy(x),[N] 

Mzz(x),[N-m] 

x,[ m] 
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The critical location is at E. The critical fillet is at D. Only the following points will be
affected by stress concentration effect due to fillet: C and D. Stress at all other points are
not modified by stress concentration factors.

Thus at D, for an element at top:

σxx = −Mzz

Z
Z =

π d3

32
→ σxx = −32Mzz

π d3 = − 32 (47)
π (.04)3 = −7.5 MPa

For the critical shaft fillet location:

r

d
=

5
40

= 0.125
D

d
=

80
40

= 2.0

From chart:

  

D/d=3 

D/d=1
D/d=~2 

Ktb = 1.65

Thus,

σxx = −Ktb

Mzz

Z
= −Ktb

32Mzz

π d3 = (1.65)(7.5) = −12.4 MPa

The above stress concentration factor is theoretical based on a theoretical elastic, homoge-
neous, isotropic material.

End Example �
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5.7.4 Stress Concentration for Multiple Notches

In many problems, one stress riser is superimposed upon another. Accurate calculation of the overall
stress concentration factor is difficult for such combinations, but reasonable estimates can be made. For
such cases one finds the stress concentration factor for each stress riser individually,

Kt1 , Kt2 , ... , Ktn

The total stress concentration factor can be obtained by multiplying all factors. In order words, the
combined theoretical stress concentration factor Kt for the multiple notch can be approximated by the
product of the stress concentration factors for the all notches considered individually:

Kt = Kt1 Kt2 ...Ktn

As for an example, suppose a shaft has a radial hole and a groove subject to bending. Then

Due to radial hole subject to bending →Kt1

Due to groove subject to bending →Kt2

The actual stress will be given by:

σxx = −Kt

Mzz

Izz
y = −Kt1 Kt2

Mzz

Izz
y

Recall the minus sign remain because it is consistent with our sign convention.
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5.9 Suggested Problems

Problem 5.1.

A circular-steel solid shaft is loaded by a vertical force (a downward vertical force of 100 lb at x = 20
in as shown in Figure. The shaft is composed of two different diameter cross-sections. The shaft has a
diameter of d1 for 0 ≤ x ≤ 10 and a diameter of d2 for 10 ≤ x ≤ 20. All loads are applied at the shafts
neutral axis. Take:

d2 = 3 d1

 

 

 

100 lb

10 in 10 in

y 

d1 
d2 

x

(a) Determine the cross sectional area Ax, the second moment of inertia Izz, and the polar moment of
inertia Jxx for each cross section

(b) Determine the reaction forces

(c) Draw the shear force diagram: Vy(x) for 0 < x < 20.

(d) Draw the bending moment diagram: Mzz(x) for 0 < x < 20.

(e) Using the above information determine the location(s) in the shaft’s axis (x-axis) where the stresses
are critical. Justify your answer with a sentence or two.

�
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Problem 5.2.

Figure below shows a steel shaft supported by self-aligning bearings and subjected to a uniformly dis-
tributed loads. If d = 2 in,

(a) Determine the cross sectional area Ax, the second moment of inertia Izz, and the polar moment of
inertia Jxx for each cross section

(b) Determine the reaction forces

(c) Draw the shear force diagram: Vy(x) for 0 < x < 25.

(d) Draw the bending moment diagram: Mzz(x) for 0 < x < 25.

(e) Using the above information determine the location(s) in the shaft’s axis (x-axis) where the stresses
are critical. Justify your answer with a sentence or two.

(f) At the critical location, determine the state of stress at locations where the shear stress due to
shear is zero.

(g) At the critical location, determine the state of stress at locations where the normal stress due to
bending is zero.

�
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Problem 5.3.

Illustrated in the figure is a 1.25 in diameter steel countershaft that supports two pulley. Two pulleys
are keyed to the shaft where pulley B is of diameter 4.0 in and pulley C is of diameter 8.0 in. Pulley C
delivers power to a machine causing a tension of 500 lb in the tight side of the belt and 100 lb–in the
loose side, as indicated. Pulley C receives power from a motor. The belt tensions on pulley C have a
tension of 1000 lb in the tight side of the belt and 200 lb–in the loose side, as indicated. Assume that
the bearings constitute simple supports, determine the critical location throughout the shaft and the
cross-section.

�
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Problem 5.4.

Figure below shows a steel shaft supported by self-aligning bearings and subjected to a point loads.

(a) Determine the cross sectional area Ax, the second moment of inertia Izz, and the polar moment of
inertia Jxx for each cross section

(b) Determine the reaction forces

(c) Using the above information determine the location(s) in the shaft’s axis (x-axis) where the stresses
are critical. Justify your answer with a sentence or two.

(d) At the critical location, determine the state of stress at locations where the shear stress due to
shear is zero.

(e) At the critical location, determine the state of stress at locations where the normal stress due to
bending is zero.

�
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Problem 5.5.

Determine the torque for a engine supplying a 4.0 hp and with a rotating speed of 1500 rpm.
�
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Problem 5.6.

Problem 4.45 of textbook.
�

c©2012 by Vijay K. Goyal. All Rights Reserved.



5.9. SUGGESTED PROBLEMS 385

Problem 5.7.

Find the most critically stressed location.

 

 

 

2000 lb

4 in 4 in 

y 

d1=1.2 in 

x

400 lb

r = 0.1 in 

d2=1.0 in 

�
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Chapter 6

Deflection Analysis

6.1 Slope and deflection profiles

For the Euler Bernoulli assumption, Eq. (5.10) can be written as





ε◦xx

−κ◦zz

κ◦yy





=
1
E0




1
A

0 0

0 − 1
Ryz

− 1
Ryy

0
1
Rzz

1
Ryz








Nxx +N t
xx

Myy +M t
yy

Mzz −M t
zz









u′

−v′′

−w′′





=
1
E0




1
A

0 0

0 − 1
Ryz

− 1
Ryy

0
1
Rzz

1
Ryz








Nxx +N t
xx

Myy +M t
yy

Mzz −M t
zz





or




u′

v′′

w′′





=
1
E0




1
A

0 0

0
1
Ryz

1
Ryy

0 − 1
Rzz

− 1
Ryz








Nxx +N t
xx

Myy +M t
yy

Mzz −M t
zz





(6.1)

Note that Eq. (6.1) contains lower order derivatives in the dependent variables; and thus may be solved by
integrating directly and applying displacement boundary conditions to account for integration constants.
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The displacement and slope differential equations are:

du

dx
=
Nxx +N t

xx

E0A

d2v

dx2 =
Myy +M t

yy

E0Ryz

+
Mzz −M t

zz

E0Ryy

d2w

dx2 = −Myy +M t
yy

E0Rzz

− Mzz −M t
zz

E0Ryz

When cross-sectional properties are constant (do not change with x), the displacements and slopes are
found by solving the following differential equations:

E0A
du

dx
= Nxx +N t

xx = Pu(x)

E0Ryy

d2v

dx2 =
Ryy

Ryz

(
Myy +M t

yy

)
+
(
Mzz −M t

zz

)
= Mv(x)

E0Rzz

d2w

dx2 = −
(
Myy +M t

yy

)
− Rzz

Ryz

(
Mzz −M t

zz

)
= −Mw(x)

where Pu(x), Mv(x) and Mw(x) are introduced to simplify our analysis. Note that

u = u(x) v = v(x) w = w(x)

Pu = Pu(x) Mv = Mv(x) Mw = Mw(x)

Thus, the axial displacement (u) equation is

E0Au
′ = Pu

E0Au(x) =
∫
Pu dx+A1
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The constant A1 is found from boundary and continuity conditions (for symmetric cross-sections):

 

Fixed: u = 0

 

Pinned: u = 0

 

Roller: Nxx = E0Au
′ = 0

 

Free: Nxx = E0Au
′ = 0

If there is was an external load applied then

 

P Nxx 

+−→
∑

Fx = 0 ⇒ P +Nxx = 0 ⇒ Nxx = E0Au
′ = −P

The transverse displacement (v) and slope equations (v′) are

E0Ryy v
′′ = Mv

E0Ryy v
′(x) =

∫
Mv dx+B1

E0Ryy v(x) =
∫ {∫

Mv dx

}
dx+B1 x+B2

The constants B1 and B2 are found from boundary and continuity conditions (for symmetric cross-
sections):

 

Fixed: v = 0 v′ = 0

 

Pinned: v = 0 Mzz = E0Ryy v
′′ = 0

 

Roller: v = 0 Mzz = E0Ryy v
′′ = 0

 

Free: Mzz = E0Ryy v
′′ = 0 Vy = E0Ryy v

′′′ = 0
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The lateral displacement (w) and slope equations (w′) are

E0Rzz w
′′ = Mw

E0Rzz w
′(x) = −

∫
Mw dx+ C1

E0Rzz w(x) = −
∫ {∫

Mw dx

}
dx+ C1 x+ C2

The constants C1 and C2 are found from boundary and continuity conditions (for symmetric cross-
sections):

 

Fixed: w = 0 w′ = 0

 

Pinned: w = 0 Myy = E0Rzz w
′′ = 0

 

Roller: w = 0 Myy = E0Rzz w
′′ = 0

 

Free: Myy = E0Rzz w
′′ = 0 Vz = E0Rzz w

′′′ = 0

In some cases we may encounter, at least, four different types of discontinuities. These discontinuities will
require additional compatibility equations, these come from continuity conditions. These discontinuities
are

1. Geometric

 

Section 1 

u1(x) u2(x) 

v2(x) v1(x) 

v2′(x) v1′(x) 
x 

y 

Section 2 

w1(x) 

w2(x) w1′(x) 

w2′(x) 
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2. Material

 

Section 1 

u1(x) u2(x) 

v2(x) v1(x) 

v2′(x) v1′(x) 
x 

y 

Section 2 

w1(x) 

w2(x) w1′(x) 

w2′(x) 

E1 E2 

3. Load

 

Section 1 

u1(x) u2(x) 

v2(x) v1(x) 

v2′(x) v1′(x) 
x 

y 

Section 2 

w1(x) 

w2(x) w1′(x) 
w2′(x) 

P 

M 

M 

4. Boundary
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Section 1 

u1(x) u2(x) 

v2(x) v1(x) 

v2′(x) v1′(x) 
x 

y 

Section 2 

w1(x) 

w2(x) w1′(x) 
w2′(x) 

Thus continuity conditions for a bar are such that when two different sections (say section 1 and section
2) are considered at x1, then:

u1(x1) = u2(x1)

Continuity conditions for a beam are such that when two different sections (say section 1 and section 2)
are considered at x1, then:

v1(x1) = v2(x1) v′1(x1) = v′2(x1)

w1(x1) = w2(x1) w′1(x1) = w′2(x1)
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Example 6.1.

For example in Section 4.3 and 5.2: Students have approximated a machine component using
a beam model as shown in Fig. 6.1. The cantilever beam’s squared cross section is uniform.
These engineers need your help to analyze this component and they have a five-day deadline
to complete the analysis. Take a = 25 mm, b = 5 mm. Use the stress convention and show
all your steps.

y 

 

x 

z 

100 N/m 

1000 N  

1000 N 

y 

z 
100 N/m 

Cross-sectional 
view 

a  
a  

b  b  
 L 

Figure 6.1: Machine component for example below.

a) Plot the deflection and slope profile in the y-direction.

The slope and deflections can be found by using:





u′

−θ′z

θ′y





=
1
E




1
A

0 0

0 − 1
Ryz

− 1
Ryy

0
1
Rzz

1
Ryz








Nxx

Myy

Mzz





For a symmetric cross section the displacement and slope in the y–direction are obtained
from:

E Izz v
′′(x) = Mzz
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The equation for deflection and slope in the y-direction is (0 ≤ x ≤ L):

E Izz v
′′(x) = Mzz(x) = −50L2 + 100Lx− 50x2

E Izz v
′(x) = E Izz

∫
v′′(x) dx+A1

= −50L2 x+ 50Lx2 − 50x3

3
+A1

E Izz v(x) = E Izz

∫ (∫
v′′(x) dx

)
dx+A1 x+B1

= −25L2 x2 +
50Lx3

3
− 25x4

6
+A1 x+B1

Now we use boundary conditions to determine the coefficients:

v(x)
∣∣∣
x=0

= 0 → B1 = 0 (6.2)

v′(x)
∣∣∣
x=0

= 0 → A1 = 0 (6.3)

Thus the deflection in the y-direction is:

E Izz v(x) = −25L2 x2 +
50Lx3

3
− 25x4

6

= 25L4

{
−
( x
L

)2

+
2
3

( x
L

)3

− 1
6

( x
L

)4
}

and the slope in the y-direction is:

E Izz v
′(x) = −50L2 x+ 50Lx2 − 50x3

3

= 50L3

{
−
( x
L

)
+
( x
L

)2

− 1
3

( x
L

)3
}

In general, it is convenient to give nondimensional quantities. By normalizing the length
to one, the dimensionless deflection profile in the y–direction is

v(η) =
E Izz v(x)

L4 = −25 η2 +
50
3
η3 − 25

6
η4
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0.2 0.4 0.6 0.8 1

-12

-10

-8

-6

-4

-2

 

v(η) 

η 
 

and the dimensionless slope profile in the y–direction is

v′(η) =
E Izz v

′(x)
L3 = −50 η + 50 η2 − 50

3
η3

0.2 0.4 0.6 0.8 1

-15

-12.5
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v’(η) 

η 
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b) Plot the deflection and slope profile in the z-direction.

For a symmetric cross section the displacement and slope in the z–direction are obtained
from:

E Iyy w
′′(x) = −Myy

The equation for deflection and slope in the z-direction is (0 ≤ x ≤ L):

E Iyy w
′′(x) = −Myy(x) = 1000L− 1000x

E Iyy w
′(x) = E Iyy

∫
w′′(x) dx+ C1

= 1000Lx− 500x2 + C1

E Iyy w(x) = E Iyy

∫ (∫
w′′(x) dx

)
dx+ C1 x+D1

= 500Lx2 − 500x3

3
+ C1 x+D1

Now we use boundary conditions to determine the coefficients:

w(x)
∣∣∣
x=0

= 0 → D1 = 0 (6.4)

w′(x)
∣∣∣
x=0

= 0 → C1 = 0 (6.5)

Thus the deflection in the z-direction is:

E Iyy w(x) = 500Lx2 − 500x3

3
= 500L3

{( x
L

)2

− 1
3

( x
L

)3
}

and the slope in the z-direction is:

E Iyy w
′(x) = 1000Lx− 500x2 = 500L2

{
2
( x
L

)
−
( x
L

)2
}

The dimensionless deflection profile is

w(η) =
E Iyy w(x)

L3 = 500 η2 − 500
3
η3
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w (η) 
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and the dimensionless slope profile is

w′(η) =
E Iyy w

′(x)
L2 = 1000 η − 500 η2
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End Example �
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Example 6.2.

For example in Section 5.5: A circular-steel solid one-inch diameter shaft is loaded by the

 

 

 

250 lb 200 lb

300 lb 150 lb

5 in 5 in 5 in 

1000 lb-in 1000 lb-in

25 lb 75 lb 50 lb 

y 

x

four vertical forces (an upward vertical force of 250 lb at x = 0 in, a downward vertical force
of 300 lb at x = 5 in, a downward vertical force of 150 lb at x = 10 in, an upward vertical
force of 200 lb at x = 15 in), three axial forces (an outward axial force of 25 lb at x = 0
in, an inward axial force of 75 lb at x = 5 in, an outward axial force of 50 lb at x = 10 in),
and torques (an inward torque of 1000 lb–in at x = 5 in, an outward torque of 1000 lb–in
at x = 15 in) as shown in Figure, which result from the actions of helical gears and shaft’s
rolling-element bearing supports. All loads are applied at the shafts neutral axis. Draw the
deflection diagram: v(x) for 0 < x < 15.

Draw the deflection diagram: v(x) for 0 < x < 15.

Since the shaft has a symmetric cross-section Iyz = 0, and from the loading conditions,
Myy = 0. Thus




−v′′

−w′′



 =

1
E (Iyy Izz)




0 −Iyy

Izz 0







0

Mzz



 =

1
E (Iyy Izz)




−Mzz Iyy

0





Thus

v′′(x) =
1

E Izz
Mzz(x) → v′(x) =

1
E Izz

∫
Mzz(x) dx+A

v(x) =
∫ {

1
E Izz

∫
Mzz(x) dx

}
dx+Ax+B
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(You may need to use Table 3.9 of your textbook, page 136.) After integrating twice, use
boundary conditions to determine the two constants of integration:

v(x)
∣∣∣
x=0

= 0 v(x)
∣∣∣
x=10

= 0

v′′(x) =
1

E Izz
Mzz(x) → v′(x) =

1
E Izz

∫
Mzz(x) dx+A

v(x) =
∫ {

1
E Izz

∫
Mzz(x) dx

}
dx+Ax+B

Note that we will have three different displacement functions. This because the shear and
moments are different in three regions.

The equation for deflection is (0 ≤ x ≤ 5)

v′′1 (x) =
1

E Izz
Mzz1(x) =

250x
E Izz

v′1(x) =
125x2

E Izz
+A1

v1(x) =
125x3

3E Izz
+A1 x+B1

The equation for deflection is (5 ≤ x ≤ 10)

v′′2 (x) =
1

E Izz
Mzz2(x) =

−50x+ 1500
E Izz

= − 50x
E Izz

+
1500
E Izz

v′2(x) = −25x2

E Izz
+

1500x
E Izz

+A2

v2(x) = − 25x3

3E Izz
+

750x2

E Izz
+A2 x+B2

The equation for deflection is (10 ≤ x ≤ 15)

v′′3 (x) =
1

E Izz
Mzz3(x) =

−200x+ 3000
E Izz

= −200x
E Izz

+
3000
E Izz

v′3(x) = −100x2

E Izz
+

3000x
E Izz

+A3

v3(x) = −100x3

3E Izz
+

1500x2

E Izz
+A3 x+B3
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Now we use boundary conditions to determine the coefficients:

v1(x)
∣∣∣
x=0

= 0 → B1 = 0 (6.6)

v2(x)
∣∣∣
x=10

= 0 → 10A2 +B2 +
200000
3E Izz

= 0 (6.7)

v3(x)
∣∣∣
x=10

= 0 → 10A3 +B3 +
350000
3E Izz

= 0 (6.8)

v1(x)
∣∣∣
x=5

= v2(x)
∣∣∣
x=5

→ 5A1 +B1 +
15625
3E Izz

= 5A2 +B2 +
53125
3E Izz

(6.9)

v′1(x)
∣∣∣
x=5

= v′2(x)
∣∣∣
x=5

→ A1 +
3125
E Izz

= A2 +
6875
E Izz

(6.10)

v′2(x)
∣∣∣
x=10

= v′3(x)
∣∣∣
x=10

→ A2 +
12500
E Izz

= A3 +
20000
E Izz

(6.11)

From Eq. (6.6): B1 = 0.

From Eq. (6.10):

A1 = A2 +
3125
E Izz

From Eqs. (6.7) and (6.9):

A2 = −21875
E Izz

B2 =
6250
E Izz

From Eq. (6.11):

A3 = − 44375
3E Izz

From Eq. (6.8):

B3 =
31250
E Izz

The equation for deflection is

0 ≤ x ≤ 5 : v1(x) = −10625x
3E Izz

+
125x3

3E Izz

5 ≤ x ≤ 10 : v2(x) =
6250
E Izz

− 21875x
3E Izz

+
750x2

E Izz
− 25x3

3E Izz

10 ≤ x ≤ 15 : v3(x) =
31250
E Izz

− 44375x
3E Izz

+
1500x2

E Izz
− 100x3

3E Izz

Deflection profile in the y–direction is
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The equation for slope is

0 ≤ x ≤ 5 : v′1(x) = − 10625
3E Izz

+
125x2

E Izz

5 ≤ x ≤ 10 : v′2(x) = − 21875
3E Izz

+
1500x
E Izz

− 25x2

E Izz

10 ≤ x ≤ 15 : v′3(x) = − 44375
3E Izz

+
3000x
E Izz

− 100x2

E Izz

Slope profile in the y–direction is
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End Example �
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Example 6.3.

For Example 5.6: A shaft is supported by bearings at locations A and B and is loaded with
a downward 1000 N force at E, as shown in Figure. Fillets at C and D are identical. The
distance between A and C is 70 mm and D and B is 70 mm. Identify the critical location
and find the maximum stress at the most critical shaft fillet.

Determine the displacement and slope diagrams.

Note geometric discontinuity. Let
EIzz = EIzz1

and note that:

Izz1 =
π d4

64
= 1.25664× 10−7 m4 Izz2 =

πD4

64
= 2.01062× 10−6 m4

and the ratio of these two are

Izz2
Izz1

= 16 → Izz2 = 16 Izz1

Thus
section AC : EIzz1 = EIzz

section CE : EIzz2 = 16EIzz

section ED : EIzz3 = 16EIzz

section DB : EIzz4 = EIzz
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The equations for slope and deflection are (0 ≤ x ≤ 0.180)

v′′1 (x) =
1

E Izz1
Mzz1(x) =

333
E Izz1

x

v′1(x) =
333

2E Izz1
x2 +A1 =

333
2E Izz

x2 +A1

v1(x) =
111

2E Izz
x3 +A1 x+B1

The equations for slope and deflection are (0.180 ≤ x ≤ 0.500)

v′′2 (x) =
1

E Izz2
Mzz2(x) =

333
E Izz2

x

v′2(x) =
333

2E Izz2
x2 +A2 =

333
32E Izz

x2 +A2

v2(x) =
111

32E Izz
x3 +A2 x+B2

The equations for slope and deflection are (0.500 ≤ x ≤ 0.570)

v′′3 (x) =
1

E Izz3
Mzz3(x) =

500− 667x
E Izz3

v′3(x) =
500
E Izz3

x− 667
2E Izz3

x2 +A3 = − 667
32E Izz

x2 +
125

4E Izz
x+A3

v3(x) = − 667
96E Izz

x3 +
125

8E Izz
x2 +A3 x+B3

The equations for slope and deflection are (0.570 ≤ x ≤ 0.750)

v′′4 (x) =
1

E Izz4
Mzz4(x) =

500− 667x
E Izz4

v′4(x) =
500
E Izz4

x− 667
2E Izz4

x2 +A4 = − 667
2E Izz

x2 +
500
E Izz

x+A4

v4(x) = − 667
6E Izz

x3 +
250
E Izz

x2 +A4 x+B4
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Now we use boundary conditions to determine the coefficients:

v1(x)
∣∣∣
x=0

= 0 v4(x)
∣∣∣
x=0.750

= 0

v1(x)
∣∣∣
x=0.070

= v2(x)
∣∣∣
x=0.070

v2(x)
∣∣∣
x=0.500

= v3(x)
∣∣∣
x=0.500

v3(x)
∣∣∣
x=0.680

= v4(x)
∣∣∣
x=0.680

v′1(x)
∣∣∣
x=0.070

= v′2(x)
∣∣∣
x=0.070

v′2(x)
∣∣∣
x=0.500

= v′3(x)
∣∣∣
x=0.500

v′3(x)
∣∣∣
x=0.680

= v′4(x)
∣∣∣
x=0.680

Solving the above the system of equations, the constants are:

A1 =
−2.54599
EIzz

B1 = 0 A2 =
−1.78113
EIzz

B2 =
−0.0356934

EIzz

A3 =
−9.59363
EIzz

B3 =
1.26639
EIzz

A4 =
−183.771
EIzz

B4 =
44.102
EIzz

Thus the equations for deflection and slope are:

0.000 ≤x ≤ 0.070 EIzz v1(x) = −2.54599x+ 55.5x3

EIzz v
′
1(x) = −2.54599 + 166.5x2

0.070 ≤x ≤ 0.500 EIzz v2(x) = −0.0356934− 1.78113x+ 3.46875x3

EIzz v
′
2(x) = −1.78113 + 10.4063x2

0.500 ≤x ≤ 0.680 EIzz v3(x) = 1.26639− 9.59363x+ 15.625x2 − 6.94792x3

EIzz v
′
3(x) = −9.59363 + 31.25x− 20.8438x2

0.680 ≤x ≤ 0.750 EIzz v4(x) = 44.102− 183.771x+ 250. x2 − 111.167x3

EIzz v
′
4(x) = −183.771 + 500. x− 333.5x2
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6.2 Castigliano’s Theorem

In basic Strength of Material courses, students learn how to find deformations and determine the values of
indeterminate reactions. In general, these techniques were based upon geometric considerations. There
are, however, many types of problems that can be solved more efficiently through techniques based upon
relations between the work done by the external forces and the internal strain energy stored within the
body during the deformation process.

Statically indeterminate beams and beams of varying material properties or cross-sections cannot
be successfully analyzed by using the methods discussed in previously. Also, when a loading is energy-
related, such as an object striking a beam with a given initial velocity, the exact forces in the loadings
are not known. For this reason energy methods are often extremely useful.

6.2.1 Internal Strain Energy

When loads are applied to a machine element, the material of the machine element will deform. In the
process the external work done by the loads will be converted by the action of either normal or shear
stress into internal work called strain energy, provided that no energy is lost in the form of heat. This
strain energy is stored in the body. The unit of strain energy is N–m in SI units and lb–in in English
units. Strain energy is always a positive scalar quantity even if the stress is compressive because stress
and strain are always in the same direction. The symbol U is used to designate strain energy. The strain
energy density is expressed with u and is shown in Fig. 6.2.

 
σ 

ε 

 
u= 

 σ ε 

2 

Figure 6.2: Strain energy density.

When an external force acts upon an elastic body and deforms it, the work done by the force is
stored within the body in the form of strain energy. In the case of elastic deformation, the total strain
energy density due to a general state of stress is

u =
1
2
σTε =

1
2

{
σxx εxx + σyy εyy + σzz εzz + τxy εxy + τxz εxz + τyz εyz

}
(6.12)
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Then total strain energy due to a general state of stress is

U =
∫∫∫

Vol

1
2

{
σxx εxx + σyy εyy + σzz εzz + τxy εxy + τxz εxz + τyz εyz

}
dVol (6.13)

For isotropic material, it can be further expressed as:

U =
∫∫∫

Vol

{ 1
2E

(
σ2

xx + σ2
yy + σ2

zz

)
− ν

E
(σxx σyy + σyy σzz + σxx σzz)

+
1

2G
(
τ2
xy + τ2

xz + τ2
yz

)}
dVol

(6.14)

or in terms of the principal stresses

U =
∫∫∫

Vol

{
1

2E
(
σ2

1 + σ2
2 + σ2

3

)
− ν

E
(σ1 σ2 + σ2 σ3 + σ1 σ3)

}
dVol (6.15)

Internal strain energy for an axial load

The only stresses involved in axial loading is: σxx. Thus

Uaxial =
∫∫∫

Vol

{
1

2E
σ2

xx

}
dVol

For axial loading the stresses are

σxx =
Nxx(x)
A

and are only in the x-direction. Thus the internal energy becomes

Uaxial =
∫

x

∫∫

A

{
1

2E

(
Nxx(x)
A

)2
}
dA dx =

∫

x

{
1

2E

(
N2

xx

A2

)} ∫∫

A

dA dx

=
∫ L

0

{
1

2E

(
N2

xx

A2

)}
Adx

Thus

Uaxial =
∫ L

0

{
N2

xx

2E A

}
dx (6.16)
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Internal strain energy for a bending moment

The only stresses involved in bending moment is: σxx. Thus

Ubending =
∫∫∫

Vol

{
1

2E
σ2

xx

}
dVol

For axial loading the stresses are

σxx = −Mzz(x) y
Izz

and are only in the x-direction. Thus the internal energy becomes

Ubending =
∫

x

∫∫

A

{
1

2E

(
−Mzz(x) y

Izz

)2
}
dA dx =

∫

x

∫∫

A

{
1

2E

(
M2

zz y
2

I2
zz

)}
dA dx

=
∫ L

0

{
1

2E

(
M2

zz

I2
zz

)} ∫∫

A

y2dA dx =
∫ L

0

{
1

2E

(
M2

zz

I2
zz

)}
Izz dx

Thus

Ubending =
∫ L

0

{
M2

zz

2E Izz

}
dx (6.17)

Internal strain energy for a shear

It can be shown that the strain energy due to transverse shear is

Ushear =
∫ L

0

{
V 2

y

2 ksGA

}
dx (6.18)

where ks is the shear correction factor and is defined as follows

1
ks

=
A

Izz

∫∫

A

Q2

b2
dA
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This represents a dimensionless quantity specific to a given cross-section geometry:

 

Solid rectangular: ks =
5
6

 

Solid circular: ks =
9
10

 

Tubular tube: ks = 1

Thin-walled sections: ks =
1
2

 

I-web: ks =
Aweb

Aentire cross section

However, it should be noted that the energy associated with shear is far smaller than the one associated
with that of bending moment. Thus it is negligible.

Internal strain energy for a torsional moment

The only stresses involved in torsional moment is: τxy or τxz. Thus

Utorsion =
∫∫∫

Vol

{
1

2G
τ2
xy

}
dVol

For axial loading the stresses are

τxy =
Mxx(x) r
Jxx

and are only in the x-direction. Thus the internal energy becomes

Utorsion =
∫

x

∫∫

A

{
1

2G

(
Mxx(x) r
Jxx

)2
}
dA dx =

∫

x

∫∫

A

{
1

2G

(
M2

xx r
2

J2
xx

)}
dA dx

=
∫ L

0

{
1

2G
(
M2

xx

)} ∫∫

A

r2

J2
xx

dA dx =
∫ L

0

{
M2

xx

2G

}
1
Jxx

dx

Thus

Utorsion =
∫ L

0

{
M2

xx

2GJxx

}
dx (6.19)

For circular cross-sections Jxx = Jxx and expressions for Jxx are found in Tables.
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Total internal strain energy for a beam

The total internal strain energy for a beam is the sum of all internal energy contribution due to each
loading condition:

U = Ushear + Utorsion + Uaxial + Ubending

U =
∫ L

0

{
M2

xx

2GJxx

}
dx+

∫ L

0

{
V 2

y

2 ksGA

}
dx

+
∫ L

0

{
M2

zz

2E Izz

}
dx+

∫ L

0

{
N2

xx

2E A

}
dx

(6.20)

However, it has been shown that in presence of bending the internal strain energy for axial and shear is
insignificant. Thus the total internal strain energy can be written as

U = Utorsion + Ubending =
∫ L

0

{
M2

xx

2GJxx

}
dx+

∫ L

0

{
M2

zz

2E Izz

}
dx (6.21)

More generally,

U =
∫ L

0

{
M2

xx

2GJxx

}
dx+

∫ L

0

{
M2

zz

2E Izz

}
dx+

∫ L

0

{
M2

yy

2E Iyy

}
dx (6.22)

6.2.2 Second Castigliano’s Theorem

Sign Conventions

Strain energy methods are particularly well suited to problems involving several structural members
at various angles to one another. The fact that the members may be curved in their planes presents
no additional difficulties. One of the great advantages of strain energy methods is that independent
coordinate systems may be established for each member without regard for consistency of positive
directions of the various coordinate systems. Also, deflections and the related loads are always taken
in the same direction. This advantage is essentially due to the fact that the strain energy is always a
positive scalar quantity, and hence algebraic signs of external forces need be consistent only within each
structural member.

Definition

This theorem is extremely useful for finding displacements of elastic bodies subject to axial loads, torsion,
bending, or any combination of these loadings. The theorem states that the partial derivative of the
total internal strain energy with respect to any external applied force yields the displacement under the
point of application of that force in the direction of that force. Here, the terms force and displacement
are used in their generalized sense and could either indicate a usual force and its linear displacement,
or a couple and the corresponding angular displacement. In equation form the displacement under the
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point of application of the force Qn is given according to this theorem by

∆n =
∂U

∂Qn

Application to Statically Determinate Problems

In statically determinate problems all external reactions can be found by application of the equations of
statics. After this has been done, the deflection under the point of application of any external applied
force can be found directly by use of Castigliano’s theorem:

∆n =
∂U

∂Qn
=
∫ L

0

Mxx

GJxx

(
∂Mxx

∂Qn

)
dx+

∫ L

0

Myy

E Iyy

(
∂Myy

∂Qn

)
dx

+
∫ L

0

Mzz

E Izz

(
∂Mzz

∂Qn

)
dx+

∫ L

0

Nxx

E A

(
∂Nxx

∂Qn

)
dx

+
∫ L

0

Vy

ksGA

(
∂Vy

∂Qn

)
dx+

∫ L

0

Vz

ksGA

(
∂Vz

∂Qn

)
dx

(6.23)

If the deflection is desired at some point where there is no applied force, then it is necessary to
introduce an auxiliary (i.e., fictitious) force at that point and, treating that force just as one of the real
ones, use Castigliano’s theorem to determine the deflection at that point. At the end of the problem the
auxiliary force is set equal to zero.

The procedure can be summarized as follows:

1. Apply a fictitious load Qn at the point and in the direction of the desired deflection

2. Obtain all internal loads acting on the member:

Nxx(x,Qn) Vy(x,Qn) Mxx(x,Qn) Mzz(x,Qn)

3. Obtain an expression for the total internal strain energy.

4. Obtain the deflection using Eq. (6.23).

5. Set Qn = 0 and solve the resulting equation:

∆n =
∂U

∂Qn

∣∣∣
Qn=0

(6.24)

Note that the fictitious load could be a force or a moment and the deflection displacement or rotation,
respectively.
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Application to Statically Indeterminate Problems

Castigliano’s theorem is extremely useful for determining the indeterminate reactions in such problems.
This is because the theorem can be applied to each reaction, and the displacement corresponding to
each reaction is known beforehand and is usually zero. In this manner it is possible to establish as many
equations as there are redundant reactions, and these equations together with those found from statics
yield the solution for all reactions. After the values of all reactions have been found, the deflection at
any desired point can be found by direct use of Castigliano’s theorem.

The procedure can be summarized as follows:

1. Choose the redundant reaction(s).

2. Remove reaction(s) and place assumed load(s) Qn(s) at the point.

3. Obtain all internal loads acting on the member:

Nxx(x,Qn) Vy(x,Qn) Mxx(x,Qn) Mzz(x,Qn)

4. Obtain an expression for the total internal strain energy.

5. Obtain the deflection using Eq. (6.23).

6. Usually the deflection(s) is(are) zero or known, thus solve for the Qn’s.

Note that the fictitious load could be a force or a moment and the deflection displacement or rotation,
respectively.

Assumptions and Limitations

Throughout this chapter it is assumed that the material is a linear elastic one obeying Hooke’s law.
Further, it is necessary that the entire system obey the law of superposition. This implies that certain
unusual systems n cannot be treated by the techniques discussed here. Note that Castigliano’s Theorem
is based on Energy Methods and these methods can only be used for conservative systems. However,
the Principle of Virtual Work and/or the Principle of Complementary Virtual Work applies to all types
of problems.
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Example 6.4.

Statically Determinate Structures

The structure is made of a solid circular steel rod with a uniform cross section of diameter
d. The three dimensional frame consists of two right-angle bends, with point 4 built in. A
load P in the x-direction acts at point 1. Using the Second Castigliano’s Theorem to find
the three components of translational displacement (u1, v1, w1) of point 1 in terms of P , L,
d, and E. Take a Poisson’s ratio of ν = 0.25.

y 

4 
L

3z 
x L

2

L

P 1
 

Dummy Loads Place dummy loads at the point where we are interested in calculating
displacements:

y 

4 
L

3z 
x L

2

L

P 1

Qx , u1Qz , w1

Qy , v1

 

Internal Loads The idea is to change the coordinate system such that we are consistent
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with our sign convention. You can use any coordinate system as far as you are consistent
throughout the entire problem.

 

 

 

 y1 

 x1 

1 

2 

 y2 

 x2 

 2 

 3 

 y3 

 x3 

3 4 

x 

 y 

 z 

BAR 1-2: 0 ≤ x1 ≤ L

Vy(x1) = P +Qx Vz(x1) = −Qz Nxx(x1) = −Qy

Myy(x1) = −Qz x1 Mzz(x1) = −Qx x1 − P x1 Mxx(x1) = 0

BAR 2-3: 0 ≤ x2 ≤ L

Vy(x2) = P +Qx Vz(x2) = −Qy Nxx(x2) = Qz

Myy(x2) = −Qz L−Qy x2 Mzz(x2) = −P x2 −Qx x2 Mxx(x2) = P L+Qx L

BAR 3-4: 0 ≤ x3 ≤ L

Vy(x3) = −Qy Vz(x3) = Qz

Nxx(x3) = P +Qx Myy(x3) = −P L+Qz x3 −Qx L

Mzz(x3) = P L+Qy x3 +Qx L Mxx(x3) = −Qy L−Qz L

Derivative With Respect To Dummy Loads

c©2012 by Vijay K. Goyal. All Rights Reserved.



6.2. CASTIGLIANO’S THEOREM 414

BAR 1-2: 0 ≤ x1 ≤ L

∂Vy(x1)
∂Qx

= 1
∂Vy(x1)
∂Qy

= 0
∂Vy(x1)
∂Qz

= 0

∂Vz(x1)
∂Qx

= 0
∂Vz(x1)
∂Qy

= 0
∂Vz(x1)
∂Qz

= −1

∂Vx(x1)
∂Qx

= 0
∂Vx(x1)
∂Qy

= −1
∂Vx(x1)
∂Qz

= 0

∂Myy(x1)
∂Qx

= 0
∂Myy(x1)
∂Qy

= 0
∂Myy(x1)
∂Qz

= −x1

∂Mzz(x1)
∂Qx

= −x1
∂Mzz(x1)
∂Qy

= 0
∂Mzz(x1)
∂Qz

= 0

∂Mxx(x1)
∂Qx

= 0
∂Mxx(x1)
∂Qy

= 0
∂Mxx(x1)
∂Qz

= 0

BAR 2-3: 0 ≤ x2 ≤ L

∂Vy(x2)
∂Qx

= 1
∂Vy(x2)
∂Qy

= 0
∂Vy(x2)
∂Qz

= 0

∂Vz(x2)
∂Qx

= 0
∂Vz(x2)
∂Qy

= −1
∂Vz(x2)
∂Qz

= 0

∂Vx(x2)
∂Qx

= 0
∂Vx(x2)
∂Qy

= 0
∂Vx(x2)
∂Qz

= 1
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∂Myy(x2)
∂Qx

= 0
∂Myy(x2)
∂Qy

= −x2
∂Myy(x2)
∂Qz

= −L

∂Mzz(x2)
∂Qx

= −x2
∂Mzz(x2)
∂Qy

= 0
∂Mzz(x2)
∂Qz

= 0

∂Mxx(x2)
∂Qx

= L
∂Mxx(x2)
∂Qy

= 0
∂Mxx(x2)
∂Qz

= 0

BAR 3-4: 0 ≤ x3 ≤ L

∂Vy(x3)
∂Qx

= 0
∂Vy(x3)
∂Qy

= −1
∂Vy(x3)
∂Qz

= 0

∂Vz(x3)
∂Qx

= 0
∂Vz(x3)
∂Qy

= 0
∂Vz(x3)
∂Qz

= 1

∂Vx(x3)
∂Qx

= 1
∂Vx(x3)
∂Qy

= 0
∂Vx(x3)
∂Qz

= 0

∂Myy(x3)
∂Qx

= −L ∂Myy(x3)
∂Qy

= 0
∂Myy(x3)
∂Qz

= x3

∂Mzz(x3)
∂Qx

= L
∂Mzz(x3)
∂Qy

= x3
∂Mzz(x3)
∂Qz

= 0

∂Mxx(x3)
∂Qx

= 0
∂Mxx(x3)
∂Qy

= −L ∂Mxx(x3)
∂Qz

= −L
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Internal Strain Energy

U =
∫ L

0

{
M2

xx

2GJxx

}

1-2

dx1 +
∫ L

0

{
M2

yy

2E Iyy

}

1-2

dx1 +
∫ L

0

{
M2

zz

2E Izz

}

1-2

dx1

+
∫ L

0

{
N2

xx

2E A

}

1-2

dx1 +
∫ L

0

{
V 2

y

2 ksGA

}

1-2

dx1 +
∫ L

0

{
V 2

z

2 ksGA

}

1-2

dx1

+
∫ L

0

{
M2

xx

2GJxx

}

2-3

dx2 +
∫ L

0

{
M2

yy

2E Iyy

}

2-3

dx2 +
∫ L

0

{
M2

zz

2E Izz

}

2-3

dx2

+
∫ L

0

{
N2

xx

2E A

}

2-3

dx2 +
∫ L

0

{
V 2

y

2 ksGA

}

2-3

dx2 +
∫ L

0

{
V 2

z

2 ksGA

}

2-3

dx2

+
∫ L

0

{
M2

xx

2GJxx

}

3-4

dx3 +
∫ L

0

{
M2

yy

2E Iyy

}

3-4

dx3 +
∫ L

0

{
M2

zz

2E Izz

}

3-4

dx3

+
∫ L

0

{
N2

xx

2E A

}

3-4

dx3 +
∫ L

0

{
V 2

y

2 ksGA

}

3-4

dx3 +
∫ L

0

{
V 2

z

2 ksGA

}

3-4

dx3

Usually the contribution to shear and stretching is small when compared to bending effects.
Thus ignoring shear and stretching effects:

U ≈
∫ L

0

{
M2

xx

2GJxx

}

1-2

dx1 +
∫ L

0

{
M2

yy

2E Iyy

}

1-2

dx1 +
∫ L

0

{
M2

zz

2E Izz

}

1-2

dx1

+
∫ L

0

{
M2

xx

2GJxx

}

2-3

dx2 +
∫ L

0

{
M2

yy

2E Iyy

}

2-3

dx2 +
∫ L

0

{
M2

zz

2E Izz

}

2-3

dx2

+
∫ L

0

{
M2

xx

2GJxx

}

3-4

dx3 +
∫ L

0

{
M2

yy

2E Iyy

}

3-4

dx3 +
∫ L

0

{
M2

zz

2E Izz

}

3-4

dx3

Further using the actual loads:

U ≈
∫ L

0

{
M2

yy

2E Iyy

}

1-2

dx1 +
∫ L

0

{
M2

zz

2E Izz

}

1-2

dx1

+
∫ L

0

{
M2

xx

2GJxx

}

2-3

dx2 +
∫ L

0

{
M2

yy

2E Iyy

}

2-3

dx2 +
∫ L

0

{
M2

zz

2E Izz

}

2-3

dx2

+
∫ L

0

{
M2

xx

2GJxx

}

3-4

dx3 +
∫ L

0

{
M2

yy

2E Iyy

}

3-4

dx3 +
∫ L

0

{
M2

zz

2E Izz

}

3-4

dx3
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Second Castigliano’s Theorem The first equation is obtained for the displacement in the
x-direction:

u1 =
∂U

∂Qx
=
∫ L

0

{
Myy

E Iyy

(
∂Myy

∂Qx

)}

1-2

dx1 +
∫ L

0

{
Mzz

E Izz

(
∂Mzz

∂Qx

)}

1-2

dx1

+
∫ L

0

{
Mxx

GJxx

(
∂Mxx

∂Qx

)}

2-3

dx2 +
∫ L

0

{
Myy

E Iyy

(
∂Myy

∂Qx

)}

2-3

dx2

+
∫ L

0

{
Mzz

E Izz

(
∂Mzz

∂Qx

)}

2-3

dx2 +
∫ L

0

{
Mxx

GJxx

(
∂Mxx

∂Qx

)}

3-4

dx3

+
∫ L

0

{
Myy

E Iyy

(
∂Myy

∂Qx

)}

3-4

dx3 +
∫ L

0

{
Mzz

E Izz

(
∂Mzz

∂Qx

)}

3-4

dx3

Thus

u1 =
∫ L

0

[
(−P x1 −Qx x1)(−x1)

EIzz

]

1-2

dx1 +
∫ L

0

[
(P L+Qx L)(L)

GJxx

]

2-3

dx2

+
∫ L

0

[
(−P x2 −Qx L)(−x2)

EIzz

]

2-3

dx2 +
∫ L

0

[
(P L+Qy x3 +Qx L)(L)

EIzz

]

3-4

dx3

+
∫ L

0

[
(−P L+Qz x3 −Qx L)(−L)

EIyy

]

3-4

dx3

The second equation is obtained for the displacement in the y-direction:

v1 =
∂U

∂Qy
=
∫ L

0

{
Myy

E Iyy

(
∂Myy

∂Qy

)}

1-2

dx1 +
∫ L

0

{
Mzz

E Izz

(
∂Mzz

∂Qy

)}

1-2

dx1

+
∫ L

0

{
Mxx

GJxx

(
∂Mxx

∂Qy

)}

2-3

dx2 +
∫ L

0

{
Myy

E Iyy

(
∂Myy

∂Qy

)}

2-3

dx2

+
∫ L

0

{
Mzz

E Izz

(
∂Mzz

∂Qy

)}

2-3

dx2 +
∫ L

0

{
Mxx

GJxx

(
∂Mxx

∂Qy

)}

3-4

dx3

+
∫ L

0

{
Myy

E Iyy

(
∂Myy

∂Qy

)}

3-4

dx3 +
∫ L

0

{
Mzz

E Izz

(
∂Mzz

∂Qy

)}

3-4

dx3

Thus

v1 =
∫ L

0

[
(P L+Qy x3 +Qx L)(x3)

EIzz

]

3-4

dx3
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The third equation is obtained for the displacement in the z-direction:

w1 =
∂U

∂Qz
=
∫ L

0

{
Mzz

E Izz

(
∂Mzz

∂Qz

)}

1-2

dx1 +
∫ L

0

{
Myy

E Iyy

(
∂Myy

∂Qz

)}

1-2

dx1

+
∫ L

0

{
Mxx

GJxx

(
∂Mxx

∂Qz

)}

2-3

dx2 +
∫ L

0

{
Myy

E Iyy

(
∂Myy

∂Qz

)}

2-3

dx2

+
∫ L

0

{
Mzz

E Izz

(
∂Mzz

∂Qz

)}

2-3

dx2 +
∫ L

0

{
Mxx

GJxx

(
∂Mxx

∂Qz

)}

3-4

dx3

+
∫ L

0

{
Myy

E Iyy

(
∂Myy

∂Qz

)}

3-4

dx3 +
∫ L

0

{
Mzz

E Izz

(
∂Mzz

∂Qz

)}

3-4

dx3

Thus

w1 =
∫ L

0

[
(−P L+Qz x3 −Qx L)(x3)

EIyy

]

3-4

dx3

For a circular cross section:

[EIzz]1 = [EIzz]2 = [EIzz]3 = [EIzz]3 Izz = Izz =
πd4

64
Jxx =

πd4

32

For isotropic material:

G =
E

2(1 + ν)

Therefore,

[EIzz]1 = [EIzz]2 = [EIzz]3 = [EIzz]3 = E d4 π

64
GK = Ed4 π

64(1 + ν)

Solution For ν = 1/4 the three equations became:

u1 =
∂U

∂Qx

∣∣∣
Qx=0,Qy=0,Qz=0

=
752L3 P

3 d4 π E

v1 =
∂U

∂Qy

∣∣∣
Qx=0,Qy=0,Qz=0

=
32L3 P

d4 π E

w1 =
∂U

∂Qz

∣∣∣
Qx=0,Qy=0,Qz=0

= −32L3 P

d4 π E
(in the positive z-direction)

End Example �
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Example 6.5.

Statically Indeterminate Structures

Suppose the center support moves downward by the amount ∆c and remains attached to the
beam. Using the Second Castigliano’s Theorem to determine the reactions at the left and
right supports.

∆c =
pL4

100EIzz
↓

Redundant Loads Note that it is an indeterminate problem. Therefore, assume that Qc is
known

 

 

 
 x 

 x 

 Qc, ∆c 

 x 

 y 
 p 

 Qc, ∆c  Ry2  Ry1 

 x 

 δQc  δRy2  δRy1 

 y 

 y 
 p 

 y 
 p 

Internal Loads Calculate the reaction forces:

 

 

 
 x 

 x 

 Qc, ∆c 

 x 

 y 
 p 

 Qc, ∆c  Ry2  Ry1 

 x 

 δQc  δRy2  δRy1 

 y 

 y 
 p 

 y 
 p 
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↑
∑

Fy = 0 = Ry1 +Ry2 +Qc − pL Ry1 =
pL

2
− Qc

2
⇒

	
∑

M1 = 0 = LRy2 −
pL

2
+
L

2
Qc Ry2 =

pL

2
− Qc

2

Internal loads are different for the following two sections of the beam: 0 ≤ x <
L

2
and

L

2
< x < L

 

 

 

 y 

 x 
 Ry1 

 p 

 Vy 

 Mz 

 x  Ry2 

 p 

 Vy 

 Mz 

 L 

For 0 ≤ x < L

2

d Vy(x)
d x

− p(x) = 0 Vy(x)
∣∣∣
x=0

= −Ry1 Vy(x) = p x− 1
2

(pL−Qc)

dMzz(x)
d x

+ Vy(x) = 0 Mzz(x)
∣∣∣
x=0

= 0 Mzz(x) = −1
2
p x2 +

1
2

(pL−Qc)x

For
L

2
< x < L

dVy(x)
d x

− p(x) = 0 Vy(x)
∣∣∣
x=L

= Ry2 Vy(x) = p x− 1
2

(pL+Qc)

dMzz(x)
d x

+ Vy(x) = 0 Mzz(x)
∣∣∣
x=L

= 0 Mzz(x) = −1
2
p x2 +

1
2

(pL+Qc)x−
L

2
Qc

Derivative With Respect To Redundant Loads

Virtual Internal loads are different for the following two sections of the beam: 0 ≤ x <
L

2
and

L

2
< x < L
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For 0 ≤ x < L

2

∂Vy(x)
∂Qc

=
1
2

∂Mzz(x)
∂Qc

= −1
2
x

For
L

2
< x < L

∂Vy(x)
∂Qc

= −1
2

∂Mzz(x)
∂Qc

= −1
2

(L− x)

Internal Strain Energy

U =
∫ L

0

{
M2

xx

2GJxx

}
dx+

∫ L

0

{
V 2

y

2 ksGA

}
dx+

∫ L

0

{
M2

zz

2E Izz

}
dx+

∫ L

0

{
N2

xx

2E A

}
dx

=
∫ L

0

{
V 2

y

2 ksGA

}
dx+

∫ L

0

{
M2

zz

2E Izz

}
dx

=
∫ L/2

0

{
V 2

y

2 ksGA

}
dx+

∫ L

L/2

{
V 2

y

2 ksGA

}
dx+

∫ L/2

0

{
M2

zz

2E Izz

}
dx+

∫ L

L/2

{
M2

zz

2E Izz

}
dx

≈
∫ L/2

0

{
M2

zz

2E Izz

}
dx+

∫ L

L/2

{
M2

zz

2E Izz

}
dx

Second Castigliano’s Theorem

∆c =
∂U

∂Qc
=
∫ L/2

0

Mzz

E Izz

(
∂Mzz

∂Qc

)
dx+

∫ L

L/2

Mzz

E Izz

(
∂Mzz

∂Qc

)
dx

∆c =
∫ L/2

0

1
EIzz

[
−1

2
p x2 +

1
2

(pL−Qc)x
](
−1

2
x

)
dx

+
∫ L

L/2

1
EIzz

[
−1

2
p x2 +

1
2

(pL+Qc)x−
L

2
Qc

](
−1

2
(L− x)

)
dx

=
1

EIzz

∫ L/2

0

[
1
4
p x3 − 1

4
(pL−Qc)x2

]
dx

+
1

EIzz

∫ L

L/2

[
1
4
p (L− x)3 − 1

4
(pL−Qc) (L− x)2

]
dx

∆c =
−5L4 p

384EIzz
+

L3Qc
48EIzz

Solution
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Reaction at the middle support

Qc =
5Lp

8
+

48 ∆cEIzz

L3 =
5Lp

8
+

48EIzz
L3

(
− pL4

100EIzz

)
=

29 pL
200

↑

Reaction at the left and right supports:

Ry1 =
1
2

(pL−Qc) =
1
2

(
pL− 29 pL

200

)
=

171 pL
400

↑

Ry2 =
1
2

(pL−Qc) =
1
2

(
pL− 29 pL

200

)
=

171 pL
400

↑

End Example �
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Example 6.6.

Indeterminate Arches Structures

The semicircular frame of radius R is supported by smooth pins at both ends (points 1 and
3). A downward load P is applied to point 2 at the top. Using Castigliano’s Second Theorem
find the value and location of the maximum bending moment in the frame, in terms of P
and R. Assume EIzz is constant:

EIzz = EI

Same as solve in class but α = 90◦ for this problem.

Redundant Loads

 

 

 
 

P 

Q Q 

P/2 P/2 

Internal Loads
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P 

Q Q 

P/2 P/2 

θ 

α 

R 

V 

N 

M 
2 

Ry 

Rx 

θ 

t 

n 

Now we calculate the internal loads

N(θ) =





P

2
sin θ −Q cos θ : −α ≤ θ < 0

−P
2

sin θ −Q cos θ : 0 < θ ≤ α

M(θ) =





P R

2
(sinα+ sin θ)−QR (cos θ − cosα) : −α ≤ θ < 0

P R

2
(sinα− sin θ)−QR (cos θ − cosα) : 0 < θ ≤ α

Derivative With Respect To Redundant Loads

Virtual Internal loads are different for the following two sections of the beam: −α ≤ θ < 0
and 0 < θ ≤ α

For −α ≤ θ < 0

∂N(θ)
∂Q

= − cos θ
∂M(θ)
∂Q

= −R (cos θ − cosα)

For 0 < θ ≤ α

∂N(θ)
∂Q

= − cos θ
∂M(θ)
∂Q

= −R (cos θ − cosα)
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Internal Strain Energy

U =
1
2

∫ α

−α

M(θ)2

EI
Rdθ +

1
2

∫ α

−α

N(θ)2

EA
Rdθ

Ignoring stretching:

U =
1
2

∫ α

−α

M(θ)2

EI
Rdθ =

∫ 0

−α

M(θ)2

EI
Rdθ +

∫ α

0

M(θ)2

EI
Rdθ

Second Castigliano’s Theorem Ignoring stretching:

q =
∂U

∂Q

=
∫ α

−α

M(θ)
EI

(
∂M

∂Q

)
Rdθ =

∫ 0

−α

M(θ)
EI

(
∂M

∂Q

)
Rdθ +

∫ α

0

M(θ)
EI

(
∂M

∂Q

)
Rdθ

q =
1
EI

∫ 0

−α

[(
P R

2
(sinα+ sin θ)

)
(−R (cos θ − cosα))

]
Rdθ

+
1
EI

∫ 0

−α
[(−QR (cos θ − cosα)) (−R (cos θ − cosα))] Rdθ

+
1
EI

∫ α

0

[(
P R

2
(sinα− sin θ)

)
(−R (cos θ − cosα))

]
Rdθ

+
1
EI

∫ α

0

[(−QR (cos θ − cosα)) (−R (cos θ − cosα))] Rdθ

q =
− (P − πQ) R3

2EI

Solution Since the support is fixed, there will be no displacement:

q =
∂U

∂Q
=
− (P − πQ) R3

2EI
= 0

Thus
Q =

P

π

Now we substitute Q into the moment and divide by P R to nondimensionalize the moment
equation we get

M(θ)
P R

=





1
2
− cos θ

π
+

sin θ
2

: −π
2
≤ θ < 0

1
2
− cos θ

π
− sin θ

2
: 0 < θ ≤ π

2
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-75 -50 -25 25 50 75

-0.05

0.05

0.1

0.15

 

M(θ)/(PR) 

θ, deg 

Therefore, the maximum bending moment occurs at θ = 0◦ and has a value of

Mmax = M(θ = 0◦) =
P R

2
− P R

π
= 0.18169P R

End Example �
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6.3 Static deflection

An important concept used in calculating the structural behavior of a system is the static deflection, δst.
This is the deflection of a mechanical system due to gravitational force alone. (The disturbing forces are
not considered.) In calculating the static deflection, it is extremely important to distinguish between
mass and weight. The static deflection can usually found by using tables, statics, energy methods such
Castigliano’s Theorem. In general, the static deflection is found by:

δst =
F

k

As for an example, consider a beam with a static load placed at the middle (L1 = L2 = L/2):

W 

L1 L2

 

The static deflection from tables for a concentrated load at the middle of a beam (neglecting the beam’s
weight) is

δst =
W L3

48EI

6.3.1 Effective Stiffness

We can express most structural problems’ stiffness in terms of an effective stiffness. The spring rate for
members in bending:

k =
P

yload

For instance the overall spring rate for the beam with a static load placed at the middle (L1 = L2 = L/2)
is

k =
W

δst
=

48EI
L3

The spring rate for torsionally loaded members is:

k =
T

θ
=
JxxG

L

where Jxx depends on the cross-section and is given in tables. The springs may be combined in either
series or parallel arrangements.
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Springs in Parallel

 

y 

F

k1 k2 kn 

When springs have a parallel arrangement, the displacements are equal but the total force is split between
the springs. Let F be the total force and y the total displacement. Then for a parallel arrangement:

F = F1 + F2 + · · ·+ Fn

y = y1 = y2 = · · · = yn

Since F = k y:
F = F1 + F2 + · · ·+ Fn

k y = k1 y1 + k2 y2 + · · ·+ kn yn

k = k1 + k2 + · · ·+ kn

Thus when springs are combined in parallel the combined spring rate, the effective stiffness, is the sum
of each individual spring rate:

keff =
n∑

i=1

ki

Springs in Series

 

y1 

F

k1 

k2 

kn 

y2 

yn 
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When springs have an arrangement in series, the force is the same on all springs but the displacement
is split between the springs. Let F be the total force and y the total displacement. Then for springs in
series:

F = F1 = F2 = · · · = Fn

y = y1 + y2 + · · ·+ yn

Since F = k y:
y = y1 + y2 + · · ·+ yn

F

k
=
F1

k1
+
F2

k2
+ · · ·+ Fn

kn

1
k

=
1
k1

+
1
k2

+ · · ·+ 1
kn

Thus when springs are combined in series the combined spring rate, the effective stiffness, is the inverse
of the sum of the inverse of each individual spring rate:

1
keff

=
n∑

i=1

1
ki

→ keff =
1

n∑

i=1

1
ki
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Example 6.7.

The steel right-angle support bracket with bar lengths L1 = 10 inches and L2 = 5 inches,
as shown in Figure, is to be used to support the static load P = 1000 lb. The load is to be
applied vertically at the free end of the cylindrical bar, as shown. Both bracket bar center-
lines lie in the same horizontal plane. If the square bar has side s = 1.25 inches, and the
cylindrical leg has diameter d = 1.25 inches, determine the total static deflection.

The total static deflection is defined as:

δst =
P

keff

The load P is known and the problem reduces to find the overall spring rate of the system.
Note the square bar will be subject to both torsional and bending deflections, while the
cylindrical bar is subject to bending only. This can be modeled as spring in series. Thus

keff =
1

3∑

i=1

1
ki

=
1

1
k1

+
1
k2

+
1
k3

where k1 is the spring rate caused by bending of the square bar, k2 the spring rate caused by
torsion through of the square bar reflected to point O through rigid body rotation of cylinder
bar length L2, and k3 is the spring rate caused by bending of the cylindrical.

For the bending of the squared cross-section,

k1 =
P

y1
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Using tables,

y1 =
P L3

1

3EI
→ k1 =

P

y1
=

3EI
L3

1

For a squared cross-section:

I =
s4

12
Thus

k1 =
E s4

4L3
1

Next, for the torsion of the square cross-section,

k2 =
P

y2

where y2 = L2 θ. The total rotation angle is calculated as

θ =
P L2 L1

JxxG

Using this information:

k2 =
P

y2
=

P

L2 θ
=

P

L2

(
P L2 L1

JxxG

) =
JxxG

L1 L
2
2

Using tables for a squared cross-section:

Jxx = 2.25
(s

2

)4

= 0.14 s4

Thus

k2 =
0.14 s4G

L1 L
2
2

For the bending of the circular cross-section,

k3 =
P

y3

Using tables,

y3 =
P L3

2

3EI
→ k3 =

P

y3
=

3EI
L3

3

For a circular cross-section:

I =
πd4

64
Thus

k3 =
3π E d4

64L3
2
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Thus, the overall spring rate is

keff =
1

1
E s4

4L3
1

+
1

0.14 s4G

L1 L
2
2

+
1

3π E d4

64L3
2

=
E s4

L3
1




1

4 + 0.14
(
E

G

)(
L2

L1

)2

+
64
3π

(
L2

L1

)3 ( s
d

)4




Using tables,
E = 30× 106 psi G = 11.5× 106 psi

keff = 7.70× 103 lb
in

The total static deflection for the given structure is

δst =
P

keff

= 0.13 in = 0.010833 ft

End Example �
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6.4 Elastic Stability and Instability

When a structure is subjected to loading it can fail because local stresses exceed the maximum allowable
stress for the material. There exist, however, another type of failure mode where the entire structure
suddenly collapses. The critical value of the applied load that triggers this failure mode primarily
depends on the geometry of the structure and the stiffness of the material, not its strength. The study
of this catastrophic failure mode is known as the theory of elastic stability.

The main objective in stability analysis is to determine whether a system that is perturbed from an
equilibrium state will return to that equilibrium steady state. If this is true for small perturbations from
equilibrium, then we say that this equilibrium is stable. If a system always returns to that equilibrium,
then we say it is globally stable.

In order to understand why columns buckle it is necessary to understand the concept of stability.
We are interested to study the stability of the equilibrium state.

6.4.1 Buckling

When a structure (subjected usually to compression) undergoes visibly large displacements transverse
to the load then it is said to buckle. Buckling may be demonstrated by pressing the opposite edges
of a flat sheet of cardboard towards one another. For small loads the process is elastic since buckling
displacements disappear when the load is removed.

Now consider increasing the load slowly. We are interested in the value of the load, called the critical
load, at which buckling occurs. That is, we are interested in when a a sequence of equilibrium stable
states as a function of the load, one state for each value of the load, ceases to be stable.

Buckling of a structure means

1. Failure due to excessive displacements (loss of structural stiffness), and/or

2. Loss of stability of an equilibrium configuration of the structure.

6.4.2 Definition of Buckling Load

The buckling load is the load at which the current equilibrium state of a structural element or structure
suddenly changes from stable to unstable, and is, simultaneously, the load at which the equilibrium
state suddenly changes from that previously stable configuration to another stable configuration with
or without an accompanying large response. Thus, the buckling load is the largest load for which
stability of equilibrium of a structural element or structure exists in its original (or previous) equilibrium
configuration.
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6.4.3 Stability of equilibrium

Stability of equilibrium means that the response of the structure due to a small disturbance from its
equilibrium configuration remains small; the smaller the disturbance the smaller the resulting magnitude
of the displacement in the response. If a small disturbance causes large displacement, perhaps even
theoretically infinite, then the equilibrium state is unstable. Practical structures are stable at no load.
Now consider increasing the load slowly. We are interested in the value of the load, called the critical
load, at which buckling occurs. That is, we are interested in when a a sequence of equilibrium stable
states as a function of the load, one state for each value of the load, ceases to be stable.

In general, modern aircraft structures consist of thin sheets attached to slender stiffeners. Thus,
buckling of these lightweight members can occur at stresses well below the elastic limit. If buckling
occurs before the elastic limit of the material, which is roughly the yield stress of the material, then it
is called elastic buckling. If buckling occurs beyond the elastic limit, it is called inelastic buckling, or
plastic buckling if the material exhibits plasticity during buckling (mainly metals). Most thin-walled
structural components buckle in compression below the elastic limit. Therefore, buckling determines the
limit state in compression rather than material yielding. In fact, about 50% of an airplane structure is
designed based on buckling constraints.

In short, prediction of resistance of compression and shear members to elastic buckling is very im-
portant. Note that buckling is a type of failure as is yielding and fracture.

6.4.4 Various Equilibrium Configurations

 
(a) (b) (c) 

Figure 6.3: Equilibrium states.

To illustrate the concept of stability of the equilibrium configuration, let us consider three cases as
shown in Fig. 6.3.

(a) Stable equilibrium: An equilibrium state or configuration of a structural element, structure, or
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mechanical system is stable if every small disturbance of the system results only in a small response
after which the structure always returns to its original equilibrium state. The simplest example of
a stable mechanical system is a rigid blue ball in a valley as in Figure. The ball can be disturbed
slightly such as by tapping on it, but the ball always returns to the bottom of the valley. Thus,
the ball is in a state of stable equilibrium at the bottom of the valley. The stable equilibrium state
is stable with respect to both displacement and/or velocity disturbance.

(b) Neutral equilibrium: After the rigid red ball has been slightly disturbed from the equilibrium
position, it is still in equilibrium at the displaced position, and there is no tendency either to return
to the previous position or to move to some other position. Equilibrium is always satisfied. The
neutral equilibrium state is stable with respect to displacement but unstable with respect to velocity
disturbance.

(c) Unstable equilibrium: An equilibrium state or configuration of a structural element, structure,
or mechanical system is unstable if any small disturbance of the system results in a sudden change
in deformation mode after which the system does not return to its original equilibrium state. The
simplest example of an unstable mechanical system is a rigid green ball precariously perched on
the top of a hill as in Figure. If the ball is disturbed slightly (an infinitesimal disturbance suffices),
the ball will immediately roll down the hill and will never return to the top of the hill. Thus, the
ball is in a state of unstable equilibrium at the top of the hill. The unstable equilibrium state is
unstable with respect to both displacement and/or velocity disturbance.

All the above represent equilibrium paths (states). Two important concepts exist to study the
stability of an equilibrium state:

1. System must be in equilibrium.

2. We study the stability of that equilibrium state by given the system a small disturbance.

6.4.5 Methods of stability analysis

Three methods of stability analysis for an equilibrium state exist:

1. Dynamic method. What is the value of the load for which the most general free motion of the

perfect system in the vicinity of the equilibrium position ceases to be bounded?

2. Adjacent equilibrium method. What is the value of the load for which the perfect system

admits nontrivial equilibrium configurations?

3. Energy method. What is the value of the load for which the potential energy ceases to be posi-

tive definite?

Only the dynamic method can be used to study the stability of the perfect system in the vicinity of the
equilibrium position of both conservative and non-conservative systems.
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6.4.6 Stability of Perfect Beam-Columns (Adjacent Equilibrium Method)

Consider the equilibrium of the perfect column: The column is straight and subject to centric static
compressive force P . The beam column obeys the Euler-Bernoulli Theory, is homogeneous, isotropic,
and of uniform cross-section. Hence, at equilibrium:

u0(x) = − P

EA
x, v0(x) = 0, x ∈ (0, L)

Now let us study the stability of the equilibrium state by the method of adjacent equilibrium. Con-
sider infinitesimal variation to the displacements represented by subscript “1” ( e.g., v1(x) = δv(x)). If
the column is fixed at x = 0

u(x) = u0(x) + u1(x) ⇒ u(0) = 0 ⇒ u1(x) = 0

u(x) = u0(x) ∀x ∈ (0, L)

v(x) = v0(x) + v1(x) v0(x) = 0

v(x) = v1(x) ∀x ∈ (0, L)

The equilibrium of an element at a distance x is:

 

Vy+ dVy 

Vy 

Mzz+ dMzz

Mzz  

dx 

dv 

P 

P 

A 

Sum of force in the y direction gives

+ ↑
∑

Fy = 0, → −Vy1 + (Vy1 + dVy1) = 0

Now divide by dx and let dx→∞,
dVy1
dx

= 0 (6.25)

Take moments at A

+ 	
∑

MA = 0, → Vy1 dx−Mzz1 +Mzz1 + dMzz1 + P dv1 = 0

Now divide by dx and let dx→∞,

dMzz1

dx
+ Vy1 +

dv1

dx
P = 0 (6.26)
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Differentiate Eq. (6.26) with respect to x once

d2Mzz1

dx2 +
dVy1
dx︸ ︷︷ ︸
=0

+
d2v1

dx2 P = 0

Now use Eq. (6.25) to get
d2Mzz1

dx2 +
d2v1

dx2 P = 0 (6.27)

The material law is

Mzz1 = −EIzz
dϕz1
dx

= −EIzz
d(−v′1)
dx

= EIzz v
′′
1 (6.28)

Substituting Eq. (6.28) into Eq. (6.27) we get the governing ordinary differential equation for buckling:

d2

dx2

(
EIzz

d2v1

dx2

)
+ P

d2v1

dx2 = 0 v1 = v1(x) x ∈ (0, L) (6.29)

For a column with EIzz = constant, we can re-write this differential equation as

EIzz v
′′′′
1 + P v′′1 = 0 ⇒ v′′′′1 +

P

EIzz︸ ︷︷ ︸
λ2

v′′1 = 0

Hence the homogeneous forth order ordinary differential equation to obtain the buckling load is

v′′′′1 + λ2 v′′1 = 0 v1 = v1(x) x ∈ (0, L), λ2 =
P

EIzz
(6.30)

General solution for λ2 > 0

v1(x) = A1 sin(λx) +A2 cos(λx) +A3 x+A4 (6.31)

and the buckling load is obtained from Eq. (6.30):

λ2 =
P

EIzz
→ P = λ2EIzz

The constants are found by applying the boundary conditions. Before we proceed, the following will be
needed

v′1(x) = A1 λ cos(λx)−A2 λ sin(λx) +A3

v′′1 (x) = −A1 λ
2 sin(λx)−A2 λ

2 cos(λx)

v′′′1 (x) = −A1 λ
3 cos(λx) +A2 λ

3 sin(λx)

From the Hooke’s law Eq. (6.28)

Mzz1 = EIzz v
′′
1 (x) = −EIzz [A1 λ

2 sin(λx) +A2 λ
2 cos(λx)]

From equilibrium Eq. (6.26)

Vy1 = −M ′zz1 − P v
′
1 = −EIzz [v′′′1 + λ2 v′1] = −EIzz [A3 λ

2]
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Boundary conditions depend from problem to problem. However, there are three standard boundary
condition evaluated at the boundary:

PINNED : v1 = 0 and Mzz1 = 0

FREE : Mzz1 = 0 and Vy1 = 0

FIXED : v1 = 0 and v′1 = 0
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Example 6.8.

 

P 

L 

x, u 

y, v 

Figure 6.4: A simply-supported beam column subject to an axial load.

The uniform column with bending stiffness EIzz, shown in Fig. 6.4, is pinned at x = 0 and
pinned at x = L. Determine the critical load Pcr and the associated buckling mode shape.

(6.8-a) Perturb the system from its equilibrium state.

This leads to the ordinary differential equation given by Eq. (6.30):

v′′′′1 + λ2 v′′1 = 0 v1 = v1(x) x ∈ (0, L), λ2 =
P

EIzz

The general solution for λ2 > 0 is

v1(x) = A1 sin(λx) +A2 cos(λx) +A3 x+A4

(6.8-b) Now apply the boundary conditions:

Pinned at x = 0: v1(0) = 0 and Mzz1(0) = EIzz v
′′
1 (0) = 0

Pinned at x = L: v1(L) = 0 and Mzz1(L) = EIzz v
′′
1 (L) = 0
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Thus
v1(0) = A2 +A4 = 0

v′′1 (0) = −A2 λ
2 = 0

v1(L) = A1 sin(λL) +A2 cos(λL) +A3 L+A4 = 0

v′′1 (L) = −A1 λ
2 sin(λL)−A2 λ

2 cos(λL) = 0

Writing the boundary conditions in a matrix form in terms of the unknown coefficients
A1, A2, A3, A4




0 1 0 1

0 −λ2 0 0

−λ2 sin(λL) −λ2 cos(λL) 0 0

sin(λL) cos(λL) L 1




︸ ︷︷ ︸
C





A1

A2

A3

A4





=





0

0

0

0





(6.32)

(6.8-c) Obtain the characteristic equation.

Non-trivial solution (A 6= 0) requires det[C] =0. The determinant will lead to the
characteristic equation:

1
L4 (λL)4 sin(λL) = 0 (6.33)

(6.8-d) Obtain the buckling load.

We proceed to solve the characteristic equation for λ.

λ = 0 ⇒ P = 0 leads to trivial solution

sin(λL) = 0 ⇒ λL = mπ

λm =
mπ

L
⇒ Pm =

[mπ

L

]2
EIzz

The loads is obtained from:

Pm =
m2 π2EIzz

L2

Thus critical load is for a simply-supported beam is

Pcr = P1 =
π2EIzz

L2

(6.8-e) Obtain the buckling mode shape.

The buckling mode shapes associated with Pcr. Plug-in the value for λm in Eq. (6.32)
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to determine the coefficients. Recall that for our problem sin(λm L) = 0




0 1 0 1

0 −λ2
m 0 0

0 −λ2
m 0 0

0 1 L 1








A1

A2

A3

A4





=





0

0

0

0





(6.34)

Therefore the coefficient are

row 2 : A2 = 0 row 1 : A4 = 0 row 4 : A3 = 0

Note that A1 remains indeterminate. Hence the buckling mode shape associated with
Pcr is

v1(x)
A1

= sin
(π x
L

)

End Example �
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Example 6.9.

 

 

 

L 

x, u 

y, v 

O 

P 

Figure 6.5: Cantilevered beam column subject to an axial load.

The uniform column with bending stiffness EIzz, shown in Fig. 6.5, is clamped at x = 0 and
free at x = L. Determine the critical load Pcr and the associated buckling mode shape.

(6.9-a) Perturb the system from its equilibrium state.

This leads to the ordinary differential equation given by Eq. (6.30):

v′′′′1 + λ2 v′′1 = 0 v1 = v1(x) x ∈ (0, L), λ2 =
P

EIzz

The general solution for λ2 > 0 is

v1(x) = A1 sin(λx) +A2 cos(λx) +A3 x+A4

(6.9-b) Now apply the boundary conditions:

Clamped at x = 0: v1(0) = 0 and v′1(0) = 0

Free at x = L: Mzz1(L) = 0 ⇒ v′′1 (L) = 0 and Vy1(L) = 0
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Thus
v1(0) = A2 +A4 = 0

v′1(0) = A1 λ+A3 = 0

v′′1 (L) = −A1 λ
2 sin(λL)−A2 λ

2 cos(λL) = 0

Vy1(L) = A3 λ
2 = 0

Writing the boundary conditions in a matrix form in terms of the unknown coefficients
A1, A2, A3, A4




0 1 0 1

λ 0 1 0

−λ2 sin(λL) −λ2 cos(λL) 0 0

0 0 λ2 0




︸ ︷︷ ︸
C





A1

A2

A3

A4





=





0

0

0

0





(6.35)

(6.9-c) Obtain the characteristic equation.

Non-trivial solution (A 6= 0) requires det[C] =0. The determinant will lead to the
characteristic equation:

1
L5 (λL)5 cos(λL) = 0 (6.36)

(6.9-d) Obtain the buckling load.

We proceed to solve the characteristic equation for λ.

λ = 0 ⇒ P = 0 leads to trivial solution

cos(λL) = 0 ⇒ λL = (2m− 1)
π

2

λm = (2m− 1)
π

2L
⇒ Pm =

[
(2m− 1)

π

2L

]2
EIzz

The loads is obtained from:

Pm =
(2m− 1)2 π2EIzz

4L2

Thus critical load is for a cantilevered beam is

Pcr = P1 =
π2EIzz

4L2

(6.9-e) Obtain the buckling mode shape.

The buckling mode shapes associated with Pcr. Plug-in the value for λm in Eq. (6.35)
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to determine the coefficients. Recall that for our problem cos(λm L) = 0




0 1 0 1

λm 0 1 0

−λ2
m sin(λmL) 0 0 0

0 0 λ2
m 0








A1

A2

A3

A4





=





0

0

0

0





(6.37)

Therefore the coefficient are

row 3 : A1 = 0 row 2 : A3 = 0 row 1 : A2 = −A4

Now the mode shapes are obtained by substituting these values into

v1(x) = A1 sin(λm x) +A2 cos(λm x) +A3 x+A4

v1(x) = −A4 cos(λmx) +A4

v1(x) = A4

[
1− cos

(
(2m− 1)π x

2L

)]

Note that A4 remains indeterminate. Hence the buckling mode shape associated with
Pcr is

v1(x)
A4

= 1− cos
(π x

2L

)

End Example �
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Example 6.10.

 

x, u 

y, v 

L 

ks kt 

P 

O 

Figure 6.6: A clamped-spring supported beam column subject to an axial load.

The uniform column with bending stiffness EIzz, shown in Fig. 6.6, is clamped at x = 0 and
pinned to extensional and torsional springs at x = L. The linear extensional spring has a
stiffness ks and is unstretched when v1(L) = 0. The linear torsional spring has a stiffness kt
and is unstretched when v′1(L) = 0. Take:

ks = α
EIzz

L3 , kt = β
EIzz
L

Determine the critical load Pcr and the associated buckling mode shape for each of the
following cases:

1. α→∞, β →∞
2. α→ 0, β → 0

3. α→ 1, β → 1

(6.10-a) Perturb the system from its equilibrium state.

This leads to the ordinary differential equation given by Eq. (6.30):

v′′′′1 + λ2 v′′1 = 0 v1 = v1(x) x ∈ (0, L), λ2 =
P

EIzz

The general solution for λ2 > 0 is

v1(x) = A1 sin(λx) +A2 cos(λx) +A3 x+A4
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(6.10-b) Now apply the boundary conditions:

Clamped at x = 0: v1(0) = 0 and v′1(0) = 0

If Free at x = L: Mzz1(L) = 0 ⇒ v′′1 (L) = 0 and Vy1(L) = 0. However the springs
change the boundary conditions. Replacing the springs by their loads and drawing
the free body diagram:

 

 

 

 
P 

 
P 

Vy Mzz 
Fs 

Ms 
φz = v′ v 

x = L x = 0 

Pinned with a linear linear spring at x = L

(Vy1 + Fs)

∣∣∣∣∣
x=L

= 0

Pinned with a linear torsional spring at x = L

(−Mzz1 −Ms)

∣∣∣∣∣
x=L

= 0

Clamped at x = 0: v1(0) = 0 and v′1(0) = 0

v1(0) = A2 +A4 = 0

v′1(0) = A1 λ+A3 = 0

Extensional spring’s force is Fs = ks v1 and the linear spring constant is

ks = α
EIzz

L3
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Now, pinned with a linear extensional spring at x = L:

(Vy1 + Fs)

∣∣∣∣∣
x=L

= 0

(
−EIzzA3 λ

2 + ks v1

)
∣∣∣∣∣
x=L

= 0

α

(
EIzz

L3

)
A1 sin(λL) + α

(
EIzz

L3

)
A2 cos(λL)+

[
αL− (λL)2 L

] (EIzz
L3

)
A3 + α

(
EIzz

L3

)
A4 = 0

αA1 sin(λL) + αA2 cos(λL) +
[
αL− (λL)2 L

]
A3 + αA4 = 0

Torsional spring’s force is Ms = k θ = k v′1 and the torsional spring constant is

kt = β
EIzz
L

Now, pinned with a linear torsional spring at x = L:

(−Mzz1 −Ms)

∣∣∣∣∣
x=L

= 0

(−EIzz v′′1 − kt v′1)

∣∣∣∣∣
x=L

= 0

(
EIzz

L2

) [
(λL)2 sin(λL)− β (λL) cos(λL)

]
A1+

(
EIzz

L2

) [
(λL)2 cos(λL) + β (λL) sin(λL)

]
A2 −

(
EIzz

L2

)
β LA3 = 0

[
(λL)2 sin(λL)− β (λL) cos(λL)

]
A1 +

[
(λL)2 cos(λL) + β (λL) sin(λL)

]
A2 − β LA3 = 0

Writing the boundary conditions in a matrix form in terms of the unknown coefficients
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A1, A2, A3, A4




0 1 0 1

λ 0 1 0
[
(λL)2 sin(λL)− β (λL) cos(λL)

] [
(λL)2 cos(λL) + β (λL) sin(λL)

]
−Lβ 0

α sin(λL) α cos(λL) [αL− (λL)2 L] α




︸ ︷︷ ︸
[C]

×





A1

A2

A3

A4





=





0

0

0

0





(6.38)

(6.10-c) Obtain the characteristic equation.

Non-trivial solution (A 6= 0) requires det[C] =0. The determinant will lead to the
characteristic equation:

−(λL)5 cos(λL)− β (λL)4 sin(λL) + α (λL)3 cos(λL)− α (λL)2 sin(λL)+

αβ (λL)2 sin(λL)− 2αβ (λL) + 2αβ (λL) cos(λL) = 0

(6.10-d) Obtain the buckling load.

We proceed to solve the characteristic equation for λ.

λL = 0 ⇒ P = 0 leads to trivial solution

Now, let us check for the three suggested cases:

(a) α→∞, β →∞

− 1
αβ

(λL)5 cos(λL)− 1
α

(λL)4 sin(λL) +
1
β

(λL)3 cos(λL)− 1
β

(λL)2 sin(λL)+

(λL)2 sin(λL)− 2 (λL) + 2 (λL) cos(λL) = 0

Hence, when α→∞, β →∞

(λL)2 sin(λL)− 2 (λL) + 2 (λL) cos(λL) = 0

The nontrivial solution is:

λL = 6.28319 (= 2π) → λ =
2π
L
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The buckling load is:

Pcr = P1 = λ2EIzz =
4π2EIzz

L2 =
39.4784EIzz

L2

which is the solution for the case of clamped-clamped! The buckling mode shape
associated with Pcr is

v1(x)
A4

= 1− cos
(

2π x
L

)
= 1− cos

(
6.28319

x

L

)

(b) α→ 0, β → 0

−(λL)5 cos(λL)− β (λL)4 sin(λL) + α (λL)3 cos(λL)− α (λL)2 sin(λL)+

αβ (λL)2 sin(λL)− 2αβ (λL) + 2αβ (λL) cos(λL) = 0

Hence, when α→ 0, β → 0

−(λL)5 cos(λL) = 0

Hence, the solution is that of clamped-free, see Example 6.9.

(c) α→ 1, β → 1

−(λL)5 cos(λL)− β (λL)4 sin(λL) + α (λL)3 cos(λL)− α (λL)2 sin(λL) + αβ (λL)2 sin(λL)−
2αβ (λL) + 2αβ (λL) cos(λL) = 0

Hence, when α→ 1, β → 1

−(λL)5 cos(λL)− (λL)4 sin(λL) + (λL)3 cos(λL)− (λL)2 sin(λL)+

(λL)2 sin(λL)− 2 (λL) + 2 (λL) cos(λL) = 0

The nontrivial solution is:

λL = 2.2267 (= 0.708782π) → λ =
0.708782π

L

The buckling load is:

Pcr = P1 = λ2EIzz =
0.502372π2EIzz

L2 =
4.95821EIzz

L2

Let us determine the buckling mode shapes associated with Pcr. Plug-in the value
for λ1 = 2.2267/L in Eq. (6.38) to determine the coefficients.




0 1 0 1

2.2267/L 0 1 0

5.28738 −1.25926 −L 0

0.792495 −0.609879 −3.95821L 1








A1

A2

A3

A4





=





0

0

0

0





(6.39)
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Therefore the coefficient are

A1 = −0.167586A4, A2 = −A4, A3 =
0.373165

L
A4

Now the mode shapes are obtained by substituting these values into

v1(x) = A1 sin(λ1 x) +A2 cos(λ1 x) +A3 x+A4

v1(x) = A4 −A4 cos
(

2.2267
x

L

)

Note that A4 remains indeterminate. Hence the buckling mode shape associated
with Pcr is

v1(x)
A4

= 1− cos
(

2.2267
x

L

)

(6.10-e) What does the buckling load represent?
The buckling load is the largest load for which the stability of the equilibrium of a
structure exists in its original equilibrium configuration.

End Example �
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6.4.7 Several Type of Column End Constraint

If the column ends are not pinned, the critical load and stress would be different from the pinned-pinned
case. Often we use the critical load from the pinned-pinned case and substitute the actual length for an
effective length:

Pcr =
π2EIzz

L2
e

(6.40)

The effective length Le of any column is defined as the length of a pinned-pinned column that would
buckle at the same critical load as the actual column: that is the effective length is the overall column
length minus the portion that takes into account the end conditions. Thus end conditions affect the
effective length of the column. The critical load and critical stresses can be expressed in terms the
effective length Le depending on the boundary conditions and is its values can be found in Table 6.1:

Le = CL L (6.41)

Table 6.1: Effective length coefficient CL for several type of column end constraints
Column End Con-
ditions

Theoretical Recommended∗

pinned-pinned 1 1

pinned-fixed 0.7 0.8

fixed-fixed 0.5 0.65

fixed-free 2 2.1

∗Recommended effective column length by AISC (American Institute of Steel Construction, 1989)

Commonly two different equations are widely used, depending on the slender ratio of the beam. Let
us define the critical slender ratio Rc as

Rc =

√
2E π2

Sy

(6.42)

where E is the Young’s Modulus and Sy is the yield strength of the material. The actual effective slender
ratio Ra of the column is:

Ra =
Le

rg

In the above equation rg is the radius of gyration and is defined as

rg =

√
Izz
A

where Izz is the area moment of inertia and A the cross-sectional area. The critical buckling stress will
depend on the slender ratio of the column. Three cases need to be considered:
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Long Columns: Euler equation. If the slender ratio Ra ≥ Rc then the column will buckle elastically,
and the Euler equation can be used to obtain the stress at buckling:

σcr =
Pcr

A
=

π2E
(
Le

rg

)2 = E

(
π

Ra

)2

(6.43)

Intermediate Columns: J. B. Johnson Equation. If the slender ratio 10 ≤ Ra ≤ Rc then the
column will buckle inelastically, and the J. B. Johnson equation should be used to obtain the
critical stress at buckling:

σcr = Sy −
S2

y

4π2E

(
Le

rg

)2

= Sy −
1
E

(
SyRa

2π

)2

(6.44)

For design we take

σmax =
Sy

2

Short Columns: Yielding. If the slender ratio Ra < 10, in practice it is assumed that the column
will fail due to yielding and the critical stress at buckling would be:

σcr = Sy (6.45)

However, one may use the J. B. Johnson equation as well. For design we take

σmax = Sy

The critical load can be obtained by multiplying the stress by the cross-sectional area

Pcr = σcrA
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Example 6.11.

A column with one end fixed and the other end pinned is made of low-carbon steel. The
column’s cross-section is rectangular with h = 0.5 in and b = 1.5 in. Determine the buckling
load for the following three lengths:

(a) L =0.5 ft

(b) L =0.05 ft

(c) L =2.5 ft

Using the corresponding tables, for low-carbon steel, the material properties are:

Sy = 43× 103 psi E = 30× 106 psi

The important parameters are:

A = b h = 0.75 in2 Rectangular cross sectional area

Izz =
b h3

12
= 0.01563 in4 Area moment of inertia

rg =

√
Izz
A

= 0.1443 in Radius of gyration

CL =
L

Le

= 0.7 Effective length coefficient

Rc =

√
2E π2

Sy

= 117.352 Critical slender ratio

Now we proceed to solve the problem.

(a) L = 0.5 ft First calculate the effective length:

Le = 0.7L = 0.7 (6 in) = 4.2 in

Now evaluate the actual effective slender ratio

Ra =
Le

rg
= 29.0985

Since 10 ≤ Ra < Rc, the J. B. Johnson equation should be used:

Pcr = A

{
Sy −

1
E

(
SyRa

2π

)2
}

= 31259 lb
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(b) L = 0.05 ft First calculate the effective length: (we use the recommended effective
length)

Le = 0.7L = 0.42 in

Now evaluate the actual effective slender ratio

Ra =
Le

rg
= 2.909

Since Ra < 0, we may either use J. B. Johnson equation or equation for short columns.
If we use J. B. Johnson:

Pcr = A

{
Sy −

1
E

(
SyRa

2π

)2
}

= 32240 lb

If we use short column assumption:

Pcr = A {Sy} = 32250 lb

As you can see, the difference is very little.

(c) L = 2.5 ft First calculate the effective length: (we use the recommended effective length)

Le = 0.7L = 21 in

Now evaluate the actual effective slender ratio

Ra =
Le

rg
= 145.49

Since Ra > Rc, the Euler equation should be used:

Pcr = A

{
E

(
π

Ra

)2
}

= 10490.7 lb

Observe that in part (b) the column was short, so that yield strength predominated; in part
(a) the columns was intermediate and hence the J. B. Johnson equation was used; and (c)
the columns were long enough that the Euler equation was used. Also note as the column
becomes larger, the critical load decreases significantly.

End Example �
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Example 6.12.

A column with one end fixed and the other end pinned is made of low-carbon steel. The
column’s cross-section is rectangular with h = 2 b and b. Determine the dimension b such
that the maximum load would be 25 kips. Use a safety factor of 2.

From tables,
Sy = 43× 103 psi E = 30× 106 psi

The important parameters are:

A = 2 b2 in2 Rectangular cross sectional area

Izz =
2 b4

3
in4 Area moment of inertia

rg =
b√
3

in Radius of gyration

CL =
L

Le

= 0.7 Effective length coefficient

Rc =

√
2E π2

Sy

= 117.352 Critical slender ratio

The effective length:
Le = 0.7L = 12.6 in

Now evaluate the actual effective slender ratio

Ra =
Le

rg
=

21.8238
b

The load is
Pcr = nsf P = 100000 lb

Now we proceed to solve the problem.

Let us assume that Ra > Rc,

Pcr = A

{
E

(
π

Ra

)2
}

= 10490.7 lb
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Since 10 ≤ Ra < Rc, the J. B. Johnson equation should be used:

Pcr = A

{
Sy −

1
E

(
SyRa

2π

)2
}

100000 = 1.24334× 106 b4

Hence,
b = 0.5325′′

For this value, we need to verify that the our initial assumption of long column was
correct:

Ra = 40.98

Since Ra < Rc, our initial assumption was incorrect.

Assuming now Ra < Rc,

Pcr = A

{
Sy −

1
E

(
SyRa

2π

)2
}

100000 = −1487.13 + 86000 b2

Hence,
b = 1.08632′′

For this value, we need to verify that the our initial assumption of long column was
correct:

Ra = 20.0898

which is correct.

Note that this problem must be solved iteratively. Make an initial guess for b, say b = 1′′

and find the actual slender ratio and then determine the load P using the corresponding
equation. If the load P is greater than 100000 lb, then we want to reduce the value of
b, otherwise increase it.

End Example �
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Example 6.13.

An engineer is asked to design a safe round tubular column subject to static axial loads. The
column has a length L an outside diameter do and inside diameter di. The diametral ratio
is:

α =
di
do

Determine the outside diameter do such that failure of the tube is by buckling.

First note that
nSF =

Pcr

P
→ Pcr = nSF P

or in terms of stress
σ =

σcr

nSF

→ σcr = nSF σ

where the load and stresses are related as follows

Pcr = σcrA

Also, let
Le

L
= CL → Le = CL L

where CL refers to the recommended value for the effective length to take into account several
type of column end constraints.

For our problem
MS = 1.50 → nSF = MS + 1 = 2.5

It is known that

A =
π

4
(
d2
o − d2

i

)
=
π

4
d2
o

(
1− α2

)

I =
π

64
(
d4
o − d4

i

)
=

π

64
d4
o

(
1− α4

)
=

π

64
d4
o

(
1− α2

) (
1 + α2

)

r2
g =

I

A
=
d2
o

16
(
1 + α2

)

Thus

R2
a =

(
Le

rg

)2

=
C2

L L
2

d2
o

16
(
1 + α2

) =
16C2

L L
2

d2
o

(
1 + α2

)
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The stress can be expressed as

σcr = nSF σ = nSF

P

A
= nSF

P
π

4
d2
o

(
1− α2

) =
4nSF P

π d2
o

(
1− α2

)

1. Assuming the actual slender ratio is smaller than the critical slender ratio [10pts]

When Ra ≤ 10 the column is a short column, we can use:

σcr = Sy

Thus
σcr = Sy

4nSF P

π d2
o

(
1− α2

) = Sy

Rearranging and solving for do

d2
o =

4nSF P

π
(
1− α2

)
Sy

do =

√
4nSF P

π
(
1− α2

)
Sy

When 10 ≤ Ra ≤ Rc the column is an intermediate column, we must use the J. B. John-
son Equation:

σcr = Sy −
S2

y

4π2E

(
Le

rg

)2

= Sy −
1
E

(
SyRa

2π

)2

Thus

σcr = Sy −
S2

y

4π2E

(
Le

rg

)2

4nSF P

π d2
o

(
1− α2

) = Sy −
S2

y

4π2E

16C2
L L

2

d2
o

(
1 + α2

)

Rearranging
4nSF P

π
(
1− α2

) = d2
o Sy −

4S2
y C

2
L L

2

π2E
(
1 + α2

)

Solving for do

d2
o =

4nSF P

π
(
1− α2

)
Sy

+
4Sy C

2
L L

2

π2E
(
1 + α2

)

do =

√
4nSF P

π
(
1− α2

)
Sy

+
4Sy C

2
L L

2

π2E
(
1 + α2

)

2. Assuming the actual slender ratio is bigger than the critical slender ratio [10pts]
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When Ra ≥ Rc the column is a long column, we must use the Euler Equation:

σcr =
Pcr

A
=

π2E
(
Le

rg

)2 = E

(
π

Ra

)2

Thus

σcr =
π2E
(
Le

rg

)2

4nSF P

π d2
o

(
1− α2

) =
π2E
(
Le

rg

)2

4nSF P

π d2
o

(
1− α2

) =
π2E

16C2
L L

2

d2
o

(
1 + α2

)

Rearranging and solving for do

d4
o =

64C2
L L

2 nSF P

π3E
(
1− α4

) → do =

[
64C2

L L
2 nSF P

π3E
(
1− α4

)
]1

4

What happens when α = 0? Do you expect the column to be more stable when α > 0? [10pts]

Note that 0 ≤ α < 1. It cannot take a value of one because there would be no cross-sectional
area. When α = 0, di = 0 and the column becomes a solid column and

A =
π

4
d2
o

(
1− α2

)
=
π

4
d2
o

I =
π

64
d4
o

(
1− α4

)
=

π

64
d4
o

r2
g =

I

A
=
d2
o

16
(
1 + α2

)
=
d2
o

16

R2
a =

16C2
L L

2

d2
o

(
1 + α2

) =
16C2

L L
2

d2
o

σcr =
4nSF P

π d2
o

(
1− α2

) =
4nSF P

π d2
o

It is clear that the slender ratio is smaller and the critical buckling stress decreases in value.
This implies the buckling stress would be smaller for a solid column than for a tubular
column. Thus the column would be more stable when α > 0.
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When Ra ≤ 10

do =

√
4nSF P

π
(
1− α2

)
Sy

=

√
4nSF P

π Sy

When 10 ≤ Ra ≤ Rc

do =

√
4nSF P

π
(
1− α2

)
Sy

+
4Sy C

2
L L

2

π2E
(
1 + α2

) =

√
4nSF P

π Sy

+
4Sy C

2
L L

2

π2E

When Ra ≥ Rc

do =

[
64C2

L L
2 nSF P

π3E
(
1− α4

)
]1

4
=
[

64C2
L L

2 nSF P

π3E

]1
4

End Example �
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Example 6.14.

It is desired to substitute the tubular column by a solid rectangular one. The column has
rectangular cross-section with a height a and a width b (b = β a), determine the width b.

It is known that
A = a b = β a2

I =
b a3

12
=
β a4

12

r2
g =

I

A
=
a2

12
Thus

R2
a =

(
Le

rg

)2

=
C2

L L
2

a2

12

=
12C2

L L
2

a2

The stress can be expressed as

σcr = nSF σ = nSF

P

A
=
nSF P

β a2

1. Assuming the actual slender ratio is smaller than the critical slender ratio [10pts]
When Ra ≤ 10 the column is a short column, we can use:

σcr = Sy

Thus
σcr = Sy

nSF P

β a2 = Sy

Rearranging and solving for a

a2 =
nSF P

β Sy

a =

√
nSF P

β Sy

The width b is b = β a:

b =

√
β nSF P

Sy

c©2012 by Vijay K. Goyal. All Rights Reserved.



6.4. ELASTIC STABILITY AND INSTABILITY 462

When 10 ≤ Ra ≤ Rc the column is an intermediate column, we must use the J. B. John-
son Equation:

σcr = Sy −
S2

y

4π2E

(
Le

rg

)2

= Sy −
1
E

(
SyRa

2π

)2

Thus

σcr = Sy −
S2

y

4π2E

(
Le

rg

)2

nSF P

β a2 = Sy −
S2

y

4π2E

12C2
L L

2

a2

Rearranging

nSF

P

β
= a2 Sy −

3S2
y C

2
L L

2

π2E

Solving for a

a2 =
nSF P

β
+

3Sy C
2
L L

2

π2E

a =

√
nSF P

β
+

3Sy C
2
L L

2

π2E

The width b is b = β a:

b =

√
β nSF P

Sy

+
3β2 Sy C

2
L L

2

π2E

2. Assuming the actual slender ratio is bigger than the critical slender ratio [10pts]

When Ra ≥ Rc the column is a long column, we must use the Euler Equation:

σcr =
Pcr

A
=

π2E
(
Le

rg

)2 = E

(
π

Ra

)2

Thus

σcr =
π2E
(
Le

rg

)2

nSF P

β a2 =
π2E

12C2
L L

2

a2

nSF P

β a2 =
π2E a2

12C2
L L

2
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Rearranging and solving for a

a4 =
12C2

L L
2 nSF P

β π2E
→ a =

[
12C2

L L
2 nSF P

β π2E

]1
4

The width b is b = β a:

b =
[

12β3 C2
L L

2 nSF P

π2E

]1
4

End Example �
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6.4.8 Imperfect Beam-Columns: Eccentric load

In the previous section, we considered the perfect column, one that is initially straight and the axial load
is perfectly aligned with the centroidal axis. Imperfect columns consist of geometric imperfection (initial
deflection exists) and/or load misalignment (eccentric load). Let us begin by discussion imperfections
due to load misalignment.

Columns used in applications rarely have the applied load aligned coincidentally with the centroidal
axis of the cross section. The distance between the two axes is called eccentricity and is designated
by e. Let us derive the equations for a simply-supported straight column subject to an eccentric static
compressive force P . The beam column obeys the Euler-Bernoulli Theory, is homogeneous, isotropic,
and of uniform cross-section.

 

 

 

P 

y, v(x) 

x 
e

P 

It is assumed that the load is always parallel with the centroid of the columns. Figure shows a
pinned-end column subjected to forces acting at a distance e from the centerline of the undeformed
column. It is assumed that the load is applied to the column at a short eccentric distance from the
centroid of the cross section.

 

 

 

y, v(x) 

x P 

Me=Pe Me 

P 

This loading on the column is statically equivalent to the axial load and bending moment at the end
points is:

Me = −P e

shown in above Figure. As when one is considering concentrically loaded columns, small deflections and
linear elastic material behavior are assumed. The x–y plane is a plane of symmetry for the cross-sectional
area.

The eccentric axial load will simultaneously subject the column to compression and bending in the
equilibrium state. The analysis for the equilibrium response of the column in compression (axial force P
and axial displacement v(x)) is identical to the case of the perfect column, since the x-axis passes through
the centroid of each cross section (decoupling the axial compression from bending in the material law).
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The equilibrium response of the column in bending, which includes the influence of axial compression on
bending, will be determined by the same analysis that led to Eq. 6.30, except that we drop the subscript
“1” on the transverse displacement, since in the eccentric load case the transverse displacement refers
to an equilibrium state and not to a buckling mode.

The ordinary differential equation for a column with EIzz = constant was derived as

v′′′′1 +
P

EIzz︸ ︷︷ ︸
λ2

v′′1 = 0 v1 = v1(x) x ∈ (0, L)
(6.46)

General solution for λ2 > 0 is

v1(x) = A1 sin(λx) +A2 cos(λx) +A3 x+A4 (6.47)

and the buckling load is obtained from Eq. (6.46):

λ2 =
P

EIzz
→ P = λ2EIzz

The constants are found by applying the boundary conditions. From the Hooke’s law:

Mzz1 = EIzz v
′′
1 (x) = −EIzz [A1 λ

2 sin(λx) +A2 λ
2 cos(λx)] (6.48)

and from equilibrium:

Vy1 = −M ′zz1 − P v
′
1 = −EIzz [v′′′1 + λ2 v′1] = −EIzz [A3 λ

2] (6.49)

We want to determine the critical load Pcr and the associated buckling mode shape. We first start with
the boundary conditions:

Pinned at x = 0: v1(0) = 0 and Mzz1(0) = EIzz v
′′
1 (0) = Me

Pinned at x = L: v1(L) = 0 and Mzz1(L) = EIzz v
′′
1 (L) = Me

Thus
v1(0) = A2 +A4 = 0

EIzz v
′′
1 (0) = −EIzzA2 λ

2 = −P e

v′′1 (0) = −A2 λ
2 = − P e

EIzz
= −λ2 e

v1(L) = A1 sin(λL) +A2 cos(λL) +A3 L+A4 = 0

EIzz v
′′
1 (L) = −EIzzA1 λ

2 sin(λL)− EIzzA2 λ
2 cos(λL) = −P e

v′′1 (L) = −A1 λ
2 sin(λL)−A2 λ

2 cos(λL) = − P e

EIzz
= −λ2 e
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Write the boundary conditions in a matrix form in terms of the unknown coefficients A,A2, A3, A4:




0 1 0 1

0 −λ2 0 0

−λ2 sin(λL) −λ2 cos(λL) 0 0

sin(λL) cos(λL) L 1








A1

A2

A3

A4





=





0

−λ2 e

−λ2 e

0





(6.50)

Note that the boundary conditions are inhomogeneous. Thus these equation do not lead to trivial
solution and we proceed to solve in term of the constants. The solution to the above equation is:

A1 = −e cos (λL) + e csc (λL) A2 = e A3 = 0 A4 = −e

and replacing in Eq. (6.47) and simplifying we get:

v1(x) = e

{
tan

(
L

2
λ

)
sin (xλ) + cos (λL)− 1

}
where λ =

√
P

EIzz

The maximum deflection occurs at:

x =
L

2
: vmax = e

{
sec
(
L

2
λ

)
− 1
}

Note that

λL

2
=

L

2 rg

√
P

EA
=

{
L

2

√
P

EIzz

} √
π2E Izz

Pcr L
2
e

=
π

2

√
P

Pcr

where Pcr = π2E Izz

L2
e

Thus,

vmax = e

{
sec

(
π

2

√
P

Pcr

)
− 1

}

Let us define the dimensionless quantities as

p̂ =
P

Pcr

Hence,
δ = vmax = e

{
sec
(π

2

√
p̂
)
− 1
}

(6.51)

Figure 6.7 shows that as δ →∞, P → Pcr for all e 6= 0. That is, no matter the magnitude of e, δ gets
very large as P → Pcr of the perfect structure. Failure by excessive displacement or loss of structural
stiffness.

The maximum compressive stress in the column is caused by an axial load and a moment:

σmax =
P

A
− M c

I
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Figure 6.7: Response for various levels of load imperfection.

where the maximum bending moment for the column is

M = −P (e+ δ) = −P e sec
(
L

2
λ

)
= −P e sec

(
π

2

√
P

Pcr

)

Thus, the maximum compressive stress for the column (possibly away from the ends where there is stress
concentration) is

σmax =
{
P

A
+
P e c

I
sec
(
L

2
λ

)}

=
P

A

{
1 +

e c

r2
g

sec

(
L

2 rg

√
P

E A

)}

For different end conditions other than pinned, the length may be replaced with the effective length:

σmax =
P

A

{
1 +

e c

r2
g

sec

(
Le

2 rg

√
P

E A

)}

=
P

A

{
1 + er sec

(
π

2

√
P

Pcr

)}

=
P

A

{
1 + er sec

(
Ra
2

√
P

E A

)}
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where Ra is the actual slender ratio and er is known as the eccentricity ratio and it is defined as

er =
c e

r2
g

Thus,

vmax = e

{
sec

(
π

2

√
P

Pcr

)
− 1

}

σmax =
P

A

{
1 + er sec

(
Ra
2

√
P

E A

)} (6.52)

In the above equations:

P = critical load where buckling will occur in eccentrically loaded column

A = cross-sectional area of the column

e = eccentricity of load measured from neutral axis of the column’s cross-sectional area to the load’s line of action

er = eccentricity ratio

Ra = actual slender ratio

c = distance from neutral axis to outer fiber of the column

rg = radius of gyration for the cross-section of the column

Le = effective length of the column

E = modulus of elasticity of the column’s material

Because the derivation of Eq. (6.52) is based on the premise that equal couples exist at the locations
of the column and constraints, and that the maximum lateral deflection occurs at midspan, the secant
formula is valid only for columns that meet these conditions. In order words, the secant formula is
valid for columns with pinned-pinned and fixed-fixed end points, but not valid for columns with other
boundary conditions.

The secant formula is not very convenient for calculation purposes because the critical load cannot
be explicitly isolated, but with the aid of a computer, or by appropriate graphical techniques, it can
be employed satisfactorily. A possible iterative process can be used in obtaining the solution for the
buckling load. Assuming that the maximum stress occurs at Sall:

σmax =
P

A

{
1 + er sec

(
Ra
2

√
P

E A

)}

Sall =
P

A

{
1 + er sec

(
Ra
2

√
P

E A

)}

Now, solving the above equation in terms of P :

P =
SallA

1 + er sec

(
Ra
2

√
P

E A

) = f(P )

If the buckling load is what we want, we start with an initial P as the concentric loading condition and
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obtain a new value of P . This iterative process is continued until a desired accuracy is achieved. This
accuracy ma be obtained using the following condition

∣∣∣∣
P − f(P )
f(P )

∣∣∣∣ ≤ ε

where ε is a small number (ε = 10−3).

We should also note that Eq. (6.52) is undefined for zero eccentricity, but for very small eccentricities
it approaches the Euler buckling cruve as a limit for long columns and approaches the simple compressive
yield curve as a limit for short columns. For struts (short compressive members) with a critical slender
ratio of

Rcs = 0.282

√
E A

P

the largest compressive stress can be expressed as follows:

σmax =
P

A
{1 + er }

If Ra > Rcs then use the secant formula.

Example 6.15.

A 36-in long fixed-fixed hollow steel tube with a 3.0-in outside diameter and a 0.03-in wall
thickness is subject to an axial load.

1. If the load is concentric, determine the buckling load.

2. If the load is eccentric with an eccentricity of 0.15-in, determine the buckling load.

3. Determine the dimensions for an equivalent design made of squared-hollow tube with
the same thickness subject to concentric loading.

The mechanical properties are:

Sy = 11 ksi, E = 10300 ksi

The effective length is taken as (using recommended values for steel):

Le = 0.65L = 23.40′′

The critical slender ratio for the column is:

Rc =

√
2E π2

Sy

= 223.372′′

1. If the load is concentric, determine the buckling load.
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The inside diameter of the column is

di = do − 2 tw = 1.94′′

The cross-sectional plane area properties are

A =
π

4
(
d2
o − d2

i

)
= 0.2799 in2, Izz =

π

64
(
d4
o − d4

i

)
= 0.3087 in4

The radius of gyration of the column is:

rg =

√
Izz
A

= 1.0501′′

and the actual effective slender ratio is

Ra =
Le

rg
= 22.2834′′

Since the slender ratio is 10 ≤ Ra ≤ Rc then the column will buckle inelastically, and
the J. B. Johnson equation should be used to obtain the critical stress at buckling:

Pcr = A

{
Sy −

1
E

(
SyRa

2π

)2
}

= 2849.18 lb

2. If the load is eccentric with an eccentricity of 0.15-in, determine the buckling load.
Since the slender ratio is 10 ≤ Ra ≤ Rc, we use

σmax =
Sy
2

= 5.5× 103 psi

The distance from the neutral axis to the outer fiber is

c =
do
2

= 1.5′′

Thus, the eccentricity ratio is

er =
c e

r2
g

= 0.20404

The secant formula becomes

σmax =
P

A

{
1 + er sec

(
Ra
2

√
P

E A

)}

Sy

2
=
P

A

{
1 + er sec

(
Ra
2

√
P

E A

)}
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Now, solving the above equation in terms of P :

P =
SyA

2 + 2 er sec

(
Ra
2

√
P

E A

) = f(P )

Now, as the initial guess for P let us use the value from the concentric loading condition
and obtain a new value of P . Thus,

q = 0 : P = 2849.18 lb

q = 1 : P = 1185.16 lb

q = 2 : P = 1192.35 lb

q = 3 : P = 1192.32 lb

Hence, the bucking load is Pcr = 1192.32 lb.

3. Determine the dimensions for an equivalent design made of squared-hollow tube with
the same thickness subject to concentric loading.

For an equivalent column, the buckling load must be the same:

Pcr

∣∣∣
round

= Pcr

∣∣∣
squared

Note that the mechanical, geometric and length remain unchanged:

Sy = 11× 103 psi, E = 10.3× 106 psi, Le = 23.4′′, Rc = 223.372′′

The plane area properties for the hollow square are:

ao = ai + 2 tw = 0.06 + ai

A = a2
o − a2

i = 0.0036 + 0.12 ai

Izz =
a4
o − a4

i

12
= 1.08× 10−6 + 0.000072 ai + 0.0018 a2

i + 0.02 a3
i

The radius of gyration is

rg =

√
Izz
A

=

√
1.08× 10−6 + 0.000072 ai + 0.0018 a2

i + 0.02 a3
i

0.0036 + 0.12 ai

c©2012 by Vijay K. Goyal. All Rights Reserved.



6.4. ELASTIC STABILITY AND INSTABILITY 472

Assuming 10 ≤ Ra ≤ Rc,

Pcr

A
= Sy −

1
E

(
SyRa

2π

)2

Solving for ai we get ai = 2.308′′. Now, we need to verify our assumption

Ra = 24.5088′′ → 10 ≤ Ra ≤ Rc X

and our assumption was correct. Thus the dimensions are

ai = 2.31′′, ao = 2.37′′

End Example �
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6.4.9 Imperfect Beam-Columns: Geometric Imperfection

Now consider the case of a uniform, pinned-pinned column that is slightly crooked under no load and
it is subject to a centric, axial compressive load P . The initial shape under no load is described by the
function vo(x). That is the transverse displacement of the column is such that v(x) = vo(x) when P = 0.

 

 

 

P 

y, v(x) 

x P 

vo(x) 

v(x) 

Also, the bending moment in the column is zero under no load. Thus, the material law for bending
is

Mzz = EIzz

{
v′′
}

Hence, Eq. (6.27) becomes

d2Mzz

dx2 +
(
d2v

dx2 +
d2vo

dx2

)
P = 0

d2

dx2

(
EIzz

d2v

dx2

)
+
(
d2v

dx2 +
d2vo

dx2

)
P = 0

(6.53)

Hence, the ordinary differential equation for a column with EIzz = constant was derived as

v′′′′ +
P

EIzz︸ ︷︷ ︸
λ2

v′′ = −λ2 v′′o v = v(x) x ∈ (0, L)
(6.54)

Note that we drop the subscript “1” on the transverse displacement, since the transverse displacement
refers to an equilibrium state and not to a buckling mode. Let us assume that the initial shape of the
bar is that of a sine function with amplitude a1

vo(x) = a1 sin
(π x
L

)

where a1 denotes the amplitude at midspan of the slightly crooked column. hence the nonhomogeneous
fourth order differential equation is

v′′′′ + λ2 v′′ = −λ2 v′′o = −
(
λπ

L

)2

a1 sin
(π x
L

)
v = v(x) x ∈ (0, L) (6.55)
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General solution for λ2 > 0 is

v(x) = A1 sin(λx) +A2 cos(λx) +A3 x+A4 +
1

(
λπ

L

)2

− 1

a1 sin
(π x
L

)
(6.56)

The boundary conditions are same as those of a simply-supported beam:

Pinned at x = 0: v(0) = 0 and Mzz(0) = EIzz v
′′(0) = 0

Pinned at x = L: v(L) = 0 and Mzz(L) = EIzz v
′′(L) = 0

The solution is
v(x) =

a1

1−
(
λπ

L

)2 sin
(π x
L

)
=

a1

1− p̂2 sin
(π x
L

)

where
p̂ =

P

Pcr

Thus,
δ = vmax =

a1

1− p̂2 (6.57)
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Figure 6.8: Response for various levels of geometric imperfection.

Figure 6.8 shows that as δ → ∞, P → Pcr for all a1 6= 0. That is, for a nonzero value of the
imperfection amplitude, the displacement gets very large as the axial force approaches the buckling load
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of the perfect column. Also, the imperfect column deflects in the direction of imperfection; e.g., if a1 > 0,
then δ > 0.

Summary of Beam-Column Imperfections

In short, collectively the eccentric load and the geometric shape imperfection are called imperfections.
All real columns are imperfect. Even for a well manufactured column whose geometric imperfections are
small and with the load eccentricity small, the displacements become excessive as the axial compressive
force P approaches the critical load Pcr of the perfect column. Hence, the critical load determined from
the analysis of the perfect column is meaningful in practice.
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6.4.10 Inelastic Buckling

The strength of a compression member (column) depends on its geometry (effective slenderness ratio
Ra) and its material properties (stiffness and strength). The Euler formula describes the critical load
for elastic buckling and is valid only for long columns. The ultimate compression strength of the column
material is not geometry-related and is valid only for short columns.

In between, for a column with intermediate length, buckling occurs after the stress in the column
exceeds the proportional limit of the column material and before the stress reaches the ultimate strength.
This kind of situation is called inelastic buckling.

Although we have previously discussed two widely accepted theories, in this section we will discuss
inelastic buckling theories that fill the gap between short and long columns.

Suppose that the critical stress st in an intermediate column exceeds the proportional limit of the
material σp. Recall the proportional limit is defined as the stress where the compressive stress-strain
curve of the material deviated from a straight line. For some materials the proportional limit is very
difficult to obtain.

Thus for intermediate column Young’s modulus at that particular stress-strain point is no longer E.
Instead, the Young’s modulus decreases to the local tangent value, Et. Replacing the Young’s modulus
E in the Euler’s formula with the tangent modulus E, the critical load becomes,

Pcr =
π2Et Izz

L2
e

=
π2Et

R2
a

where Et =
dσ

dε

Few comments on the Tangent-Modulus Theory:

1. The proportional limit σp, rather than the yield stress Sy, is used in the formula. Although these
two are often arbitrarily interchangeable, the yield stress is about equal to or slightly larger than the
proportional limit for common engineering materials. However, when the forming process is taken
into account, the residual stresses caused by processing can not be neglected and the proportional
limit may drop up to 50% with respect to the yield stress in some wide-flange sections.

2. The tangent-modulus theory tends to underestimate the strength of the column, since it uses the
tangent modulus once the stress on the concave side exceeds the proportional limit while the convex
side is still below the elastic limit.

3. The tangent-modulus theory oversimplifies the inelastic buckling by using only one tangent mod-
ulus. In reality, the tangent modulus depends on the stress, which is a function of the bending
moment that varies with the displacement v.
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6.6 Suggested Problems

Problem 6.1.

A circular-steel solid shaft is loaded by a vertical force (a downward vertical force of 100 lb at x = 20
in as shown in Figure. The shaft is composed of two different diameter cross-sections. The shaft has a
diameter of d1 for 0 ≤ x ≤ 10 and a diameter of d2 for 10 ≤ x ≤ 20. All loads are applied at the shafts
neutral axis. Take:

d2 = 3 d1

 

 

 

100 lb

10 in 10 in

y 

d1 
d2 

x

(a) Determine the slope equations: v′(x) for 0 < x < 20.

(b) Determine the deflection equations: v(x) for 0 < x < 20.

�
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Problem 6.2.

Figure below shows a steel shaft supported by self-aligning bearings and subjected to a uniformly dis-
tributed loads. If d = 2 in,

(a) Determine the slope equations: v′(x) for 0 < x < 25.

(b) Determine the deflection equations: v(x) for 0 < x < 25.

�
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Problem 6.3.

Illustrated in the figure is a 1.25 in diameter steel countershaft that supports two pulley. Two pulleys
are keyed to the shaft where pulley B is of diameter 4.0 in and pulley C is of diameter 8.0 in. Pulley C
delivers power to a machine causing a tension of 500 lb in the tight side of the belt and 100 lb–in the
loose side, as indicated. Pulley C receives power from a motor. The belt tensions on pulley C have a
tension of 1000 lb in the tight side of the belt and 200 lb–in the loose side, as indicated. Assume that
the bearings constitute simple supports:

(a) Find the deflection of the shaft in the y direction at pulleys A and B (v(x)).

(b) Find the deflection of the shaft in the z direction at pulleys A and B (w(x)).

�
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Problem 6.4.

Figure below shows a steel shaft supported by self-aligning bearings and subjected to a point loads.

(a) Determine the slope equations: v′(x) for 0 < x < 35.

(b) Determine the deflection equations: v(x) for 0 < x < 35.

�
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Problem 6.5.

Problem 4.45 of textbook.
�
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Problem 6.6.

Problem 4.24 of textbook. (No need to find the deflection using Castigliano’s Theorem) Using methods
learned in class, determine the maximum von Mises stress at the built-in cross-section.

�
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Problem 6.7.

 

L 

x, u 

y, v 

ks kt 

P 

ks kt 

P 

Figure 6.9: A spring-supported beam column subject to an axial load.

The uniform column with bending stiffness EIzz, shown in Fig. 6.9, is spring supported at x = 0 and
x = L. Has both extensional linear springs and torsional springs. Take

ks = α
EIzz

L3 kt = β
EIzz
L

1. Solve the differential equations to obtain the exact critical load Pcr and associated buckling mode.

2. Using the principle of virtual work, determine the approximate critical load Pcr and associated
buckling mode.

3. What happens when α→∞? What happens when β →∞? What happens when both α, β →∞?

�
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Problem 6.8.

 

L 

x, u 

y, v 

0.6 L 

ks kt 

P 

ks 

Figure 6.10: A simply-supported beam column subject to an axial load.

The uniform column with bending stiffness EIzz, shown in Fig. 6.10, is pinned at x = 0. Has to
extensional linear springs located at x = 0.6L and at x = L. Take

ks = α
EIzz

L3 kt = β
EIzz
L

1. Solve the differential equations to obtain the exact critical load Pcr and associated buckling mode.

2. What happens when α→∞? What happens when β →∞? What happens when both α, β →∞?

�
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Chapter 7

Uncertainties in Design

The effects of uncertainties have been recognized using traditional approaches. These approaches
simplify the problem by considering the uncertain parameters as deterministic and account for uncer-
tainties using empirical design safety factors. However, the conventional methods of design and analysis
may not be appropriate for problems involving innovative design because the factors of safety are based
on experience and there may be no experience available for these problems.

In fact, structures have inherent uncertainties involved in the manufacturing process, and the end
product may have significant variations in properties around the mean values. Thus the uncertainties in
material and geometric properties should be taken as random in the analysis. In this context, the safety
factors cannot be properly considered. Moreover, these safety factors do not provide any information on
how the different parameters influence the overall behavior of the structure.

Thus nowadays probabilistic approaches are becoming more popular when designing for safety. Here
we shall begin our discussion with the commonly known deterministic approach and complete our dis-
cussion with simple reliability analysis.

7.1 Design Safety factors

Design safety factors refers to system design features and operating characteristics that serve to minimize
the potential for human or machine errors or failures that cause injurious accidents or death.

7.1.1 Definition of Safety factor

Safety factor is a simple ratio and is defined

nSF =
σall

σreq
(7.1)

where nSF is the design safety factor. The allowable stress σall is the stress limit to which a material can
be stressed without damage of any kind:

Syield, σfatigue limit, σbuckling, σfracture, ...
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The required stress σreq is the stress calculated for maximum service load condition (the necessary stress
to support the loads). Since

σall > σreq → σall

σreq

> 1

Thus the design safety factor is a ratio greater than one. That is, capacity must be greater than load
and strength must be greater than stress.

A large safety factor usually means a safer design, however, more material is used in the design
with a corresponding increase in cost and weight. Therein lies one of the fundamental trade-offs in
engineering design: cost vs. safety. Reducing cost is always a business goal, while the costumer demands
increased safety. Thus it is highly important for the design engineer to choose an adequate safety factor
to safeguard public safety at an affordable cost.

7.1.2 Factors in the Selection of a Safety Factor

The selection of an appropriate safety factor is based primarily on the following five factors:

1. Degree of uncertainty about loading: In some situations loads can be determined with virtual
certainty. The centrifugal forces in the rotor of an alternating-current motor cannot exceed those
calculated for synchronous speed. The loads acting on an engine valve spring are definitely estab-
lished by the valve open and valve closed positions (however, in a later chapter we will mention
spring surge, which could introduce a degree of uncertainty). But what loads should be used for
the design of automotive suspension components, whose loads can vary tremendously depending
on the severity of use and abuse? And what about a comparable situation in a completely new
kind of machine for which there is no previous experience to serve as a guide? The greater the
uncertainty, the more conservative the engineer must be in selecting an appropriate design overload
or safety factor.

2. Degree of uncertainty about material strength.: Ideally, the engineer would have available
extensive data pertaining to the strength of the material as fabricated into the actual (or very sim-
ilar) parts, and tested at temperatures and in environments similar to those actually encountered.
But this is seldom the case. More often, the available material strength data pertain to samples
smaller than the actual part, which have not experienced any cold working in part fabrication, and
which have been tested at room temperature in ordinary air. Moreover, there is bound to be some
variation is strength from one test specimen to another. Sometimes the engineer must work with
material test data for which such information as specimen size and degree of data scatter (and
the relationship between the reported single value and the total range of scatter) are unknown.
Furthermore, the material properties may sometimes change significantly over the service life of
the part, The greater the uncertainty about all these factors, the larger the safety factor that must
be used.

3. Uncertainties in relating applied loads to material strength via stress analysis: At this
point the reader is already familiar with a number of possible uncertainties, such as (a) validity of
the assumptions involved in the standard equations for calculating nominal stresses, (b) accuracy I
in determining the effective stress concentration factors, (c) accuracy in estimating residual stresses,
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if any, introduced in fabricating the I part, and (d) suitability of any failure theories and other
relationships I used to estimate significant strength from available laboratory strength test data.

4. Need to conserve: The need to conserve material, weight, space, or dollars

5. Consequences of failurehuman safety and economics: If the consequences of failure are
catastrophic, relatively large safety factors must, of course, be used. In addition, if the failure of
some relatively inexpensive part could cause extensive shutdown of a major assembly line, simple
economics dictates increasing the cost of this part severalfold (if necessary) in order to virtually
eliminate the possibility of its failure An important item is the nature of a failure. If failure is
caused I by ductile yielding, the consequences are likely to be less severe than I if caused by brittle
fracture. Accordingly, safety factors recommended in handbooks are invariably larger for brittle
materials.

6. Cost of providing a large safety factor: This cost involves a monetary I consideration and
may also involve important consumption of re-1 sources. In some cases, a safety factor larger
than needed may have serious consequences. A dramatic example is a hypothetical aircraft with
excessive safety factors making it too heavy to fly! With respect to the design of an automobile, it
would be possible to increase safety factors on structural components to the point that a maniac
driver could hardly cause a failure even when trying. But to do so would penalize sane drivers by
requiring them to pay for stronger components than they can use. More likely, of course, it would
motivate them to buy competitor’s cars! Consider this situation. Should an I automotive engineer
increase the cost per car by $10 in order to avoid I 100 failures in a production run of a million
cars, where the failures would not involve safety, but would entail a $100 repair? That is,

7.1.3 Selection of Design Safety Factor

Selection of a design safety factor must be undertaken with care since there are unacceptable consequences
associated with selected values that are either too low or too high. If the selected value is too small,
the probability of failure will be too great. If the selected value is too large, the size, weight, or cost
may be too high. Proper safety factor selection requires a good working knowledge of the limitations
and assumptions in the calculation models or simulation programs used, the pertinent properties of the
proposed materials, and operational details of the proposed application. Design experience is extremely
valuable in selection of an appropriate design safety factor, but a rational selection may be made even
with limited experience.

The method suggested by Collins breaks the selection down into a series of semiquantitative smaller
decisions that may be weighted and empirically recombined to calculate an acceptable value for the
design safety factor, tailored to the specific application. To implement the selection of a design safety
factor, consider separately each of the following eight rating factors:

a) Accuracy of loads knowledge: The accuracy with which the loads, forces, deflections, or other
failure-inducing agents can be determined

b) Accuracy of stress calculation: The accuracy with which the stresses or other loading severity
parameters can be determined from the forces or other failure-inducing agents
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c) Accuracy of strength knowledge: The accuracy with which the failure strengths or other
measures of failure can be determined for the selected material in the appropriate failure mode

d) Need to conserve: The need to conserve material, weight, space, or dollars

e) Seriousness of failure consequences: The seriousness of the consequences of failure in terms of
human life and/or property damage

f) Quality of manufacture: The quality of workmanship in manufacture

g) Conditions of operation: The conditions of operation

h) Quality of inspection: The quality of inspection and maintenance available or possible during
operation

A semiquantitative assessment of these rating factors may be made by assigning a rating number, ranging
in value from -4 to +4, to each one. These rating numbers (RNs) have the following meanings:

RN=1 mild need to modify nSF

RN=2 moderate need to modify nSF

RN=3 strong need to modify nSF

RN=4 extreme need to modify nSF

Further, if there is a need to increase the safety factor, the selected rating number is assigned a positive
(+) sign; if it is to decrease the safety factor, the selected rating number is to assign a negative (−) sign.
The next step is to calculate the algebraic sum of the eight rating numbers:

t =
8∑

i=1

RNi

Now using the above result, the design safety factor may be empirically estimated from:

nSF =





1 +
(10 + t)2

100
, for t ≥ −6

1.15, for t < −6

(7.2)

In general, the design safety factor will be bound by:

1.15 ≤ nSF ≤ 5 (7.3)

although for lightweight structures the safety factor is small as possible and for some machinery we
might have safety factors higher than 5.

c©2012 by Vijay K. Goyal. All Rights Reserved.



7.1. DESIGN SAFETY FACTORS 490

7.1.4 Recommended Values for a Safety Factor

Having read through this much philosophy of safety factor selection, the reader is entitled to have, at
least as a guide, some suggestions values of safety factor that have been found useful. For this purpose,
the following recommendations of Joseph Vidosic are suggested. These safety factors are based on yield
strength.

1. SF = 1.25 to 1.5 for exceptionally reliable materials used under controllable conditions and sub-
jected to loads and stresses that can be determined with certaintyused almost invariably where
low weight is a particularly important consideration.

2. SF = 1.5 to 2 for well-known materials, under reasonably constant environmental conditions,
subjected to loads and stresses that can be determined readily.

3. SF = 2 to 2.5 for average materials operated in ordinary environments and subjected to loads and
stresses that can be determined.

4. SF = 2.5 to 3 for less tried materials or for brittle materials under average conditions of environ-
ment, load, and stress.

5. SF = 3 to 4 for untried materials used under average conditions of environment, load, and stress.

6. SF = 3 to 4 should also be used with better-known materials that are to be used in uncertain
environments or subjected to uncertain stresses.

7. Repeated loads: the factors established in items 1 to 6 are acceptable but must be applied to the
endurance limit rather than to the yield strength of the material.

8. Impact forces: the factors given in items 3 to 6 are acceptable, but an impact factor should be
included.

9. Brittle materials: where the ultimate strength is used as the theoretical maximum, the factors
presented in items 1 to 6 should be approximately doubled.

10. Where higher factors might appear desirable, a more thorough analysis of the problem should be
undertaken before deciding on their use.

7.1.5 Example

You have been asked to propose a value for the design safety factor to be used in determining the di-
mensions for the main landing gear support for a new executive jet aircraft. It has been determined that
the application may be regarded as “average” in many respects, but the material properties are known
a little better than for the average design case, the need to conserve weight and space is strong, there is
a strong concern about threat to life and property in the event of a failure, and the quality of inspection
and maintenance is regarded as excellent. What value would you propose for the design safety factor?
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Solution:

Based on the information given, the rating numbers assigned to each of the eight rating factors might
be Thus,

Table 7.1: Semiquantitative assessment of rating factors

Rating Factor Selected Rating Number (RN)

1. Accuracy of loads knowledge : 0

2. Accuracy of stress calculation : 0

3. Accuracy of strength knowledge : -1

4. Need to conserve : -3

5. Seriousness of failure consequences : +3

6. Quality of manufacture : 0

7. Conditions of operation : 0

8. Quality of inspection : -4

t = 0 + 0− 1− 3 + 3 + 0 + 0− 4 = −5

Since t ≥ −6,

nSF = 1 +
(10 + t)2

100
= 1 +

(10− 5)2

100
= 1.25

The recommended value for a design safety factor appropriate to this application would be:

nSF = 1.25

7.2 Margin of Safety

Margins of Safety is an index indicating the amount beyond the minimum necessary; in other words, the
margin of safety is the strength of the material minus the anticipated stress and is defined as:

MS =
excess strength

required strength
=
σall − σreq

σreq

=
σall

σreq

− 1 = nSF − 1 (7.4)

Lightweight structures have MS small as possible. A margin of safety of zero, implies no safety was
considered in the design:

nSF = 1 → MS = 0 onset of failure

Negative margin of safety means failure has occurred:

nSF < 1 → MS < 0 failure occurred
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Thus when designing for safety using deterministic approaches, we must always ensure

nSF > 1 → MS > 0 safe

Example 7.1.

It is desired to design a shaft with a 20% margin of safety. What is the safety factor?
The margin of safety is 20% or 0.20. Thus,

nSF = MS + 1 = 0.20 + 1 = 1.20

The factor of safety is 1.20.

End Example �

7.3 Probabilistic Approach

The analysis in the previous section is only valid for perfect structures, those structures without imper-
fections. However, uncertainties lead to imperfections in the structure and the deterministic analysis
may be no longer valid. Thus here describe a method to perform a more accurate analysis.

7.3.1 Random Variables

In a problem involving uncertainty, one first conducts statistical analysis on the random variables. This
can be obtained experimentally or using sampling techniques. Then using this information one calculates
the influence of the randomness of the random variables on the wanted response.

A random variable is defined as an uncertain parameter, for example, modulus of elasticity, length
of the beam, width, etc. The independent random variables are denoted as

r = {r1, r2, . . . , rn} (7.5)

where ri’s are the different random variables in our problem. As for an example, the random variables
could be
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1. axial Young’s modulus, Exx

2. yield strength, Syield

3. loads, P

4. cross-sectional properties, d (diameter)

7.3.2 Probability Density Function

For independent random variables, the probability density function can be expressed as follows:

F (r1, r2, . . . , rn) =
n∏

i=1

fi(r) (7.6)

The probability density function (PDF) does not provide information on the probability but only indi-
cates the nature of the randomness. Among the used density functions in the analysis of structures are
the Beta distribution, Normal or Gaussian distribution, Lognormal distribution, and Weibull distribu-
tion. From these, the most commonly used distribution is Gaussian:

fi(r) =
1

σi
√

2π
exp

[
−1

2

(
r − µi
σi

)2
]

(7.7)

where σ2
i and µi are the variance and the mean value of the ith random variable, respectively.

7.3.3 Reliability Analysis

In progress...
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7.5 Suggested Problems

Problem 7.1.

See problem end of chapter 5 of your textbook.
�
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Chapter 8

Failure Theories for Static Loading

Instructional Objectives of Chapter 8

After completing this chapter, the student should be able to:

1. Understand and explain the purpose of safety factors and margins of safety.

2. Perform failure analysis under yielding.

3. Perform failure analysis under fracture.

In the past few chapters, we have learned how to obtain the principal stresses for the design of
various structures. Our main focus in this chapter is a safe design and safe failure, a main requirement
for aircraft design. Here we will explore the various failure criterions subject to static loading. Design
for static loading dictates that all loading variables remain constant:

a) Magnitude of load is constant

b) Direction of load is constant

c) Point of application of the load is fixed.

Let us define a static load as a slowly varying load applied at a point.
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8.1 Ductile and Brittle Failure Theories

Now let us see what governs a three-dimensional state of stress in yielding. Before we do so it is impor-
tant to understand the behavior of structural metals. Structural metal behavior is typically classified
as being ductile or brittle, although under special situations, a material normally considered ductile can
fail in a brittle manner.

σ σ 

Ductile materials: Brittle materials: 
  

εf ¥ 5% εf < 5% 

ε ε 
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Ductile materials Brittle materials

The true strain at fracture is εf ≥ 5 % in 2
inches.

The true strain at fracture is εf < 5 % in 2
inches.

The yield strength is identifiable and is often
the same in compression as in tension (Syt ≈
Syc = Syield).

The yield strength is not identifiable. Typically
classified by ultimate tensile strength Sut and
ultimate compressive strength Suc, where Suc is
a positive quantity.

A single tensile test is sufficient to characterize
the material behavior of a ductile material, Sy

and Sut.

Two material tests, a tensile test and a com-
pressive test, are required to characterize the
material behavior of a brittle material, Suc and
Sut. The compressive strength is significantly
higher than its tensile strength (Suc � Sut).

Governed by Yielding Criteria Governed by Fracture Criteria

Generally accepted theories for yielding criteria
are:

a) Distortion Energy Criterion

b) Maximum-Shear-Stress Criterion (Syt
.=

Syc)

c) Ductile Coulomb-Mohr Criterion (Syt <
Syc)

Generally accepted theories for fracture criteria
are:

a) Maximum-Normal-Stress Criterion

b) Brittle Coulomb-Mohr Criterion
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8.2 3-D Stress State Failure Theories: Brittle Materials

An important attribute in design with brittle materials is they do not possess defense against stress
concentration opposed to ductile materials. Thus even small scratches and cracks as naturally occur
in their fabrication can lead to brittle fracture. For this reason, brittle materials have to be used with
extreme caution in tension structures. For such material one should evaluate the stress concentration
factors.

8.2.1 Maximum Normal Stress Criterion

Postulate: Failure occurs when one of the three principal stresses equals the strength.

The maximum stress criterion, also known as the normal stress, Coulomb, or Rankine criterion, is often
used to predict the failure of brittle materials. The maximum stress criterion states that failure occurs
when the maximum (normal) principal stress reaches either the uniaxial tension strength Sut, or the
uniaxial compression strength Suc,

−Suc < (σ1, σ2, σ3) < Sut

where σ1, σ2, and σ3 are the principal stresses for 3-D stress. Recall:

σ1 > σ2 > σ3

To better grasp this Criterion, consider the plane stress problem (σ3 = 0). Graphically, the maximum
stress criterion requires that the two principal stresses lie within the green zone depicted below,

σ2 

Sut

-Suc

σ1 Sut

-Suc

 
 
 
 
 
 
  

The factor of safety can be obtain by:

σ1 =
Sut

nSF

σ1 ≥ σ3 ≥ 0

σ1 ≥ 0 ≥ σ3 and
∣∣∣∣
σ3

σ1

∣∣∣∣ ≤
Suc

Sut

(8.1)
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σ3 = −Suc

nSF

σ1 ≥ 0 ≥ σ3 and
∣∣∣∣
σ3

σ1

∣∣∣∣ >
Suc

Sut

0 ≥ σ1 ≥ σ3

(8.2)

where Suc is the uniaxial ultimate compression strength and Sut the uniaxial ultimate tensile strength.

In short, according to the Maximum-Normal-Stress Theory, as long as stress state falls within the
box, the material will not fail. For a general three-dimensional state of stress, the design criteria is
governed by

σ1

Sut

≤ 1
nSF

for





(a) σ1 ≥ σ3 ≥ 0

(b) σ1 ≥ 0 ≥ σ3 and
∣∣∣∣
σ3

σ1

∣∣∣∣ ≤
Suc

Sut

− σ3

Suc

≤ 1
nSF

for





(c) σ1 ≥ 0 ≥ σ3 and
∣∣∣∣
σ3

σ1

∣∣∣∣ >
Suc

Sut

(d) 0 ≥ σ1 ≥ σ3

where nSF = 1 at onset of failure (fracture begins). One should evaluate the corresponding case(s) and
choose the design that falls inside the box.

8.2.2 Brittle Coulomb-Mohr Criterion

The Mohr Theory of Failure, also known as the Coulomb-Mohr criterion or internal-friction theory, is
based on the famous Mohr’s Circle. Mohr’s theory is often used in predicting the failure of brittle ma-
terials, and is applied to cases of 2-D stress. Mohr’s theory suggests that failure occurs when Mohr’s
Circle at a point in the body exceeds the envelope created by the two Mohr’s circles for uniaxial tensile
strength and uniaxial compression strength. This envelope is shown in the figure below,

 

 

 
 
 
 
 
 
  

-Sc St 

τ

σ

Uniaxial 
Tension 

Uniaxial 
Compression 

The left circle is for uniaxial compression at the limiting compression stress Suc of the material. Likewise,
the right circle is for uniaxial tension at the limiting tension stress Sut.
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The middle Mohr’s Circle on the figure (dash-dot-dash line) represents the maximum allowable stress
for an intermediate stress state. Each case defines the maximum allowable values for the two principal
stresses to avoid failure. For the plane stress problem:

σ2 

Sut

-Suc

σ1 Sut

-Suc

 
 
 
 
 
 
  

σ1 =
Sut

nSF

σ1 ≥ σ3 ≥ 0

σ1

Sut

− σ3

Suc

=
1
nSF

σ1 ≥ 0 ≥ σ3

σ3 = −Suc

nSF

0 ≥ σ1 ≥ σ3

(8.3)

where Suc is the uniaxial ultimate compression strength and Sut the uniaxial ultimate tensile strength.

For a general three-dimensional state of stress, the design criteria is governed by
∣∣∣∣
σ1

Sut

− σ3

Suc

∣∣∣∣ ≤
1
nSF

where nSF = 1 at onset of failure (fracture begins).

8.2.3 Comparison of MNS and BCM Criterions

Also shown on the figure is the maximum stress criterion (dashed line). The MNS theory is less conser-
vative than Mohr’s theory since it lies outside Mohr’s boundary. The design safety factors are compared
as

nSF

∣∣∣
MNS

≥ nSF

∣∣∣
BCM

Thus BCM Theory is the most conservative one.
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Maximum Stress 

 
 
 
 
 
 
  

σ1 

σ2 Mohr’s 
Sut

-Suc

Sut

-Suc

8.3 3-D Stress State Failure Theories: Ductile Materials

An important attribute in design with ductile materials is their capacity to accommodate stress concen-
trations through plastic deformation and hence to redistribute the stresses more evenly. Stress concentra-
tions occur at stress raisers which are either geometric discontinuities (e.g., holes, sharp corners, cracks,
fillets, etc.) and/or material discontinuities (notches). The capacity to redistribute stresses at stress
riser make’s a ductile material “tough”, giving the material a defense mechanism against stress concen-
trations. Thus for static loads with high stress concentrations, we usually take the stress concentration
factor as:

Kt → 1

Ductile engineering materials are those for which static strength in engineering applications is limited
by yielding and not fracture.

The yield stress Syield is determined from the tensile test data, but the tensile test is designed to
produce a uniaxial state of stress. However, we would like to know what governs yielding under combined
states of stress that occur in structural components under service loads. Although no theoretical way to
correlate yielding in a three-dimensional state of stress with yielding in the uniaxial tensile test exists,
three empirical equations have been proposed:

1. Aka Distortion Energy Criterion. Also known as Mises Yield Criterion or Octahedral Shear-stress
Criterion. Good for ductile materials but should not be used for brittle materials.

2. Maximum Shear Stress Criterion. Also known as Aka Tresca Criterion. Good for ductile materials
with tensile yield strength approximately equal to compressive yield strength and should not be used
for brittle materials.

3. Ductile Coulomb-Mohr. Good for ductile materials with tensile yield strength different to compres-
sive yield strength and should not be used for brittle materials.

Aka Distortion Energy Criterion and Maximum Shear Stress Criterion are based on:
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1. State of stress can be completely described by the magnitude and direction of the principal stresses.
For an isotropic material the principal stress directions are unimportant.

2. Experiments show that hydrostatic state of stress does NOT effect yielding.

8.3.1 Aka Distortion Energy Criterion

Postulate: Yielding will occur when the distortion-energy per unit volume equals the distortion-energy
per unit volume in a uniaxial tension specimen stressed to its yield strength.

τoct

∣∣∣
3-D

= τoct

∣∣∣
1-D

(8.4)

The basis for the maximum distortion energy theory of failure is that the overall strain energy is
composed of two parts. The first part is the energy associated with merely changing the volume of the
part while the second part is associated with the distortion of the part. Thus, the total strain energy
per unit volume u can be written as

u = uv + ud (8.5)

where uv is the energy of volume change per unit volume and ud is the energy of distortion per unit
volume. It is this distortion part of the strain energy that is the basis for this failure theory. The
hypothesis for this theory is that failure will occur in the complex part when the distortion energy per
unit volume exceeds that for a simple uniaxial tensile test at failure.

For purposes of describing this failure theory, the principal normal stresses can be thought of as being
composed of two parts that are superimposed as follows

where σ1, σ2 and, σ3 are the principal stresses. For this superposition, the relationships will be

σ1 = σ′1 + σav

σ2 = σ′2 + σav

σ3 = σ′3 + σav
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and the state of stress can be written as:



σ1 0 0

0 σ2 0

0 0 σ3




=




σav 0 0

0 σav 0

0 0 σav




+




σ′1 0 0

0 σ′2 0

0 0 σ′3




Here σav represents the portion of the stress that causes volume change and σ′i represents the portion
of the principal normal stresses that cause distortion:

σ′1 = σ1 − σav

σ′2 = σ2 − σav

σ′3 = σ3 − σav

Now the hydrostatic state of stress can be shown to be:

σav =
σ1 + σ2 + σ3

3
(8.6)

The distortional element is subject to pure angular distortion, that is no volume change.

The total strain energy density for an element subject to the three principal stresses is:

u =
1
2

{
σ1 ε1 + σ2 ε2 + σ3 ε3

}
=

1
2E

{
σ2

1 + σ2
2 + σ2

3 − 2 ν (σ1 σ2 + σ2 σ3 + σ1 σ3)
}

The total strain energy density for an element subject to the hydrostatic stresses is:

uv =
1

2E

{
3σ2

av − 2 ν
(
3σ2

av

)}
=

3σ2
av

2E

{
1− 2 ν

}

Now substitute Eq. (8.6) into the above expression to obtain:

uv =
1− 2 ν

6E

{
σ2

1 + σ2
2 + σ2

3 + 2 (σ1 σ2 + σ2 σ3 + σ1 σ3)
}

Now the distortion energy is given by Eq. (8.5)

ud = u− uv =
1 + ν

3E

{
(σ1 − σ2)2 + (σ2 − σ2)2 + (σ3 − σ1)2

2

}

Note that the distortion energy would be zero if σ1 = σ2 = σ3. Now for a simple tensile test, at yield,

ud =
1 + ν

3E
S2

yield (σ1 = Syield, σ2 = σ3 = 0)
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Further recall that von Mises stress was defined as:

σeq =
√
I2
σ1
− 3 Iσ2 =

√
(σ1 − σ2)2 + (σ2 − σ2)2 + (σ3 − σ1)2

2

Thus von Mises stress is a method to predict yielding in 3-D state of stress.

ud

∣∣∣
3-D

=
1 + ν

3E
σ2

eq

and it was defined as:

σeq =
√
I2
σ1
− 3 Iσ2 (8.7)

Now, the Aka Distortion Energy Criterion can be expressed in terms of the von Mises stress:

σeq < Syield

The safety factor can be derived as:

σeq =
Syield

nSF

→ nSF =
Syield

σeq

To better explain the physical meaning of the DE Criterion let us consider a plane stress problem
(σ3 = 0). Yielding will begin when

σeq = Syield =
√
I2
σ1
− 3 Iσ2 =

√
σ2

1 − σ1 σ2 + σ2
2

Rewriting the above:
S2

yield = σ2
1 − σ1 σ2 + σ2

2

Now taking a transformation of θ = 45◦:

σ̄1 =
σ1 + σ2√

2
σ̄2 =

σ2 − σ1√
2

Solving for σ̄1 and σ̄2,

σ1 =
σ̄1 − σ̄2√

2
σ2 =

σ̄1 + σ̄2√
2
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Then the criterion becomes

S2
yield =

σ̄2
1

2
+

3 σ̄2
2

2

1 =
σ̄2

1

2S2
yield

+
3 σ̄2

2

2S2
yield

1 =

(
σ̄1√

2Syield

)2

+




σ̄2√
2
3
Syield




2

1 =
(

σ̄1

1.4142Syield

)2

+
(

σ̄2

0.8165Syield

)2

The above is an ellipse rotated at 45◦:
 

 

 

σ1 

σ2 

σ1 σ2 

0.816 Sy 

-0.816 Sy -1.41 Sy 

1.41 Sy 

-Sy 

-Sy 

Sy 

Sy 

In short, according to the DE Theory, as long as stress state falls within the ellipse, the material will
not fail. For a general three-dimensional state of stress, the design criteria is governed by

σeq

Syield

≤ 1
nSF

where nSF = 1 at onset of failure (yielding begins).

8.3.2 Maximum Shear Stress Criterion

Postulate: Yielding begins whenever the maximum shear stress in a part becomes equal to the maximum
shear stress in a tension test specimen that begins to yield.
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σ1 σσ2 σ3 

τ1/3=τmax

τ1/2

τ2/3

τ τ

Sy/2 

σ1=Sy 

σ2=σ3=0 σ 

3-D Stress State in Part Tensile Test Specimen 

Yielding begins in a 3-D stress state when the maximum shear stress τmax is equal to its value at the
initiation of yielding in the tension test:

τmax

∣∣∣
3-D

= τmax

∣∣∣
1-D

(8.8)

It is known that
τmax

∣∣∣
1-D

=
Syield

2

τmax

∣∣∣
3-D

=
∣∣∣∣
σ1 − σ3

2

∣∣∣∣

Note that YIELDING BEGINS when (8.8) is true. In other words,

 

 

 
 
 
 
 
 
  

σ1=Sy 

τmax=Sy/2 

σ2=0 
σ3=0 

τ

σ 

τmax = 0.5Syield

However for design purposes this should not happen. It is wanted that

τmax

∣∣∣
3-D

<
Syield

2
(8.9)
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Maximum Shear Stress is another method to predict yielding in 3-D state of stress and it is defined as:

σ1 − σ3 = ±Syield (8.10)

To better explain the physical meaning of the DE Criterion let us consider plane stress problem (σ3 = 0).
Thus let us consider three different cases with σ3 = 0.
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First Case:

σ1 − σ3 = ±Syield → σ1 − σ3 = ±Syield → σ1 = ±Syield

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

σ3 
σ2 

σ1 

σσσσ3 < σσσσ2 < σσσσ1 σ2 

σ1 Sy -Sy 

Second Case:

σ1 − σ3 = ±Syield → σ1 − σ2 = ±Syield → σ1 = σ2 ± Syield

 

σ2 
σ3 

σ1 

σσσσ2 < σσσσ3 < σσσσ1 σ2 

σ1 

-Sy 

Sy 

Sy 

-Sy 

Third Case

σ1 − σ3 = ±Syield → σ3 − σ2 = ±Syield → σ2 = ∓Syield

 

σ2 
σ1 

σ3 

σσσσ2 < σσσσ1 < σσσσ3 σ2 

σ1 

-Sy 

Sy 
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Thus for a biaxial representation of the yield, the Maximum-Shear-Stress Theory can be represented
as  

 

 

σ1 

σ2 

-Sy 

-Sy 

Sy 

Sy 

Locus of  
failure states  

Case I  

Case II 

Case III 

In short, according to the MSS Theory, as long as stress state falls within the green area, the material
will not fail. For a general three-dimensional state of stress, the design criteria is governed by

τmax

∣∣∣
3-D

=
Syield

2nSF

→ nSF =
Syield

2 τmax

or
2 τmax

Sy

=
∣∣∣∣
σ1

Syield

− σ3

Syield

∣∣∣∣ ≤
1
nSF

where nSF = 1 at onset of failure (yielding begins).

8.3.3 Comparison of DE and MSS Criterions

 

 

 

σ1 

σ2 

-Sy 

-Sy 

Sy 

Sy 

Maximum 
Shear Stress  

Distorsion 
Energy  

A 

B
C D
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The blue line is the loading line. Let point B represent the actual loading condition. Then the design
safety factor can be calculate as follows

nSF =
AC

AB
Maximum Shear Stress Criterion

nSF =
AD

AB
Distortion Energy Criterion

From the above it is clear that, in general,

nSF

∣∣∣
Maximum Shear Stress Criterion

≤ nSF

∣∣∣
Distortion Energy Criterion

Thus MSS Theory is the most conservative one.

The distortion-energy theory predicts no failure under hydrostatic stress and agrees well with all data
for ductile behavior. Hence, it is the most widely used theory for ductile materials and is recommended
for design purposes, although some engineers also apply the MSS Theory because of its simplicity and
conservative nature.

8.3.4 Ductile Coulomb-Mohr Criterion

When the tensile yield strength and compressive yield strength are significantly different for ductile
materials, a variation of the brittle Coulomb-Mohr Criterion is commonly used. The criterion for a
general three-dimensional state of stress is governed by

∣∣∣∣
σ1

Syt

− σ3

Syc

∣∣∣∣ ≤
1
nSF

where nSF = 1 at onset of failure (fracture begins), Syc the uniaxial compressive yield strength and Syt

the uniaxial ultimate tensile strength.
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Example 8.1.

A certain force F applied at D near the end of the 15-in lever shown in Figure, which is
quite similar to a socket wrench, results in certain stresses in the cantilevered bar OABC.
This bar (OABC) is of AISI 1035 steel and it has a minimum (ASTM) yield strength of 81
ksi. We presume that this component would be of no value after yielding. Thus the force
F required to initiate yielding can be regarded as the strength of the component part. Find
the force F .

Solution: We will assume that lever DC is strong enough and hence not a part of the
problem. Note that point O is the place of maximum bending moment but not necessarily
maximum bending stress due to stress concentration at A. Points A and O have the same
shear and torsional loads but not necessary the same shear stresses due to torque because of
stress concentration at A.

Thus a stress element at A will be most critical.
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y 

z 

T 
x

A 

Vy 

Mzz 

y

z

15F 

x 

A

F

14F

Sign Convention 
Free Body Diagram at A 

For our sign convention:

Mzz = −14F Vy = −F T = 15F

Let us consider the stress element on the top surface will be subjected to a tensile bending
stress and a torsional stress (note that there is no shear stress due to shear load at A. This
point is the weakest section, and governs the strength of the assembly. For a static load
acting on a ductile material, the stress concentration factor is not important.

The two stresses are
σxx = −Ktb

Mzz y

Izz
τxz = Kts

T r

Jxx

At the top:

σxx = −Ktb

Mzz (c)
Izz

= −Ktb

Mzz

Z
τxz = Kts

T (c)
Jxx

= Kts

T

Q

Using Tables:

σxx = −Ktb

Mzz

Z
= −Ktb

32Mzz

π d3

τxz = Kts

T

Q
= Kts

16T
π d3

Since the stress concentration factor are not important here

Ktb = 1.0 Kts = 1.0

Thus (for d = 1′′)

σxx = −(1.0)
32 (−14F )
π (1)3 = 142.6F

τxz = (1.0)
16 (15F )
π (1)3 = 76.4F

Now we proceed to find the principal stresses. The state of stress is

σA =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




142.6F 0 76.4F
0 0 0

76.4F 0 0


 psi (8.11)

c©2012 by Vijay K. Goyal. All Rights Reserved.



8.3. 3-D STRESS STATE FAILURE THEORIES: DUCTILE MATERIALS 514

The stress invariants are

Iσ1 = σxx + σyy + σzz = 142.6F

Iσ2 = −τ2
xz = − (76.4F )2 = −5836.1F 2

Iσ3 = 0 (Plane stress)

The characteristic equation is

λ3 − Iσ1 λ
2 + Iσ2 λ = λ

(
λ2 − Iσ1 λ+ Iσ2

)
= λ

(
λ2 − 142.6F λ− 5836.1F 2

)
= 0

The principle stresses are obtained analytically as follows

λ1 =
Iσ1

2
+

1
2

√
I2
σ1
− 4 Iσ2 = 76.4F + 104.50F = 175.8F

λ2 =
Iσ1

2
− 1

2

√
I2
σ1
− 4 Iσ2 = 76.4F − 104.50F = −33.20F

λ3 = 0

σ1 = max[λ1, λ2, λ3] = 175.8F σ3 = min[λ1, λ2, λ3] = −33.20F σ2 = 0

The maximum stresses are

σ1 = max[σ1, σ2, σ3] = 175.8F σ3 = min[σ2, σ2, σ3] = −33.20F

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 104.50F

Distortion energy criterion: If we employ the DE criterion, we need to calculate the von
Mises stress:

σeq =
√
I2
σ1
− 3 Iσ2 = 194.50F

The yielding criteria for DE criterion is

σeq

Sy

≤ 1
nSF

→ 194.50F
81000

≤ 1 (nSF = 1)

Thus a force of F = 416.38 lb will cause yielding.

Maximum Shear Stress Criterion: If we employ the MSS criterion, we need to calculate
the maximum overall shear stress:

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 104.50F

The yielding criteria for MSS criterion is

2 τmax

Sy

≤ 1
nSF

→ 104.50F
40500

≤ 1 (nSF = 1)
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Thus a force of F = 387.56 lb will cause yielding.

We can see that the force F required found by MSS is about 6.9% less than the one found
for the DE. As stated earlier, the MSS theory is more conservative than the DE theory.

End Example �
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Example 8.2.

A certain force F applied at D near the end of the 15-in lever shown in Figure, which is
quite similar to a socket wrench, results in certain stresses in the cantilevered bar OABC.
This bar (OABC) is of AISI 1035 steel and it has a minimum (ASTM) yield strength of 81
ksi. We presume that this component would be of no value after yielding. Thus the force F
required to initiate yielding can be regarded as the strength of the component part.

1. If F = 400 lbs, will the component fail?

2. Certain safety factor was used to ensure that the structure would not fail. If F = 300
lbs was assumed to cause yielding, what is the realized margin of safety?

Solution: We proceed as before.

(1) If F = 400 lbs, will the component fail?

The goal is to ensure that the margin of safety is positive and/or safety factor is greater
than one. The two yielding theories will give slightly different solutions.
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Distortion energy criterion: If we employ the DE criterion, we need to calculate the
von Mises stress:

σeq =
√
I2
σ1
− 3 Iσ2 = 194.50F

The yielding criteria for DE criterion is

σeq

Sy

≤ 1
nSF

→ 194.50F =
81000
nSF

→ 77814.0 =
81000
nSF

Thus a safety factor of nSF = 1.041 was used. Since the safety factor is greater than
one (and MS = 0.041 > 0) the structure is likely to not fail. Although the design
engineer should consider nSF = 1.15 for design, this design is acceptable since failure
is not predicted.

Maximum Shear Stress Criterion: If we employ the MSS criterion, we need to cal-
culate the maximum overall shear stress:

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 104.5F

The yielding criteria for MSS criterion is

2 τmax

Sy

≤ 1
nSF

→ 104.5 =
40500
nSF

→ 41799.5 =
40500
nSF

Thus a safety factor of nSF = 0.97 was used. Since the safety factor is less than one
(and MS = −0.03 < 0) the design will fail.

Note that the safety factor required found by MSS is smaller than the one found for the
DE. As stated earlier, the MSS theory is more conservative than the DE theory.

(2) Certain safety factor was used to ensure that the structure would not fail. If F = 300
lbs was assumed to cause yielding, what is the realized margin of safety?

Distortion energy criterion: If we employ the DE criterion, we need to calculate the
von Mises stress:

σeq =
√
I2
σ1
− 3 Iσ2 = 194.50F

The yielding criteria for DE criterion is

σeq

Sy

≤ 1
nSF

→ 194.50F =
81000
nSF

→ 58360.50 =
81000
nSF

Thus a safety factor of nSF = 1.39 was used. Since the safety factor is greater than
one the design will not fail. The margin of safety is

MS = nSF − 1 = 0.39 = 39%

Maximum Shear Stress Criterion: If we employ the MSS criterion, we need to cal-
culate the maximum overall shear stress:

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 104.5F
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The yielding criteria for MSS criterion is

2 τmax

Sy

≤ 1
nSF

→ 104.5 =
40500
nSF

→ 31349.6 =
40500
nSF

Thus a safety factor of nSF = 1.29 was used. Since the safety factor is greater than
one the design will not fail. In addition it is greater than 1.15. The margin of safety
is

MS = nSF − 1 = 0.29 = 29%

Note that the safety factor required found by MSS is smaller than the one found for the
DE. As stated earlier, the MSS theory is more conservative than the DE theory.

End Example �
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Example 8.3.

A certain force F applied at D near the end of the 15-in lever shown in Figure, which is
quite similar to a socket wrench, results in certain stresses in the cantilevered bar OABC.
This bar (OABC) is made of ASTM grade 30 cast iron, machined to dimension. The force
F required to fracture this part can be regarded as the strength of the component part. Find
the force F .

Solution: We assume that the lever DC is strong enough, and not part of the problem.
The tensile ultimate strength is 31 ksi and the compressive ultimate strength is 109 ksi.
The stress element at A on the top surface will be subjected to a tensile bending stress and
a torsional stress (just as before). This location, on the l-in diameter section fillet, is the
weakest location, and it governs the strength of the assembly. Since grade 30 cast iron is a
brittle material and the load is static, we should find the stress concentration factors. Thus
use Charts 4.17 of your textbook for the corresponding stress concentration factors.

The two stresses are at the top are

σxx = −Ktb

Mzz

Z
τxz = Kts

T

Q
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Using Tables:

σxx = −Ktb

Mzz

Z
= −Ktb

32Mzz

π d3 τxz = Kts

T

Q
= Kts

16T
π d3

From Charts:

D

d
= 1.5

r

d
= 0.125 ⇒ Ktb ≈ 1.6 Kts ≈ 1.33

Thus, (for d = 1′′)

σxx = −(1.6)
32 (−14F )
π (1)3 = 228.165F

τxz = (1.33)
16 (15F )
π (1)3 = 101.605F

Now we proceed to find the principal stresses. The state of stress is

σA =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




228.165F 0 101.605F
0 0 0

101.605F 0 0


 psi (8.12)

The stress invariants are

Iσ1 = σxx + σyy + σzz = 228.165F

Iσ2 = −τ2
xz = − (101.605F )2 = −10323.5F 2

Iσ3 = 0 (Plane stress)

The characteristic equation is

λ3 − Iσ1 λ
2 + Iσ2 λ = λ

(
λ2 − Iσ1 λ+ Iσ2

)
= λ

(
λ2 − 228.165F λ− 10323.5F 2

)
= 0

The principle stresses are obtained analytically as follows

λ1 =
Iσ1

2
+

1
2

√
I2
σ1
− 4 Iσ2 = 266.16F

λ2 =
Iσ1

2
− 1

2

√
I2
σ1
− 4 Iσ2 = −38.69F

λ3 = 0

σ1 = max[λ1, λ2, λ3] = 266.16F σ3 = min[λ1, λ2, λ3] = −38.69F σ2 = 0

The maximum stresses are:

σ1 = max[σ1, σ2, σ3] = 266.16F σ3 = min[σ1, σ2, σ3] = −38.69F

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 152.77F (Not needed for brittle failure criterions)
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Maximum Normal Stress criterion: First let us assume that F > 0. If we employ the
MNS criterion, we need to check what case we are working with:

σ1 ≥ 0 ≥ σ3

Thus we need to evaluate:
∣∣∣∣
σ3

σ1

∣∣∣∣ =
∣∣∣∣
−38.69F
266.16F

∣∣∣∣ = 0.145364
Suc

Sut

=
109
31

= 3.51613

Since:
∣∣∣∣
σ3

σ1

∣∣∣∣ <
Suc

Sut

→ σ1 =
Sut

nSF

→ 266.85F = 31000 (nSF = 1)

Thus a force of F = 116.17 lb will cause fracture.

F = 116.17⇒
{
σ1 = 266.16F = 31000 psi
σ3 = −38.69F = −4494.18 psi

For F both σ1 and σ3 fall on the box -limit because:

−Suc < σ1, σ3 = Sut

Thus the load for fracture is:
F = 116.17 lb

Brittle Coulomb-Mohr Criterion: If we employ the BCM criterion,
∣∣∣∣
σ1

Sut

− σ3

Suc

∣∣∣∣ =
1
nSF

→ 0.008963F = 1 (nSF = 1)

Note we took nSF = 1 for failure. Thus a force of F = 111.57 lb will cause fracture.

We can see that the force F required found by BCM is about 4.0% less than the one found
for the MNS. As stated earlier, the BCM theory is more conservative than the MNS theory.

End Example �
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Example 8.4.

A certain force F applied at D near the end of the 15-in lever shown in Figure, which is
quite similar to a socket wrench, results in certain stresses in the cantilevered bar OABC.
This bar (OABC) is made of ASTM grade 30 cast iron, machined to dimension. The force
F required to fracture this part can be regarded as the strength of the component part.

1. If F = 115 lbs, will the component fail?

2. Certain safety factor was used to ensure that the structure would not fail. If F = 100
lbs was assumed to cause fracture, what is the realized margin of safety?

Solution: We proceed as before.

(1) If F = 115 lbs, will the component fail?

The goal is to ensure that the margin of safety is positive and/or safety factor is greater
than one. The two fracture theories will give slightly different solutions. The principal
stresses are:

σ1 = 266.16F = 30687.8 σ2 = 0 σ3 = −38.69F = −4448.93
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Maximum Normal Stress criterion: If we employ the MNS criterion, If we employ
the MNS criterion, we need to check what case we are working with:

σ1 ≥ 0 ≥ σ3

Thus we need to evaluate and compare:
∣∣∣∣
σ3

σ1

∣∣∣∣ =
∣∣∣∣
−38.69F
266.16F

∣∣∣∣ = 0.145364
Suc

Sut

=
109
31

= 3.51613

∣∣∣∣
σ3

σ1

∣∣∣∣ <
Suc

Sut

→ σ1 =
Sut

nSF

→ 30687.8 =
31000
nSF

Thus a safety factor of nSF = 1.012 was used. Since the safety factor is greater than
one (and MS = 0.012 > 0) the structure is likely to not fail. Although the design
engineer should consider nSF = 1.15 for design, this design is acceptable since failure
is not predicted.

Brittle Coulomb-Mohr Criterion: If we employ the BCM criterion,
∣∣∣∣
σ1

Sut

− σ3

Suc

∣∣∣∣ =
1
nSF

→ 1.03 =
1
nSF

Thus a safety factor of nSF = 0.97 was used. Since the safety factor is less than one
(and MS = −0.03 < 0) the design will fail.

We can see that the safety factor required found by BCM is smaller than the one found
for the MNS. As stated earlier, the BCM theory is more conservative than the MNS
theory.

(2) Certain safety factor was used to ensure that the structure would not fail. If F = 100
lbs was assumed to cause yielding, what is the realized margin of safety?

The goal is to ensure that the margin of safety is positive and/or safety factor is greater
than one. The two fracture theories will give slightly different solutions. The principal
stresses are:

σ1 = 266.16F = 26685.1 σ2 = 0 σ3 = −38.69F = −3868.63

Maximum Normal Stress criterion: If we employ the MNS criterion, need to check
what case we are working with:

σ1 ≥ 0 ≥ σ3

Thus we need to evaluate and compare:
∣∣∣∣
σ3

σ1

∣∣∣∣ =
∣∣∣∣
−38.69F
266.16F

∣∣∣∣ = 0.145364
Suc

Sut

=
109
31

= 3.51613

∣∣∣∣
σ3

σ1

∣∣∣∣ <
Suc

Sut

→ σ1 =
Sut

nSF

→ 26685.1 =
31000
nSF

Thus a safety factor of nSF = 1.16 was used. Since the safety factor is greater than
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one (and MS = 0.16 > 0) the structure will not fail and the design is acceptable.
Brittle Coulomb-Mohr Criterion: If we employ the BCM criterion,

∣∣∣∣
σ1

Sut

− σ3

Suc

∣∣∣∣ =
1
nSF

→ 0.8963 =
1
nSF

Thus a safety factor of nSF = 1.12 was used. Since the safety factor is greater
than one (and MS = 0.12 > 0) the structure will not fail. However, the design
engineer should consider nSF = 1.15 for design, thus this design is not acceptable
since MS � 0.15.

We can see that the safety factor required found by BCM is smaller than the one found
for the MNS. As stated earlier, the BCM theory is more conservative than the MNS
theory.

End Example �
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8.4 Introduction to Fracture Mechanics

“every structure contains small flaws whose size and distribution are dependent upon the material and
its processing. These may vary from nonmetallic inclusions and micro voids to weld defects, grinding
cracks, quench cracks, surface laps, etc.”1

The objective of a Fracture Mechanics analysis is to determine if these small flaws will grow into
large enough cracks to cause the component to fail catastrophically. Fracture Mechanics:

1. is the study of crack propagation in bodies.

2. is the methodology used to aid in selecting materials and designing components to minimize the
possibility of fracture.

3. begins with the assumption that all real materials contain cracks of some size—even if only sub-
microscopically.

4. is based on three types of displacement modes. As shown in Fig. 8.1.

 
 

MODE I 
OPENING 

 
Tension 

MODE II 
SLIDING 

 
In-plane 

shear 

MODE III 
TEARING 

 
Out-of-plane 

shear 

Figure 8.1: Three modes of fracture

MODE I: Opening. The opening (or tensile) mode is the most often encountered mode of crack
propagation. The crack faces separate symmetrically with respect to the crack plane.

MODE II: Sliding. The sliding (or in-plane shearing) mode occurs when the crack faces slide relative
to each other symmetrically with respect to the normal to the crack plane but asymmetrically with
respect to the crack plane.

MODE III: Tearing. The tearing (or antiplane) mode occurs when the crack faces slide asymmetri-
cally with respect to both the crack plane and its normal.

1T. J. Dolan, Preclude Failure: A Philosophy for Material Selection and Simulated Service Testing, SESA J. Exp. Mech.,
Jan. 1970.
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8.4.1 Fracture of Cracked Members

1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more
pieces.

2. Fracture can occur at stresses below the material’s yield strength, where failure would not normally
be expected.

8.4.2 Cracks as stress raisers

Consider the elliptic hole in an infinite plate loaded by an applied uniaxial stress σ in tension. 

 

 

σyy

σxx

τxy
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The maximum stress occurs at (±a, 0) and has a value of

σyy

∣∣∣
max

=
(

1 + 2
a

b

)
σ

σyy

∣∣∣
max

= Kt σ

where Kt is the dimensionless stress concentration factor. The radius at the tip of the ellipse can be
defined as:

ρ =
b2

a 

 

 

Ktσ

 σ
σxx 

σyy

 1

 ρ
 (x+a)/ρ
 

 2

σyy

σxx

τxy

Thus the stress concentration factor becomes:

Kt =
σyy

∣∣∣
max

σ
= 1 + 2

a

b
= 1 + 2

√
a

ρ

and can take values such as

a/b 1 2 3

Kt 3 5 7

Note that when a = b the ellipse becomes a circle can gives a stress concentration factor of 3. When
b→ 0 or ρ→ 0:

Kt →∞

and this geometry is like a crack-like slot. Real materials cannot support infinite stresses.

c©2012 by Vijay K. Goyal. All Rights Reserved.



8.4. INTRODUCTION TO FRACTURE MECHANICS 528

In ductile metals, large plastic deformation exists in the vicinity of the crack-tip. The stress is not
∞ and the sharp crack tip is blunted:

8.4.3 Fracture toughness

1. In fracture mechanics, one does not attempt to evaluate an effective stress concentration, rather a
stress intensity factor K

2. After obtaining K, it is compared with a limiting value of K that is necessary for crack propagation
in that material, called Kc

3. The limiting value Kc is characteristic of the material and is called fracture toughness

4. Toughness is defined as the capacity of a material to resist crack growth
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8.4.4 Fracture Mechanics: MODE I

Stress Intensity Factor

 

S 

aa

x 

y 

θ 
x 

y 

τxy 

σz 

σx 

σy 

 r 

S 

 b  b 

 h 

1. Observed that as a→ b, the plate fractures into two pieces.

2. The stress intensity factor KI characterizes the magnitude of the stresses in the vicinity of an ideal
sharp crack tip in a linear-elastic and isotropic material under mode I displacement.

3. Near the crack tip the dominant terms in the stress field are:

σxx =
KI√
2πr

cos
θ

2

[
1− sin

θ

2
sin

3θ
2

]
+ · · · (8.13)

σyy =
KI√
2πr

cos
θ

2

[
1 + sin

θ

2
sin

3θ
2

]
+ · · · (8.14)

τxy =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ
2

+ · · · (8.15)

σzz =

{
0 (plane stress)

ν(σxx + σyy) (plane strain)
(8.16)

τyz = τxz = 0 (8.17)
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4. KI measures the severity of the crack and it is generally expressed as:

KI = CI σ
√
πa (8.18)

CI is a dimensionless quantity accounting for the plate/specimen geometry and relative crack size
for mode one,

σ is the stress (σxx, σyy, ...) if no crack were present,

a is half crack length

5. The dimensional units of KI are: [stress
√

length], i.e., [MPa
√

m] or [ksi
√

in]

In section 8.4.6, we give various expressions for plate with any α = a/b. As for an example, the
dimensionless geometry constant for a crack-centered plate is

CI =
1− 0.5α+ 0.326α2

√
1− α

h

b
≥ 1.5 α = a/b (8.19)

From the above expression it can be shown that CI = 1 for an infinite plate (b→∞) and for 0� α� 1.
However, for a center-cracked plate with α ≤ 0.4, when taking CI = 1, the result is accurate within 10%.

Critical Stress Intensity Factor

1. The calculated KI is compared to the critical stress intensity factor or fracture toughness KIc:

KI < KIc, material will resist crack growth without brittle fracture (safe)

KI = KIc, crack begins to propagate and brittle fracture occurs (fracture)

2. The critical value KIc is defined as KIc = Cσc

√
πa

Note that KIc is a material property but KI is not! The strength-to-ratio KIc/KI can be used to determine
the safety factor:

nSF =
KIc

KI
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Figure 8.2: Relationship between stress and crack length.

8.4.5 Transition Crack Length

Figure 8.2 shows the relationship between the critical value of the remote stress and the crack length.
Here at is the transition crack length, and it is defined as the approximate length above which strength
is limited by brittle fracture; and Sy = Syield. In other words, at is the crack length where σc = Sy:

at =
1

C2π

(
KIc

Sy

)2

=
1
π

(
KIc

Sy

)2

(C = 1)

When a > at strength is limited by fracture, and when 0 < a < at yielding dominates strength. In other
words, materials with:

1. high KIc and low Sy implies long at (red line); therefore small cracks are not a problem. In fact,
the higher the fracture toughness, the lower the yield strength; and the material has a ductile-like
behavior.

 

 

aC
K


 Ic
c 

aC
K


 Ic
c   

c 

a 

Sy 

at
 

c 

a atat
 at

Sy 

2. low KIc and high Sy implies short at (blue line); therefore small cracks can be a problem. In fact,
the lower the fracture toughness, the higher the yield strength; and the material has a brittle-like

behavior.
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Thus when designing one should identify whether the yielding failure is more critical than fracture failure,
or fracture failure is more critical than yielding. If yielding failure is more critical, one must ensure safety
with the previously discussed three-dimensional theories of yielding failure. Figure 8.3 shows the safety
region.
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Sy 
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Figure 8.3: Safe region with a structure subject to an initial crack length 2a.
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8.4.6 Fracture Mechanics: Tables and Plots

Table 8.1: Plane strain fracture toughness and corresponding tensile properties for representative metals
at room temperature.

Toughness Yield Stress Ultimate Stress Elongation Reduced Area
KIc Sy Su 100εf % RA

Material MPa
√

m (ksi
√

in) MPa (ksi) MPa (ksi) % %

AISI 1144 66 (60) 540 (78) 840 (122) 5 7

ASTM A470-8 (Cr-Mo-V) 60 (55) 620 (90) 780 (113) 17 45

ASTM A517-F 187 (170) 760 (110) 830 (121) 20 66

AISI 4130 110 (100) 1090 (158) 1150 (167) 14 49

18-Ni maraging air melted 123 (112) 1310 (190) 1350 (196) 12 54

18-Ni maraging vacuum melted 176 (160) 1290 (187) 1345 (195) 15 66

300-M 650◦C temper 152 (138) 1070 (156) 1190 (172) 18 56

300-M 300◦C temper 65 (59) 1740 (252) 2010 (291) 12 48

2014-T651 24 (22) 415 (60) 485 (70) 13 —

2024-T351 34 (31) 325 (47) 470 (68) 20 —

2219-T851 36 (33) 350 (51) 455 (66) 10 —

7075-T651 29 (26) 505 (73) 570 (83) 11 —

7475-T7351 52 (47) 435 (63) 505 (73) 14 —

Ti-6Al-4V (annealed plate) 66 (60) 925 (134) 1000 (145) 16 34

Ti-6Al-4V (annealed bar) 106 (96) 820 (119) 895 (130) 10
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Applications of KI = CI Syy

√
π a to Design and Analysis: Stress intensity factors for three cases of

cracked plates under tension. An additional expression for (a) can be found in fracture mechanic books
and for (c) the load is centered on the uncracked width. The uncracked stress is defined as:

For cases (a) and (b): Syy =
P

2 b t
, and for case (c): Syy =

P

b t
 

P 

a 

b 

h 

t 

P 

a 

b 

h 

t 

P 

a 

b 

h 

t 

(a) (b) (c) 

Values for small α = a/b and limits for 10 % accuracy:

(a) CI = 1 (α ≤ 0.4) (b) CI = 1.12 (α ≤ 0.6) (c) CI = 1.12 (α ≤ 0.13)

General expressions for CI for any α are (also plotted in figure):

Case (a) CI =
1− 0.5α+ 0.326α

2

√
1− α

h

b
≥ 1.5 α = a/b

Case (b) CI =

{
1 + 0.122 cos

4
(
π α

2

)}√
2

π α
tan

(
π α

2

)
h

b
≥ 2.0 α = a/b

Case (c) CI = 0.265 (1− α)
4

+
0.857 + 0.265α

(1− α)
1.5

h

b
≥ 1.0 α = a/b
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Applications of KI to Design and Analysis: Stress intensity factors for three cases of concentrated load. Case

(c) is the ASTM standard compact specimen.

Fp =
C σ t

√
π a b

P

Values for small α = a/b and limits for 10 % accuracy:

(a) KI =
P

t
√
π a

(α ≤ 0.3) (b) 2.60
P

t
√
π a

(α ≤ 0.08)

Expressions for Fp for any α:

Case (a) Fp =

1.297− 0.297 cos

(
π α

2

)

√
sin (π α)

h

b
≥ 2.0 α = a/b

Case (b) Fp =
0.92 + 6.12α+ 1.68 (1− α)

5
+ 1.32α

2
(1− α)

2

√
π α (1− α)

1.5

h

b
→ large α = a/b

Case (c) Fp =
2 + α

(1− α)
1.5

(
0.886 + 4.64α− 13.32α

2
+ 14.72α

3 − 5.6α
4
)

α = a/b ≥ 0.2
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Stress intensities for a round shaft with a circumferential crack, including limits on the constant C for 10%

accuracy and expressions for any α. For torsion (c), the stress intensity is for the shear Mode III.

 

C 

C 

C 

C 

C 

C 

C 

C

KI = CI σxx
√
π a KIII = CIII τxz

√
π a α =

a

b
β = 1− α

Values for small α = a/b and limits for 10 % accuracy:

(a) axial load P : σxx =
P

π b
2 C =1.12 (α ≤ 0.12)

(b) bending moment M : σxx =
4M

π b
3 C =1.12 (α ≤ 0.12)

(c) torsion T : τxz =
2T

π b
3 C =1.00 (α ≤ 0.09)

Expressions for C for any β:

(a) axial load P : CI =
1

2 β
1.5

{
1.0 + 0.5 β + 0.375 β

2 − 0.363 β
3

+ 0.731 β
4
}

(b) bending moment M : CI =
3

8 β
2.5

{
1.0 + 0.5 β + 0.375 β

2
+ 0.3125 β

3
+ 0.273438 β

4
+ 0.537 β

5
}

(c) torsion T : CIII =
3

8 β
2.5

{
1.0 + 0.5 β + 0.375 β

2
+ 0.3125 β

3
+ 0.273438 β

4
+ 0.208 β

5
}

or in term of α:

(a) axial load P : CI =
1

(1− α)
1.5

{
1.1215− 1.5425α+ 1.836α

2 − 1.2805α
3

+ 0.3655α
4
}

(b) bending moment M : CI =
1

(1− α)
2.5

{
1.12423− 2.23734α+ 3.12117α

2 − 2.54109α
3

+ 1.10941α
4 − 0.201375α

5
}

(c) torsion T : CIII =
1

(1− α)
2.5

{
1.00085− 1.62047α+ 1.88742α

2 − 1.30734α
3

+ 0.492539α
4 − 0.078α

5
}
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8.4.7 Fracture Mechanics: Mixed Modes

Fracture under combined loading

In many cases, the structure is not only subjected to tensile stress σxx but also a contour shear stress
τxy. Thus, the crack is exposed to tension and shear which leads to mixed mode cracking; i.e., a mixture
of mode I and mode II.

Whenever the crack length 2a is small with respect to the web length b, the geometric factor C is
unity in formulas for the stress intensity factors from LEFM. That is, KI = σxx

√
πa and KII = τxy

√
πa,

where σxx and τxy are the normal and shear stresses in the structure if there were no crack present.

Mixed mode fracture is complicated by the fact that the crack extension takes place at an angle
with respect to the original crack direction. If a crack propagates in the direction of the original crack,
it is called self-similar crack growth. Under mixed mode fracture the crack growth is, in general, not
self-similar. Various mixed mode criteria for crack growth have been proposed based on experiments. A
common mixed mode criterion, at the initiation of the fracture, is

(
KI

KIc

)2

+
(
KII

KIIc

)2

= 1 (8.20)

where KIc is the fracture toughness for mode I loading only, and KIIc is the fracture toughness for mode
II loading only. The plane strain fracture toughness for mode I loading is usually readily available in
the literature, but the mode II fracture toughness is not usually available.

Tests for mode II are more difficult to design than for mode I. To estimate KIIc knowing the value of
KIc we use the maximum principal stress criterion2. The maximum principal stress criterion postulates
that crack growth will occur in the direction perpendicular to the maximum principal stress in the
vicinity of the crack tip. Using this criterion it is possible to estimate KIIc as

KIIc =

√
3

2
KIc = 0.866KIc (8.21)

The mixed mode criterion given by Eq. (8.20) is plotted in the following figure:
Under proportional loading, the stresses, and in turn the stress intensity factors, are proportional to the
magnitude of the total lift acting on the wing. The stress intensity factors at the 80% limit load specified
for the damage design condition determine the coordinates of the required strength in the plot, which is
represented by the ray 0− f .

The quantity f denotes the dimensionless required strength. The excess strength with respect to
fracture is represented by 1− f , and if it is divided by the required strength we get the margin of safety

2Pérez, Néstor, Fracture Mechanics, Kluwer Academic Publishers, Boston, USA, 2004 (ISBN 1–4020–7745–9)
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Fracture under combined loading

 

Web 1 in the wing is not only subjected to tensile stress  but also a contour shear stress . Thus, the crack is ex-

posed to tension and shear which leads to mixed mode cracking; i.e., a mixture of mode I and mode II. Since the 
crack length  is small with respect to the web length , the geometric factor is unity in 

formulas for the stress intensity factors from LEFM. That is,  and , where  and  

are the normal and shear stresses in the web if there were no crack present. Mixed mode fracture is complicated by 
the fact that the crack extension takes place at an angle with respect to the original crack direction. If a crack propa-
gates in the direction of the original crack, it is called self-similar crack growth. Under mixed mode fracture the 
crack growth is, in general, not self-similar. Various mixed mode criteria for crack growth have been proposed based 
on experiments. A common mixed mode criterion, and the one we will use in this assignment, is

 

(2)

 

where  is the fracture toughness for mode I loading only, and  is the fracture toughness for mode II loading 

only. The plane strain fracture toughness for mode I loading is usually readily available in the literature, but the 
mode II fracture toughness is not usually available. Tests for mode II are more difficult to design than for mode I. To 

estimate  knowing the value of  we use the maximum principal stress criterion

 

1

 

. The maximum principal 

stress criterion postulates that crack growth will occur in the direction perpendicular to the maximum principal stress 
in the vicinity of the crack tip. Using this criterion it is possible to estimate  (see Fig. 14.16 in Broek) as

 

(3)

 

The mixed mode criterion given by eq. (2) is plotted in the figure at right. 
Under proportional loading, the stresses, and in turn the stress intensity 
factors, are proportional to the magnitude of the total lift acting on the 
wing. The stress intensity factors at the 80% limit load specified for the 
damage design condition determine the coordinates of the required 
strength in the plot, which is represented by the ray .The quantity  
denotes the dimensionless required strength. The excess strength with re-
spect to fracture is represented by , and if it is divided by the re-
quired strength we get the margin of safety as

 

(4)

 

The crack is predicted not to propagate if , and the initiation of fracture is predicted if . The margin 

of safety is positive if , and the margin of safety is zero if .

 

1.  Broek, David, 

 

Elementary engineering fracture mechanics

 

, Martinus Nijhoff Publishers, Dordecht, The Netherlands, 1987, pp. 374-379.
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f
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  2
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as

MS =
1− f
f

=
σallowable

σrequired

− 1 = nSF − 1 (8.22)

f =

√(
KI

KIc

)2

+
(
KII

KIIc

)2

(8.23)

The crack is predicted not to propagate if 0 ≤ f < 1, and the initiation of fracture is predicted if f = 1.
The margin of safety is positive if 0 < f < 1, and the margin of safety is zero if f = 1.
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8.4.8 Plastic zone size in cracked metal plates
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The in-place stress are

σxx =
KI√
2πr

cos
θ

2

[
1− sin

θ

2
sin

3θ
2

]
+ Higher Order Terms (8.24)

σyy =
KI√
2πr

cos
θ

2

[
1 + sin

θ

2
sin

3θ
2

]
+ H.O.T. (8.25)

τxy =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ
2

+ H.O.T. (8.26)

KI√
2πr

= σ

√
a

2r

(
C σ
√
π a√

2π r
= C σ

√
a

2 r
and C = 1

)
(8.27)

@ θ = 0→ x = r, y = 0 σyy =
KI√
2πr
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8.4.9 Plastic zone

If we neglecting higher order terms in the above expansion, we can show that the stress distribution near
the crack tip is as follows

 

 

 
 

Plastic 
zone

 rp  2 a 

t 

x, r 

σyy 

σyy 

x, r 

σo 

rp
*

r
K
π

σ
2

I
yy =

where r∗p is the estimate of plastic zone and is defined as

r∗p =
1

2π

(
KIc

Sy

)2

(8.28)

Experiments and analysis show the plastic zone size rp > r∗p. Furthermore, we define plastic zone size as

rp = c

(
KI

Sy

)2

c = constant of proportionality (8.29)

The in-plane stresses near crack tip are very large, and εyy is large. The high stress region near the crack
indicates the plastic core at the crack tip wants to contract in the thickness direction due to very large
in-plane stresses (σxx, σyy, τxy). The bulk elastic material surrounding plastic core does not contract in
the thickness direction, or contracts a lesser amount, than the plastic core. The bulk elastic material
constrains the contraction of the plastic core.

Plastic zone is responsible to delay crack propagation, and as soon as the crack hits the elastic region
the plane will fracture.
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8.4.10 Plane stress and Plane strain

For plane stress σzz = 0 and the yielding occurs about Sy = Sy

r∗p = roσ

rp = 2 roσ =
1
π

(
KI

Sy

)2

where the constant of proportionality is

coσ =
1
π

For plane strain σzz = ν(σxx + σyy) and the yielding occurs about Sy =
√

3Sy:

r∗p = roε

rp = 2 roε =
1
π

(
KI√
3Sy

)2

=
1

3π

(
KI

Sy

)2

where the constant of proportionality is

coε =
1

3π

Note that roε =
roσ
3

8.4.11 Plasticity limitations on LEFM

Plastic zone size is characterized by KI only if first term in σyy dominates (recall H.O.T. were neglected
in the in-plane stress). If plasticity spreads further then KI cannot be used to characterize the plastic
zone size and the use of Linear Elastic Fracture Mechanics (LEFM) is invalid. In the following situations
KI cannot be used to characterize the stress field because the plastic zone is too large:

1. relative to crack

2. relative to uncracked ligament

3. relative to specimen height
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The requirement for plane strain on the use of LEFM is:

t, a, (b− a), h ≥ 2.5
(
KI

Sy

)2

Since 2 roσ > 2 roε, an overall limit for plane stress on the use of LEFM is:

a, (b− a), h ≥ 4
π

(
KI

Sy

)2

(8.30)

This must be satisfied for all three of a, (b − a), h. Note that KI → KIc only if it can be considered as
plane strain.
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8.4.12 Fracture toughness in plane strain and plane stress

Table 2.1 from the course textbook (as well of most books) provides plane strain fracture toughness KIc.
However, for plane strain fracture toughness KIc to be a valid failure prediction criterion, plane strain
conditions must exist at the crack tip. In other words, the material must be thick enough to ensure
plane strain conditions.

To better understand this concept, consider a plate. The plate thickness is the plastic core whose
diameter is equal to rp:

rp = c

(
KI

Sy

)2

Thick Plate Thin Plate

Plane Strain Plane Stress

σzz = ν (σxx + σyy) σzz = 0

εzz = 0 εzz = − ν

1− ν (εxx + εyy)

t1
rp
→ Large

t2
rp
→ Small

The bulk material constrains The bulk material provides

very thick core to large extent little constraint to core

t
(
KI

Sy

)2 > Q
t

(
KI

Sy

)2 < Q

where Q ' 2.5, Sy = Sy

Empirically it has been estimated that the minimum required material thickness for plane strain
condition is given by (transition thickness between plane strain and plane stress)

ts = 2.5
(
KIc

Sy

)2

For plane strain conditions the minimum material thickness t must be

t ≥ ts

If the material is not thick enough to meet the above criterion, plane stress better characterizes the state
of stress at the crack tip, and Kc, the critical stress-intensity factor for failure prediction under plane
stress conditions, may be estimated using a semiempirical relationship for Kc as a function of plane
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Kc 

Kc= KIc 
for plane 
strain 
 

t 
ts

to 

Plane stress 
dominates 

Plane strain 
dominates 

strain fracture toughness KIc and thickness t. This relationship is

Kc = KIc

√
1 +

1.4
t2

(
KIc

Sy

)4

= KIc

√
1 + 0.224

(
ts
t

)2

(8.31)

Note that when t = ts:
Kc = KIc

√
1 + 0.224 = 1.106KIc (8.32)

which means that the minimum value of the thickness to assume plane strain problem is within 10 %
accuracy for the plane strain fracture toughness, which seems to be commonly acceptable.

As long as the crack-tip plastic zone is in the regime of small-scale yielding, this estimation procedure
provides a good design approach. If the plastic zone size ahead of the crack tip becomes so large that
the small-scale yielding condition is no longer satisfied, an appropriate elastic-plastic fracture mechanics
procedure would give better results.

The plane strain fracture toughness KIc use in design, of even thin plates, is conservative. In other
words, KI is a minimum value for the material and the actual KIc may be higher, as a result an over-design
of the structure is obtained. Thus for design purposes, the plane strain fracture toughness KIc

is most commonly used. Different engineers and researchers decide on whether to use plane strain
or plane stress fracture toughness. Here for design purposes we will always use plane strain assumption.
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Example 8.5.

The panel of a structure is subject to tensile force P = 50 kN and is made of 2024-T351 

 

 

h 

2b 

h 

t 

2a 

P 

P 

Aluminum alloy and a crack is being propagated in the center. The length of the panel is
400 mm (h = 200 mm), the width 100 mm (b = 50 mm), and the thickness is 5 mm (t = 5
mm). The panel can be modeled as a plate.

(1) Determine if plane strain is a good approximation for this problem.

Let us determine if the plane strain fracture toughness is valid for our problem. From
Table 8.1:

KIc = 34 MPa
√

m Sy = 325 MPa

Then

ts = 2.5
(
KIc

Sy

)2

= 2.5
(

34
325

)2

m = 27.5 mm

The thickness of the panel is t = 5 mm and:

t � ts ⇒ (t = 5) < (ts = 27.5)

Since plane strain conditions are not satisfied region, the fracture toughness for our
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problem is:

Kc = KIc

√
1 + 0.224

(
ts
t

)2

= (34)

√
1 + 0.224

(
27.5

5

)2

= 94.8 MPa
√

m

(ts and t should have same units)

(2) Find the transition half crack length at.

For transition length
σc = Sy = 325 MPa

Recall that for design purposes we tend to be conservative, thus we use plane strain
fracture toughness:

KIc = 34 MPa
√

m

The first approach is to use the transition crack length approximation:

at =
1
π

(
KIc

Sy

)2

=
1
π

(
34
325

)2

= 0.00348 m = 3.48 mm

The second approach consists in not assuming C = 1. Thus,

KIc = CI σc
√
π at

Let us rearrange:
KIc

σc
√
π

= CI

√
at

Divide both sides by
√
b:

KIc

σc
√
π b

= CI

√
at√
b

= CI

√
αt

Note at = αt b. Thus the problem to solve is:

KIc

σc
√
π b

= 0.2640 = CI

√
αt

Since CI depends on αt from Eq. (8.19)

CI =
1− 0.5α+ 0.326α2

√
1− α

h

b
≥ 1.5 α = a/b

Thus, solve numerically:

0.2640 =
1− 0.5αt + 0.326α2

t√
1− αt

√
αt
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and choose the positive real solution:

αt = 0.0696

Thus the transition half crack length is: at = 0.00348 m = 3.48 mm.
As we can see the both techniques produce the same results. The main reason is that
the α� 0.4.

(3) Determine if the panel will break with a crack length of 20 mm.

Recall that a is half the crack length, thus a = 10 mm. Since, a > at we know that
failure will be governed by fracture and not by yielding. As a proof,

σyy

∣∣∣
true

=
P

2 (b− a) t
=

50000
2 (0.050− 0.010) (0.005)

= 125 MPa < Sy = 325 MPa

nSF =
Sy

σreq

=
325
125

= 2.6

Hence, indeed failure will not be predicted by yielding.
In order to verify for brittle fracture, we know that we need to calculate the safety
factor, which will tell us if the panel will fail:

nSF =
KIc

KI

where
KI = CI σyy

√
π a

The stress with no crack is:

σyy =
P

A
=

P

2 b t
=

50000
2 (0.050) (0.005)

= 100 MPa

In order to calculate CI, we need the ratio α = a/b (a = 10 mm):

α =
a

b
=

10
50

= 0.20

Now we use Eq. (8.19) or the provided chart:

CI = 1.04

(Since α < 0.4, we could have used the approximation CI ≈ 1.) Thus the apparent
fracture toughness is

KI = CI σyy

√
π a = 18.43 MPa

√
m

Recall that for design purposes we tend to be conservative, thus we use plane strain
fracture toughness:

KIc = 34 MPa
√

m

Thus the safety factor is

nSF =
KIc

KI

=
34

18.43
= 1.84
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The hood has a 84 % of margin of safety. Since MS > 0, the panel will not break.

If we were to use the plane stress fracture toughness

Kc = 94 MPa
√

m

Thus the safety factor is

nSF =
Kc

KI

=
94

18.43
= 5.14

The hood has a 414 % of margin of safety. Since MS > 0, the panel will not break. It
should be clear that the design is over-designed for this particular crack length. However,
in practice it is common to stick with plane strain assumption, although each design
engineer can make his/her own judgment.

(4) Determine if the panel will break with a crack length of 60 mm.

Recall that a is half the crack length, thus a = 30 mm. Since, a > at we know that
failure will be governed by fracture and not by yielding. As a proof,

σyy

∣∣∣
true

=
P

2 (b− a) t
=

50000
2 (0.050− 0.030) (0.005)

= 250 MPa < Sy = 325 MPa

nSF =
Sy

σreq

=
325
250

= 1.30

Hence, indeed failure will not be predicted by yielding.
In order to verify for brittle fracture, we know that we need to calculate the safety
factor, which will tell us if the panel will fail:

nSF =
KIc

KI

where
KI = CI σyy

√
π a

The stress with no crack is:

σyy =
P

A
=

P

2 b t
=

50000
2 (0.050) (0.005)

= 100 MPa

In order to calculate CI, we need the ratio α = a/b (a = 30 mm):

α =
a

b
=

30
50

= 0.60

Now we use Eq. (8.19) or the provided chart:

CI = 1.31

Thus
KI = CI σyy

√
π a = 39.8 MPa

√
m

Recall that for design purposes we tend to be conservative, thus we use plane strain
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fracture toughness:
KIc = 34 MPa

√
m

Thus the safety factor is

nSF =
KIc

KI

=
34

39.8
= 0.85

The hood has a negative 15 % of margin of safety, thus it will break due to fracture.

If we were to use the plane stress fracture toughness

Kc = 94 MPa
√

m

Thus the safety factor is

nSF =
Kc

KI

=
94

39.8
= 2.38

The hood has a 138 % of margin of safety. Since MS > 0, the panel will not break.
Interestingly, the design apparently has failed under the plain strain assumption. How-
ever, the real problem is a plane stress problem which indicated the contrary. Thus the
panel in reality has not fractured.

(5) Determine the load Pc for brittle fracture initiation if the critical crack length 2 ac = 30
mm.

The safety factor tells us if the panel will fail:

nSF =
KIc

KI

For fracture initiation nSF = 1 (at onset of failure or fracture initiation). Thus

KI =
KIc

nSF

= KIc

and
KI = CI σ

√
π a

Thus
KIc = CI σc

√
π ac

Stress with no crack present:

σyy =
Pc
A

=
Pc

2 b t
=

Pc
2 (0.050) (0.005)

= 0.002Pc MPa

Recall that for design purposes we tend to be conservative, thus we use plane strain
fracture toughness:

KIc = 34 MPa
√

m

Here σc = σyy = 0.002Pc MPa. Recall that a is half the crack length, thus a = 15 mm.
Let us rearrange:

Pc =
KIc

CI 0.002
√
π ac
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Note αc = ac/b:

αc = ac/b = 0.3 → CI =
1− 0.5αc + 0.326α2

c√
1− αc

= 1.051

Thus the critical load is Pc = 74.51 kN. Which means that a load of Pc = 74.51 kN will
initiate brittle fracture.
We should check for yielding failure:

σyy

∣∣∣
true

=
P

2 (b− a) t
=

74510
2 (0.050− 0.015) (0.005)

= 212.886 MPa < Sy = 325 MPa

Thus failure by yielding is not predicted.

(6) The failure of the panel is governed by yielding or fracture?

Since ac > at it will fail due to fracture and not yielding. Indeed for the first two cases
a > at, suggesting that failure will occur due to fracture.

End Example �
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8.4.13 Superposition of Combined Loading

Stress intensity solutions for combined loading can be obtained by superposition, that is, by adding the
contribution to K from the individual load components:

K = K1 +K2 = C1 σ1

√
π a+ C2 σ2

√
π a = (C1 σ1 + C2 σ2)

√
π a

Example 8.6.

A 20 mm diameter shaft made of Ti-6Al-4V has a circumferential surface crack of depth
a = 1.5 mm. The shaft is loaded with an eccentric axial force of P , which produces a
bending moment of P e, combined with a torque of T . Can we make another flight without
replacing the shaft? Note that KIIIc is unknown, and a reasonable and probably conservative
assumption is to employ a relationship of the form:

√(
KI

KIc

)2

+
(
KIII

KIIIc

)2

= f (8.33)

where KIc is the fracture toughness for mode I loading only, and KIIIc is the fracture toughness
for mode III loading only. The crack is predicted not to propagate if 0 ≤ f < 1, and the
initiation of fracture is predicted if f = 1. Assume that KIIIc = 0.5KIc. Take:

P = 150 N e = 5 mm T = 300 N–m

SOLUTION: First, we need to determine if failure is governed by yielding or fracture.
However, since it is a mixed more problem there no specific transition crack length equation;
hence, we will have to determine both fracture and yielding. Before we proceed let us obtain
the material properties from Table 8.1:

KIc = 106 MPa
√

m Sy = 820 MPa

and from the problem statement we can determine mode III fracture toughness

KIIIc = 0.5KIc = 53 MPa
√

m

We can continue the operation if the margin of safety bigger then zero. The margin of safety
is defined as

MS = nSF − 1
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and the safety factor is defined as

nSF =
1
f

or nSF =
Sy

σreq

Thus our goal is to find the margin of safety for yielding and fracture and ensure it is a
positive quantity.

1. YIELDING:
The margin of safety is defined as

MS = nSF − 1

and the safety factor is defined as

nSF =
Sy

σreq

Note that for the case of yielding we need to use a 3-dimensional theory of failure for
yielding. Thus let us use the distortional energy theory.

The loads at the cross-section are:

Nxx = P = 150 N Mzz = −P e = −0.75 N–m Mxx = T = 300 N–m

and the radius is b = 0.010 m. The true stresses at the critical point in the cross-sectional
element:

σxx = σxx

∣∣
bending

+ σxx

∣∣
axial

=
4M

π (b− a)3 +
P

π (b− a)2 = 2.21579× 106 Pa

τxz = τ
∣∣
torsion

=
2T

π (b− a)3 = 3.10989× 108 Pa

The state of stress is

σM =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




2.21579× 106 0 3.10989× 108

0 0 0
3.10989× 108 0 0


 Pa (8.34)

The stress invariants are

Iσ1 = 2.21579× 106 Pa

Iσ2 = −9.6714× 1016 Pa2

Iσ3 = 0

The von Mises stress is

σeq =
√
I2
σ1
− 3 Iσ2 = 5.38653× 108 Pa
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The yielding criteria for DE criterion is

σeq

Sy

=
1
nSF

→ nSF = 1.52232 → MS = 0.52232

Since MS > 0, it will not fail due to yielding.

2. FRACTURE:
The margin of safety is defined as

MS = nSF − 1

and the safety factor is defined as

nSF =
1
f

where

f =

√(
KI

KIc

)2

+
(
KIII

KIIIc

)2

, KI = CI σxx

√
π a, KIII = CIII τxz

√
π a

Stress intensity solutions for combined loading can be obtained by superposition:

KI = KI

∣∣
axial

+KI

∣∣
bending

= CI σxx

√
π a
∣∣∣
axial

+ CI σxx

√
π a
∣∣∣
bending

=
{
CI σxx

∣∣
axial

+ CI σxx

∣∣
bending

} √
π a

Thus nominal stress for the combined loading is obtained by superposition of two states
of stress for axial force P and moment Mzz, is expressed as

CI σxx = CI

∣∣
axial

σxx
∣∣
axial

+ CI

∣∣
bending

σxx
∣∣
bending

(8.35)

 

C 

C 

C 

C 

C 

C 

C 

C

The ratio of the length to bracket width is

a = 0.0015 m α =
a

b
= 0.15 β = 0.85
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Using expressions for C:

(a) axial load P : CIa =1.18329

(b) bending moment M : CIb =1.27729

(c) torsion T : CIII =1.19511

Thus nominal stresses at the critical point in the cross-sectional element are

σxx

∣∣
bending

=
4M
π b3

= 954930 Pa

σxx

∣∣
axial

=
P

π b2
= 477465 Pa

τxz = τ
∣∣
torsion

=
2T
π b3

= 1.90986× 108 Pa

Thus nominal stress for the combined loading is obtained by superposition of two states
of stress for axial force P and moment Mzz, is expressed as

CI σxx = CIa σxx
∣∣
axial

+ CIb σxx
∣∣
bending

= 1.78471× 106 Pa

CIII τxz = 2.2825× 108 Pa

KI = CI σxx

√
π a = 0.122514 MPa

√
m, KIII = CIII τxz

√
π a = 15.6686 MPa

√
m

Thus

f =

√(
KI

KIc

)2

+
(
KIII

KIIIc

)2

= 0.295637

and
nSF =

1
f

= 3.38253 → MS = 2.38253

Since MS > 0, it is save due to fracture.

Hence, it is safe to continue flying.

End Example �
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8.6 Suggested Problems

Problem 8.1.

The state of stress at a point is

σ =




−p τ τ

τ −p τ

τ τ −p




(8.36)

where p > 0 and τ > 0.

a) If the true strain at fracture is 20 %, find the maximum allowable values of p and τ , according to
each of the related failure criteria. Take Sy = 30 MPa.

b) If the true strain at fracture is 2 %, find the maximum allowable values of p and τ , according to
each of the related failure criteria. Take Sut = 200 MPa and Suc = 850 MPa.

�
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Problem 8.2.

A fracture toughness test was conducted on AISI 4340 steel having a yield strength of 1380 MPa. The
standard compact specimen used had dimensions, as defined in the figure below, b = 50.0 mm, t = 15.0
mm, h/b = 0.6 (h = 30.0 mm), and a sharp precrack to a = 26.0 mm. Failure occurred suddenly at
PQ = 15.0 kN.

1. Calculate KQ at fracture

2. Does this value qualify as a valid (plane strain) KIc value?

3. Estimate the plastic zone size at fracture

�
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Problem 8.3.

The state of stress at the most critical point of a structure is

σ =




10000 5000 −6000

5000 15000 8000

−6000 8000 4000




psi

Calculate the margin of safety based on:

a) The true strain at fracture is 20 %. Take Sy = 25 ksi.

b) The true strain at fracture is 2 %. Take Sut = 30 ksi and Suc = 120 ksi.

�
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Problem 8.4.

The state of stress at a point is

σ =




100 60 τ

60 −50 0

τ 0 75




MPa

a) If the true strain at fracture is 20 %, find the value of τ for a 12% margin of safety according to
each of the related failure criteria. Take Sy = 30 MPa.

b) If the true strain at fracture is 2 %, find the value of τ for a 12% margin of safety according to each
of the related failure criteria. Take Sut = 200 MPa and Suc = 850 MPa.

�
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Problem 8.5.

Static/Quasi-Static Loading on a Shaft:
The fundamental kinematic component of our mechanical universe is the wheel and axle. An essential
part of this revolute joint is the shaft. It is a good example of a static, quasi-static, and dynamically
loaded body. Application of the information developed to shafts is useful and necessary.

It is left for the student to show that critical state of stress at an element located on the surface of
a solid round shaft of diameter d subjected to bending, axial loading, and twisting is

σxx =
32M
π d3 +

4F
π d2 τxz = −16T

π d3

1. Determine the principal stresses and von Mises stress.

2. Under many axial force F is either zero or so small that its effect may be neglected. Thus F = 0.

a) If the true strain at fracture is 20 %, find the value of d for a 80% margin of safety according
to each of the related failure criteria. Take Sy = 30 ksi.

b) If the true strain at fracture is 2 %, find the value of d for a 80% margin of safety according
to each of the related failure criteria. Take Sut = 30 MPa and Suc = 120 MPa.

Take M = 1925 lb–in, T = 3300 lb–in.
�
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Problem 8.6.

A standard compact fracture specimen has the dimensions of b = 50 mm and t = 25 mm, and it is
subjected to an applied load of P = 22 KN.

1. Plot the intensity factor K versus crack length a for an interval of crack lengths a = 15 to 35 mm.

2. If the material is 2219-T851 aluminum, what is the longest crack that would permit the 22 kN
load to be applied without brittle fracture occurring?

�

Problem 8.7.

Data are given below for compact specimens of 7075-T651 aluminum in the same sizes as those
photographed in Figure 8.44. All had dimensions, as defined in figure 8.15(c), of b = 50.8 mm and
h = 30.5 mm, and initial sharp precracks and thickness as tabulated below. For each test:

1. Calculate KQ and determine where or not KQ qualifies as a valid (plane strain) KIc

2. Estimate the plastic zone size at KQ, using 2 roσ or 2 roε as applicable

3. Determine whether analysis by LEFM is applicable

4. Plot KQ versus thickness t and comment on the trend observed and its relationship to fracture
surfaces in Figure 8.44

AOE 3124 – Spring 2001
Aerospace Structures

HOMEWORK 4
Due Friday, March 2, 2001 by 12:30pm Page 1 of 1

Taken from ”Mechanical Behavior of Materials”, by N.E. Dowling, Prentice-Hall Inc, NJ, 1993

You will need Figure 8.15 from class handout (page 4) to solve this homework. Turn in all your
work stapled and place it in a box by Dr. Kapania’s office.

PROBLEM # 1 (10 PTS)

Problem 8.10 A standard compact fracture specimen, Fig 8.15(c) has the dimensions of b = 50
mm and t = 25 mm, and it is subjected to an applied load of P = 22 KN.

1. Plot the intensity factor K versus crack length a for an interval of crack lengths a = 15 to 35
mm.

2. If the material is 2219-T851 aluminum, what is the longest crack that would permit the 22 kN
load to be applied without brittle fracture occurring?

PROBLEM # 2. (20 PTS)

Read section 8.6 pp. 313-319 from Dowling’s text.

Problem 8.23 Data are given below for compact specimens of 7075-T651 aluminum in the same
sizes as those photographed in Figure 8.44. All had dimensions, as defined in figure 8.15(c), of b = 50.8
mm and h = 30.5 mm, and initial sharp precracks and thickness as tabulated below. For each test:

1. Calculate KQ and determine where or not KQ qualifies as a valid (plane strain) KIc

2. Estimate the plastic zone size at KQ, using 2 roσ or 2 roε as applicable

3. Determine whether analysis by LEFM is applicable

4. Plot KQ versus thickness t and comment on the trend observed and its relationship to fracture
surfaces in Figure 8.44

�
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Chapter 9

Failure Theories for Dynamic

Loading

Instructional Objectives of Chapter 9

After completing this chapter, the student should be able to:

1. Understand and solve structural problems under rapidly moving loads.

2. Understand and solve structural problems under time-dependent loads.

In the previous chapter we dealt exclusively with static loadings or, if time-varying, loads that are
gradually and smoothly applied, with all parts continually in contact. The fact is that most of the
mechanical engineering problems encounter dynamic loading. By dynamic loading we mean both impact
and cyclic loading.

What distinguishes static and dynamic loading is the time duration of the applied load:

(i) if the load is applied slowly, it is considered static;

(ii) if the load is applied rapidly, it is considered impact;

(iii) if the load is is time-dependent, it is considered cyclic.

Since for most problems, a fundamental knowledge in vibrations is crucial in the design of machine
components, a brief discussion of fundamental natural frequency is included here. This chapter is then
followed by impact dynamics and concludes with a throughout discussion of fatigue analysis in the design
of machine components.
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9.1 Vibration Analysis

Vibration may be defined as the oscillation or repetitive motion of a structure about an equilibrium
position. The equilibrium position is the position the structure will attain when the force acting on
it is zero. If the motion is the result of a disturbing force that is applied once and then removed, the
motion is known as natural (or free) vibration. If a force of impulse is applied repeatedly to a system,
the motion is known as forced vibration. Within both of the categories of natural and forced vibrations
are the subcategories of damped and undamped vibrations. If there is no damping (i.e., no friction), a
system will experience free vibrations indefinitely. This is known as free vibration and simple harmonic
motion.

Fundamental Natural Frequency

Here we will focus on the most important information free (natural) vibrational analysis provide us.
It is the information regarding the natural frequencies. Natural frequencies are frequencies at which
the structure’s enters into resonance. We have experienced as the washing machine might suddenly and
uncontrollably start shaking as a consequence of relocation of clothes within the machine, the automobile
starts to shake and as you increase or decrease the speed the shaking disappears. All these are examples
of resonances. As the system’s frequency enters in resonance with system’s natural frequency, it causes
loss of structural stiffness.

To better understand this topic, consider a simple spring-mass system:

 

k 

m 
k m 

The frequency at which the system will became in resonance is defined as

ω =

√
k

m
=
√

g

δst

where ω is the angular frequency of vibration and has units of radians per second, δst is the total static
deflection with units of length, and g the gravitational constant with units of acceleration. The simple
mass and ideal spring illustrated in the above Figure is an example of free vibration. After the mass
is displaced and released, it will oscillate up and down. Since there is no friction (i.e., the vibration is
undamped), the oscillations will continue forever.

In design, we want to increase or decrease the natural frequencies to avoid the structures’ frequencies
enter in resonance with the structure’s natural frequency. The problem reduces in trying to express all
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structures in terms of the above spring-mass system.

In free vibration analysis, besides the fundamental angular frequency of vibration (usually called as
the fundamental natural frequency) we define the linear frequency of vibration as:

ω = 2π f → f =
ω

2π

and the period of oscillation, the time to complete one cycle of oscillation, is defined as

T =
1
f

The units for the linear frequency are Hertz (Hz), 1/sec, and the units for the period are seconds.

An important concept used in calculating the behavior of a vibrating system is the static deflection,
δst.
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Example 9.1.

The steel right-angle support bracket with bar lengths L1 = 10 inches and L2 = 5 inches,
as shown in Figure, is to be used to support the static load P = 1000 lb. The load is
to be applied vertically at the free end of the cylindrical bar, as shown. Both bracket bar
centerlines lie in the same horizontal plane. If the square bar has side s = 1.25 inches, and
the cylindrical leg has diameter d = 1.25 inches.

a) The total static deflection is defined as:

δst =
P

keff

The load P is known and the problem reduces to find the overall spring rate of the
system. Note the square bar will be subject to both torsional and bending deflections,
while the cylindrical bar is subject to bending only. This can be modeled as spring in
series. Thus

keff =
1

3∑

i=1

1
ki

=
1

1
k1

+
1
k2

+
1
k3

where k1 is the spring rate caused by bending of the square bar, k2 the spring rate
caused by torsion through of the square bar reflected to point O through rigid body
rotation of cylinder bar length L2, and k3 is the spring rate caused by bending of the
cylindrical.

For the bending of the squared cross-section,

k1 =
P

y1
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Using tables,

y1 =
P L3

1

3EI
→ k1 =

P

y1
=

3EI
L3

1

For a squared cross-section:

I =
s4

12
Thus

k1 =
E s4

4L3
1

Next, for the torsion of the square cross-section,

k2 =
P

y2

where y2 = L2 θ. The total rotation angle is calculated as

θ =
P L2 L1

KxxG

Using this information:

k2 =
P

y2
=

P

L2 θ
=

P

L2

(
P L2 L1

KxxG

) =
KxxG

L1 L
2
2

Using tables for a squared cross-section:

Kxx = 2.25
(s

2

)4

= 0.14 s4

Thus

k2 =
0.14 s4G

L1 L
2
2

For the bending of the circular cross-section,

k3 =
P

y3

Using tables,

y3 =
P L3

2

3EI
→ k3 =

P

y3
=

3EI
L3

3

For a circular cross-section:

I =
πd4

64
Thus

k3 =
3π E d4

64L3
2
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Thus, the overall spring rate is

keff =
1

1
E s4

4L3
1

+
1

0.14 s4G

L1 L
2
2

+
1

3π E d4

64L3
2

=
E s4

L3
1




1

4 + 0.14
(
E

G

)(
L2

L1

)2

+
64
3π

(
L2

L1

)3 ( s
d

)4




Using tables,
E = 30× 106 psi G = 11.5× 106 psi

keff = 7.70× 103 lb
in

The total static deflection for the given structure is

δst =
P

keff

= 0.13 in = 0.010833 ft

b) Determine the fundamental natural frequency in rpm (revolutions per minute)

ω =
√

g

δst

where
g = 32.2

ft
sec2

and the total static deflection for the given structure, is

δst =
P

keff

= 0.13 in = 0.010833 ft

Hence

ω = 54.51887
rad
sec

( rev
2π rad

)(60 sec
min

)
= 520.62 rpm

c) Determine the period of oscillation when the structure enters in resonance with the
fundamental frequency in seconds.

The period of oscillation is defined as

T =
1
f

where f is the fundamental linear frequency defined as;

f =
ω

2π
= 8.676954

1
sec

= 8.676954 Hz
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Thus
T = 0.12 sec

End Example �
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9.2 Impact

Impact loading is also known as shock, sudden, or impulsive loading. We constantly experience this
types of loading: driving a nail with a hammer, hitting a baseball with a bat, automobile collisions,
wheels dropping into potholes, jumping of a diving board, a bird striking an aircraft jet engine blade
and the list goes on. Impact loads may be divided into three categories:

1. Rapidly moving loads of essentially constant magnitude, as produced by a vehicle crossing a bridge;

2. Suddenly applied loads, such as those in an explosion, or from combustion in an engine cycle.

3. direct-impact loads, as produced by a vehicle collision.

9.2.1 Assumptions

Although impact load causes elastic members to vibrate until equilibrium is reestablished, our concern
here is with only the influence of impact or shock force on the maximum stress and deformation within
the member. In engineering, the design of structures subject to impact loading may be far more compli-
cated that the approach shown in textbook. However, few approximation greatly simplify the problem
providing a qualitative guide in designing these structures. Here typical impact problems will use the
energy approach of the mechanics of materials theory along with the following common assumptions:

1. The displacements is proportional to the loads.

2. The material behaves elastically, and a static stress-strain diagram is also valid under impact.

3. The inertia of the member resisting impact may be neglected.

4. No energy is dissipated because of local deformation at the point of impact or at the supports.

Although there are many other types of impact loadings such as torsional loading, here we will limit to
loadings that cause axial and bending stresses only.

9.2.2 Freely falling body

c©2012 by Vijay K. Goyal. All Rights Reserved.



9.2. IMPACT 570

Consider the free-standing spring with a spring rate k, on which is dropped a body of mass m from
a height h. The total energy in the system may be expressed as

Ek + Ep = Es

where Ek, Ep, and Es is the total change in kinetic, potential, and stored energy from its initial position
to the instant of maximum deflection, respectively.

For a freely falling body, the initial velocity is zero and again zero at the instant of maximum
deflection of the spring (δmax) and thus the change in kinetic energy of the system is zero. Therefore,
the work done by gravity as its falls is equal to the resisting work done by the spring:

mg ηm (h+ δmax) =
1
2
k δ2

max
(9.1)

where ηm is a correction factor to account for the energy dissipation associated with the particular type
of elastic member being struck and may defined for various cases. If the dissipation is negligible, ηm will
be one. In general,

0 < ηm ≤ 1.0

and by taking ηm = 1.0 we are being conservative.

Let the total weight of the mass be W = mg, and ignore the dissipation for derivation, and rear-
ranging Eq. (9.1) we get:

W (h+ δmax) =
1
2
k δ2

max

2
W

k
(h+ δmax) = δ2

max

From the previous section, the deflection corresponding to a static force is simply the total static deflec-
tion, δst. Thus the above may be expressed as

2 δst (h+ δmax) = δ2
max

Now let us solve for the maximum deflection of the spring

δ2
max − 2 δst δmax − 2 δst h = 0

Using the quadratic equation as the maximum dynamic deflection is defined as

δmax =
− (−2 δst) +

√
(−2 δst)

2 − 4 (−2 δst h) (1)

2 (1)
= δst +

√
δ2
st + 2 δst h

= δst

(
1 +

√
1 +

2h
δst

)
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More generally let us define the impact factor as

Km1 = 1 +
√

1 +
2h
δst

ηm (9.2)

Thus the maximum dynamic deflection is defined as

δmax = Km1 δst (9.3)

9.2.3 Falling body with a velocity

Consider the free-standing spring with a spring rate k, on which is a body of mass m is approach
with a speed v from a height h. The total energy in the system may be expressed as

Ek + Ep = Es

where Ek, Ep, and Es is the total change in kinetic, potential, and stored energy from its initial position
to the instant of maximum deflection, respectively.

At impact the energy relationship is:

Ek = Ep →
1
2
mv2 = mg h→ h =

v2

2 g

we can use the relationships for the free falling object and substitute

h =
v2

2 g

Thus the impact factor will be

Km2 = 1 +

√
1 +

v2

δst g
ηm

(9.4)

and the maximum dynamic deflection is defined as

δmax = Km2 δst (9.5)
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9.2.4 Horizontally Moving Weight

Consider a mass (m) in horizontal motion with a velocity v, stopped by an elastic body. The total
energy in the system may be expressed as

Ek + Ep = Es

where Ek, Ep, and Es is the total change in kinetic, potential, and stored energy from its initial position
to the instant of maximum deflection, respectively.

Since the mass is moving horizontally the potential energy is zero and the velocity is zero at the
instant of maximum deflection of the spring (δmax). Thus

Ek = Es →
1
2
mηm v

2 =
1
2
k δ2

max

Rearranging
1
2
mηm g v

2 =
1
2
k g δ2

max →
W

k
ηm v

2 = g δ2
max → δ2

st ηm

v2

g δst
= δ2

max

Thus the maximum dynamic deflection can be written as

δmax = δst

√
ηm

v2

g δst
= Km2 δst

where the impact factor may be defined as

Km3 =

√
ηm

v2

g δst

9.2.5 Maximum Dynamic Load and Stress

Since
δmax =

Fmax

k

we can show the following relationships are true

Fmax = Km Fst and σmax = Km σst
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Example 9.2.

Freely falling object

W 
x h

 

L1 L2

k1 k2 

An engineer has designed a machine component that can be modeled as a S3 × 5.7 beam
on two identical springs, as shown in Figure. The 5 feet long beam is made of AISI 304
annealed steel. Just after the installation was completed, a 100 lb object 0.245 meters above
the structural component suddenly falls at a distance 2 feet from the left spring. The spring
rate are 100 lb/in. Using a dissipation correction factor of 0.95, determine if structural
component needs to be replaced.

First of all, AISI 304 annealed steel is a ductile material and thus we need to check for ductile
failure. Let us consider the distortional energy theory. From tables:

Syield = 35× 103 psi E = 28.0× 106 psi

For a S3× 5.7 beam:
Izz = 2.5 in4

From the problem

L1 = 2 ft = 24 in L2 = 3 ft = 36 in L = L1 + L2 = 60 in

h = 0.245 m = 10 in ηm = .95

Assume that the impact load is uniform at the location of impact at the beam.

The maximum static deflection for the beam only is:

δst,beam =
W L1 L2 (L1 + 2L2)

√
3L1 (L1 + 2L2)

27E Izz L
= 0.00608098 in

and occurs at

x =

√
L1 (L1 + 2L2)

3
= 27.71 in
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The static deflection for the supporting springs only is:

δst,springs =
W

k1 + k2
= 0.50 in

The total static deflection is:

δst = δst,beam + δst,springs =
W L1 L2 (L1 + 2L2)

√
3L1 (L1 + 2L2)

27E Izz L
+
W

2 k
= 0.506081 in

The impact factor for freely falling object is

Km1 = 1 +
√

1 +
2h
δst

ηm = 7.20833

Thus the maximum deflection is

δmax = Km δst = 3.65 in

and the maximum load is:
Wmax = KmWst = 720.833 lb

As we can see from the figure the maximum bending moment will occur at the point of the
load:

Mmax = −Wmax L1 L2

L
= −10380 lb-in

and the maximum bending stress will occur at an element at the top y = c = 0.9+0.63 = 1.53
in (from tables for a S3× 5.7 beam):

σxx = −Mmax c

Izz
= 6352.56 psi

Using the distortional energy,
σeq = 6352.56 psi

In order to determine if it is safe, we need to find the factor of safety:

nSF =
Syield

σeq

= 5.50959

and the margin of safety is 450%. Thus there is no need to change the structural component.

End Example �
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Example 9.3.

Object falling with a speed
 
 

E, A 

v 

A 5-ton elevator is supported by a titanium cable with an effective modulus of elasticity of
18× 106 psi and a cross-sectional area A. The titanium has a true strain at fracture higher
than 5% in 2 inches. As the elevator is descending at a constant speed of 400 fpm, an accident
causes the top of the cable, 70 ft above the elevator, to stop suddenly. What area A will
ensure a 150% safety? For the design area what will be the maximum elongation the cable
will experience. Be conservative.

For a titanium cable:
Syield = 128× 103 psi

For a 150% margin of safety,

nSF = 2.5 → σall =
Syield

nSF

= 51200 psi

From the information provided:

W = 5 ton = 10000 lb L = 70 ft = 840 in v = 400 ft/min = 80 in/s

Assume: the mass of the cable is negligible (ηm = 1), neglect any stress concentrations, ignore
damping due to internal friction within the cable, and the cable responds elastically to the
impact.

The static deflection is:
δst =

W L

EA
=

7
15A

The impact factor is:

Km2 = 1 +

√
1 +

v2

δst g
ηm = 1 +

√
1 + 426.254A
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The maximum load is

Wmax = KmWst = 10000 + 10000
√

1 + 426.254A lb

The maximum axial stress is:

σxx =
Wmax

A
=

10000 + 10000
√

1 + 426.254A
A

psi

Since we want to be conservative and the material is ductile, let us use the maximum shear
stress theory:

σ1 =
10000 + 10000

√
1 + 426.254A

A
, σ2 = σ3 = 0

τmax =
5000 + 5000

√
1 + 426.254A
A

Thus,

2 τmax =
Sy

nSF

= σall → 10000 + 10000
√

1 + 426.254A
A

= 51200

Solving for area:
A = 16.65 in2

A cross-sectional area of 16.65 in2 will ensure a 150% margin of safety. Thus the maximum
elongation the cable will experience is:

Km2 = 85.25 δst = 0.028 in

δmax = Km δst = 2.39 in

End Example �
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Example 9.4.

Object moving horizontally

 
stretched tight 

v 

k, L

A car became stuck in sand at a waterfront. A pickup truck, of 1400-kg mass, has offered
to help by attempting to jerk the stuck vehicle back onto the road using a 5-m steel tow
cable of stiffness k = 5000 N/mm. The traction available to the pickup truck prevented it
from exerting any significant force on the cable. With the aid of a push from bystanders, the
rescue car was able to back against the stuck car and then go forward and reach a speed of 4
km/h at the instant the cable became taut (stretched tight). If the cable is attached rigidly
to the masses of the automobiles, estimate the maximum impact force that can be developed
in the cable, and the resulting cable elongation.

From the information provided:

k = 5000 N/mm = 5× 106 N/m L = 5 m

W = (1400 kg)(9.81 m/s2) = 13734 N v = 4 km/hr = 1.11 m/s

Assume: the mass of the rope is negligible (ηm = 1), neglect any stress concentrations, the
rope is attached rigidly to the mass of the cars, ignore damping due to internal friction within
the rope, and the rope responds to the impact elastically.

The static deflection is:
δst =

W

k
= 0.00275 m

The impact factor is:

Km3 =

√
v2

δst g
ηm = 6.76

Thus the maximum impact for is:

Fmax = KmW = 92.6 kN

The maximum cable elongation is

δmax = Km δst = 0.00186 m
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End Example �
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9.3 Fatigue

Fatigue was first introduced in 1839 by Poncelet of France. Fatigue fractures begin with minute cracks at
critical areas and propagate. Final fracture is largely “brittle” fracture and results from repeated plastic
deformation. Fatigue failue may occur at stress levels far below the yield strength after thousands or
millions of cycles. Strengthening vulnerable locations is often as effective as making the entire part from
a stronger material. Most of the work depends on experimental data.

9.3.1 Cyclic Stresses

A cyclic stress is a time-dependent function where the variation is such that the stress sequence repeats
itself. The cyclic stresses may be axial (compressive or tensile), flexural (bending), or torsional (twisting).
There are several parameters used to characterize fluctuating cyclic stresses.

First, let us define the life cycle with N . Note that one stress cycle (N = 1) constitutes a single
application and removal of a load and then another application and removal of the load in the opposite
direction.

 

σmax

1 cycle
0

σmin

σ 

t 

Thus N = 1/2 means the load is applied once and then removed, which is the case with the simple
tension test.

The mean stress σm is the average of the maximum and minimum stresses in the cycle:

σm =
σmax + σmin

2

The stress range σr is the difference range of the maximum and minimum stresses in the cycle:

σr = ∆σ = |σmax − σmin|

The stress amplitude σa is the one-half of the stress range in the cycle:

σa =
σr

2
=
∣∣∣∣
σmax − σmin

2

∣∣∣∣
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The stress ratio Rs is the ratio of minimum to maximum stress amplitudes:

Rs =
σmin

σmax

The amplitude ratio Aa is the ratio of the stress amplitude to the mean stress:

Aa =
σa

σm

=
σmax − σmin

σmax + σmin

=
1−Rs

1 +Rs

The maximum and minimum stresses may also be calculated using:

σmax = σm + σa σmin = σm − σa

Fluctuating

 

σo2 

σa 
σr 

σmax

σo1

σm 
σa 

σmin

0 t 

σ 

σr = 2σo σa = σo 

-σo1
σm 

0

σa 
σr 

σa 

-σo2 

t 

σ 

σmax

σmin

σr = 2σo σa = σo
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Fully Reversed

It is also known as zero-mean or completely reversed. 

σm 

σa 
0

-σo 

t σr 

σmin

σo σmax

σa 

σ 

σmax = σo σmin = −σo σm = 0 σr = 2σo σa = σo

Aa =∞ Rs = −1

Repeated (Tension)
 

σm 
σa 

0

2σo 

σa σr 

σmin

σmax

t 

σ 

σmax = 2σo σmin = 0 σm = σo σr = 2σo σa = σo

Aa = 1 Rs = 0
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Repeated (Compression)

 

0

σa 

σ 

σa 

-2σo 

σr 

σmin

σmax
t 

σm 

σmax = 0 σmin = −2σo σm = −σo σr = 2σo σa = σo

Aa = −1 Rs =∞

9.4 Alternate and mean stresses

Alternate state of stress is found by determining the alternate loads and find the stresses for these loads:

Ta =
Tmax − Tmin

2
→ τa

∣∣∣
torsion

Va =
Vmax − Vmin

2
→ τxy,a

∣∣∣
shear

Ma =
Mmax −Mmin

2
→ σxx,a

∣∣∣
bending

Pa =
Pmax − Pmin

2
→ σxx,a

∣∣∣
axial

Mean state of stress is found by determining the mean loads and find the stresses for these loads:

Tm =
Tmax + Tmin

2
→ τm

∣∣∣
torsion

Vm =
Vmax + Vmin

2
→ τxy,m

∣∣∣
shear

Mm =
Mmax +Mmin

2
→ σxx,m

∣∣∣
bending

Pm =
Pmax + Pmin

2
→ σxx,m

∣∣∣
axial
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Most real design situations involve fluctuating loads that produce multiaxial states of cyclic stress:

σa =




σxx,a τxy,a τxz,a

τyx,a σyy,a τyz,a

τzx,a τzy,a σzz,a




σm =




σxx,m τxy,m τxz,m

τyx,m σyy,m τyz,m

τzx,m τzy,m σzz,m




A consensus has not yet reached on the best approach to predict failure under multiaxial cyclic stress.
However, the following techniques will be used in this book.

9.4.1 Ductile materials

Although there is little multiaxial fatigue data available, for ductile materials, the distortion energy
multiaxial fatigue failure theory is the best theory to use. It consists in determining the von Mises stress
for both mean state of stresses, σm, and alternate state of stresses, σa:

σa = σeq,a =

√
(σ1,a − σ2,a)

2 + (σ2,a − σ3,a)
2 + (σ3,a − σ1,a)

2

2

=

√
(σxx,a − σyy,a)

2 + (σyy,a − σzz,a)
2 + (σzz,a − σxx,a)

2 + 6
(
τ2
xy,a + τ2

yz,a + τ2
xz,a

)

2

=
√
I2
σ1,a
− 3 Iσ2,a

σm = σeq,m =

√
(σ1,m − σ2,m)2 + (σ2,m − σ3,m)2 + (σ3,m − σ1,m)2

2

=

√
(σxx,m − σyy,m)2 + (σyy,m − σzz,m)2 + (σzz,m − σxx,m)2 + 6

(
τ2
xy,m + τ2

yz,m + τ2
xz,m

)

2

=
√
I2
σ1,m
− 3 Iσ2,m

The equivalent maximum and minimum stresses may be found by:

σmax = σm + σa σmin = σm − σa

9.4.2 Brittle materials

Although there is little multiaxial fatigue data available, for brittle materials, the maximum normal
multiaxial fatigue failure theory is the best theory to use. It consists in determining the maximum stress
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for both mean and alternate state of stresses:

σa = σ1,a and σm = σ1,m

The equivalent maximum and minimum stresses may be found by:

σmax = σm + σa σmin = σm − σa

9.5 Fatigue Stress Concentration Factor

The stress concentration factor is a function of the type of discontinuity (hole, fillet, groove), the geometry
of the discontinuity, and the type of loading being experienced. Some materials are not as sensitive to
notches as implied by the theoretical stress concentration factor. For these materials a reduced value of
Kt maybe used Kf.

Not all ductile materials are ductile under all conditions, many become brittle under some circum-
stances. The most common cause of brittle behavior in materials normally considered to be ductile is
being exposed to low temperatures. For ductile materials subjected to cyclic loading the stress concen-
tration factor has to be included in the factors that reduce the fatigue strength of a component.

Ken Youssefi MAE dept., SJSU 23 

Fatigue Stress Concentration Factor, Kf 

Steel 

Figure 9.1: Notch-Sensitivity Factors for Steels.
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MAE dept., SJSU 24 

Fatigue Stress Concentration Factor, Kf for Aluminum 

MAE dept., SJSU 25 

Fatigue Stress Concentration Factor, Kf for Aluminum 

Figure 9.2: Notch-Sensitivity Factors for Aluminum..
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Some materials are not as sensitive to notches as implied by the theoretical stress concentration
factor. For these materials a reduced value of Kt is used, that is Kf. In these materials the maximum
stress is:

σt = Kf σN (9.6)

In the Stress-Life approach, the effect of notches is accounted for by the fatigue notch factor Kf (also
known as the fatigue stress concentration factor). The fatigue notch factor relates the unnotched fatigue
strength (the endurance limit for ferrous metals) of a member to its notched fatigue strength:

Kf =
Se (unnotched)
Se (notched)

In almost all cases, the fatigue stress concentration is less than the stress concentration factor, and is
less than 1:

1 ≤ Kf ≤ Kt

The static stress concentration factor Kt can be related to the fatigue notch factor Kf. Unlike the stress
concentration factor Kt, the fatigue notch factor Kf is dependent on the type of material and notch size.
To account for these additional effects, a notch sensitivity factor q was developed

q =
Kf − 1
Kt − 1

(9.7)

where q is the notch sensitivity factor and ranges between 0 (Kf = 1) and 1 (Kf = Kt). This will be
discussed later when working with fatigue analysis. Depending the case we are working with is the stress
concentration factor we choose. A number of researchers have proposed analytical relationships for the
determination of q, based on correlation to experimental data. The most common relationships are those
proposed by Peterson and Neuber. Both the Peterson and Neuber relations are empirical curve fits to
data. When used for analysis there is little difference to the approaches. Both methods show that q is
related to material, notch geometry, and notch size. These are given in Figs. 9.1 and 9.2.

Different authors have chosen different approaches in solving these problems. Here, we choose the
following methodology. Recall, for static loading the geometric stress concentration factor Kt is used for
brittle materials but taken as one for ductile materials. For fatigue loading the fatigue stress concentra-
tion factor Kf may be used, depending whether it is ductile or brittle.

9.5.1 Ductile materials

Here, the following approach will be used:

a) When the plastic strain at the notch can be avoided, apply the fatigue stress concentration factor to
the alternate stresses (Kf) and for the mean stress use the following approach. There is the method by
Dowling for ductile materials, which, for materials with a pronounced yield point and approximated
by an elastic-perfectly-plastic behavior model, quantitatively expresses the steady stress component
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stress-concentration factor Kfm as

No yielding: Kfm = Kf Kf |σmax,nom| < Sy

Initial yielding: Kfm =
Kf −Kf σa,nom

|σmax,nom|
Kf |σmax,nom| > Sy

Reversed yielding: Kfm = 0 Kf |σmax,nom − σmin,nom| > 2Sy

where σmax,nom and σmin,nom are the fluctuating maximum and minimum nominal stresses, and σa,nom

and σm,nom are the alternate and mean nominal stresses.

b) When the plastic strain at the notch cannot be avoided, apply fatigue stress concentration factor to
the alternate stress (Kf) and take it as one for the mean stresses (Kfm = 1, conservative approach).

If no information is known on the plastic zone, then we use (a) as our standard.

9.5.2 Brittle materials

For brittle materials a stress raiser increases the likelihood of failure under either steady or alternating
stresses, and it is customary to apply a stress concentration factor to both. Thus, apply the fatigue stress
concentration factor Kf to the alternating component of stress for ductile materials. In brittle materials,
apply the geometric stress concentration factor Kt to the mean components of stress and fatigue stress
concentration factor Kf to the alternating components of stress. Thus

Kfm = Kt

9.5.3 Summary

In general,

σt,a

∣∣
axial

= Kfa σN,a

∣∣
axial

σt,a

∣∣
bending

= Kfb σN,a

∣∣
bending

τt,a
∣∣
torque

= Kfs τN,a

∣∣
torque

σt,m

∣∣
axial

= Kfma σN,m

∣∣
axial

σt,m

∣∣
bending

= Kfmb σN,m

∣∣
bending

τt,m
∣∣
torque

= Kfms τN,m

∣∣
torque

and only the mean fatigue stress-concentration factor Kfm changes for each material type.
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9.6 Stress versus Life Curves (S–N Diagrams)
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Figure 9.3: Typical S-N diagram for ferrous materials.

Fatigue test data are frequently presented in the form of a plot of fatigue strength S or completely
reversed stress versus the number of cycles to failure or fatigue life N with a semi-logarithm scale; that
is S–log N , as shown in Fig. 9.3.

9.6.1 Fatigue Regimens

The S–N diagram has two basic regimens and these are: low-cycle fatigue and high-cycle fatigue. The
low-cycle fatigue is any loading that causes failure below approximately 1000 cycles:

100 ≤ N ≤ 103

High-cycle fatigue is concerned with failure corresponding to stress cycle greater than 1000 cycles:

N > 103

9.6.2 Endurance Stress and Theoretical Fatigue Strength

Figure 9.4 shows that ferrous and nonferrous materials behave differently. In the case of ferrous materials,
a “knee” occurs in the S–N diagram, and beyond this knee failure will not occur, no matter how great
the number of cycles. The strength corresponding to this knee is called the endurance limit S′e, or the
fatigue limit. The endurance limit is usually defined as the maximum stress a material can withstand
“indefinitely” without fracture:

S′e : N ≥ Ne where Ne →∞
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Figure 9.4: Two types of material response to cyclic loading.

The endurance limit is therefore stated with no associated number of cycles to failure. The relationship
for the endurance limit for common ferrous alloys are:

steels : @N = 106, Se
′ =

{
0.5Sut, for Sut < 200 ksi (1400 MPa)
100 ksi (700 MPa), for Sut ≥ 200 ksi (1400 MPa)

most irons : @N = 106, Se
′ =

{
0.4Sut, for Sut < 60 ksi (400 MPa)
24 ksi (160 MPa), for Sut ≥ 60 ksi (400 MPa)

Nonferrous materials, on the other hand, often exhibit no endurance limit. For some nonferrous
materials, approximations for an endurance limit S′e, using experimental data, has been suggested.
Thus, for nonferrous materials we use the fatigue strength S′N which is the fatigue limit at N cycles. The
relationship for the theoretical fatigue strength for common nonferrous alloys are:

aluminum : @N = 5× 108, SN
′ =

{
0.4Sut, for Sut < 48 ksi (330 MPa)
19 ksi (130 MPa), for Sut ≥ 48 ksi (330 MPa)

copper : @N = 108, SN
′ =

{
0.4Sut, for Sut < 60 ksi (400 MPa)
14 ksi (100 MPa), for Sut ≥ 40 ksi (280 MPa)

Note that aluminum and copper alloys do not have an endurance limit, but a theoretical fatigue strength.
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9.6.3 Modified Endurance Stress

Most of the data for S′e is available for a single specimen test. If we want to use for other parts we need
to use the correct value for Se. Thus in practice we do not use the endurance limit S′e, but the modified
endurance limit:

Se = k∞ S′e

or the fatigue limit at N cycles and is also modified as follows

SN = k∞ S′N

The factor k∞ accounts for the various influencing factors such as size, surface condition, reliability,
loading, temperature, among others. This factor is expressed as the product of

k∞ = kL kt ksr kr kg ke

(a) Loading factor

To take into account the low-cycle effects, the loading factor is used:

kL =





1.00 bending
0.85 axial
0.59 torsion
1.00 torsion combined with other stresses

(b) Temperature factor

When operating temperatures are below room temperature, brittle fracture is a strong possibility and
should be investigated. When operating temperatures are higher than room temperature, yielding should
be investigated first because yield strength drops off rapidly with temperature.

kt =
operating temperature

room temperature
=





1, for T ≤ 450◦C (840◦F)

1− 0.0058 (T − 450), for 450◦C < T ≤ 550◦C
1− 0.0032 (T − 840), for 840◦C < T ≤ 1020◦C

(c) Surface finish factor

Most parts of a machine do not usually have a high-quality surface finish (highly polished). Thus the
surface finish factor incorporates the finish effects on the process used to generate the surface. The
surface finish factor ksr can be obtained using charts or analytically by

ksr = e Scut
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where Sut is the ultimate tensile strength of material and the coefficients e and c are defined as

Manufacturing Factor e Exponent
Process Sut [MPa] Sut [ksi] c

Grinding 1.58 1.34 -0.085

Machining or cold drawing 4.51 2.70 -0.265

Hot rolling 57.7 14.4 -0.718

As forged 272.0 39.9 -0.995

For mirror-polished surfaces take ksr = 1.0.

(d) Reliability factor

Most of the data is empirical however we are often interested in the reliability of the probability of
survival, that is the probability of surviving to the life indicated at a particular stress. Thus the
reliability factor kr may be expressed as

kr = 1− 0.08X

where X is the transformation variate obtained from any table for a cumulative distribution function.
However, the reliability factor for the most common probabilities of survival corresponding to 8% stan-
dard deviation of the endurance limit is

Probability of Transformation Reliability factor
Survival % Variate X kr

50 0.000 1.000
90 1.288 0.897
95 1.645 0.868
99 2.326 0.814
99.9 3.091 0.753
99.99 3.719 0.702
99.999 4.265 0.659
99.9999 4.753 0.620
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(e) Gradient size factor

Choose kg as follows:

Bending Axial Torsion

d < 0.4′′ or 10 mm 1 [0.7 0.9] 1

0.4′′ < d < 2′′ or 50 mm 0.9 [0.7 0.9] 0.9

d > 2′′ or 50 mm [0.6 0.75] 1 [0.6 0.75]

If combined load usually choose 0.9, but in some cases we may choose 1.0.

(f) Miscellaneous Factors

1. Residual stresses

2. Corrosion: There is no fatigue limit

3. Frettage corrosion: keε[0.24 0.90]

4. Operating speed: ke ∼ 0.9

Never use a correction factor greater than one. If any factor gives you a value higher than one, set it to
one. Only residual surface stress and operating speed may be higher than one.

9.6.4 Plotting S-N Diagrams
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N = 100 = 1, S = Sut

N = 103, Sf = f Sut

N = Ne = 10ge , S = Se

For the case of pure bending use f = 0.9, for the case of pure axial loading use f = 0.75, and for the
case of pure torsion use f = 0.72. For combined loading take f may be approximated as follows:

f = 0.93 Sut = 60 ksi

f = 0.86 Sut = 90 ksi

f = 0.82 Sut = 120 ksi

f = 0.77 Sut = 200 ksi

Stress-Cycle relationship

The common empirical formula relating fatigue strength and number of cycles to failure is

SN = aN b (9.8)

The constants a and b are derived from (9.8):

log (SN) = log
(
aN b

)

log (SN) = log (a) + log
(
N b
)

log (SN) = log (a) + b log (N)

Now for high-cycle fatigue use that fact that

N = 103, Sf = f Sut

N = Ne = 10ge , S = Se

to obtain two equations “linear” equations in a and b:

log (Sf) = log (a) + b log
(
103
)

log (Se) = log (a) + b log (10ge)
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Hence we have two equations and two unknown and the constants may be expressed as

b =
1

3− ge

log
(
Sf

Se

)
a =

Sf

103 b
=
f Sut

103 b
= (f Sut)

ge
ge−3 (Se)

3
3−ge

Typically for ferrous materials ge = 6:

b = −1
3

log
(
Sf

Se

)
a =

Sf

103 b
=
f Sut

103 b
= (f Sut)

2 (Se)
−1

In the S-N diagram, the fatigue stress is also the alternating stress. Thus for a given number of cycles
103 < N ≤ Ne, the fatigue stress may be evaluated as follows:

S = aN b

Also, to obtain the number of cycles for a given alternating stress:

S = aN b → N =
(
S

a

) 1
b

Finite and Infinite Life

Infinite life begins for stresses bellow the endurance limit, that is

Seq < Se

When designing with materials that exhibit no endurance limit, the design will always be for finite life.

Recall, that for nonferrous materials we cannot design for infinite life.

9.6.5 Fatigue Theories of Fatigue Failure
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Goodman Criterion

Among the fatigue theories, the Modified Goodman theory is the one widely used. The Modified Good-
man criterion, which gives reasonably good results for brittle materials while conservative values for
ductile materials is a realistic scheme for most materials. Goodman criterion is widely used because:

1. it is a straight line and the algebra is linear and easy.

2. it is easily graphed, every time for every problem.

3. It reveals subtleties of insight into fatigue problems.

4. Answers can be scaled from the diagrams as a check on the algebra.

For ductile materials, the fatigue equivalent stress is

Seq =
Sa

1− Sm

Sut

for σm ≥ 0 and σmax ≤ Sy

Seq = Sy for σm ≥ 0 and σmax ≥ Sy

For brittle materials, the fatigue equivalent stress is

Seq =
Sa

1− Sm

Sut

In the above expressions:
Sa = nSF σa Sm = nSF σm

where nSF is the safety factor. The maximum and minimum stresses are

Smax = Sm + Sa Smin = Sm − Sa

Soderberg Criterion

Among the fatigue theories, the Soderberg theory may the also be used for ductile materials. It gives
conservative values for ductile materials. The criteria states that the fatigue equivalent stress is

Seq =
Sa

1− Sm

Syt

In the above expressions:
Sa = nSF σa Sm = nSF σm

where nSF is the safety factor. The maximum and minimum stresses are

Smax = Sm + Sa Smin = Sm − Sa
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9.7 Procedure for Multiaxial Fatigue Analysis

If we want to determine the product life:

1. Calculate the mean and alternate loads.

2. Determine the mean and alternate state of stresses.

3. Depending on the type of material (brittle or ductile), determine the equivalent mean and alternate
stresses. (Use factor of safety). Calculate the maximum and minimum stresses.

4. Use Goodman or Soderberg theory to determine the equivalent design stress.

5. Use S-N Diagram to determine remaining life.

If we want to design given the product life:

1. Calculate the mean and alternate loads.

2. Determine the mean and alternate state of stresses.

3. Depending on the type of material (brittle or ductile), determine the equivalent mean and alternate
stresses. (Use factor of safety). Calculate the maximum and minimum stresses.

4. Use S-N Diagram to determine the equivalent stress.

5. Use Goodman or Soderberg theory to determine the design stress.

Figure 9.5 shows are life cycles and failure criterions are related in fatigue analysis. Always verify for
yielding.
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Figure 9.5: Determine life cycle for static fatigue analysis or means/alternate stresses.
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Example 9.5.

Life Cycle Example: Brittle Material

The Class 60 gray cast-iron mounting arm is subjected to tension and torsion, as shown in
Figure. It takes two minutes for completion of a full cycle and operates for only eight hours a
day. The Class 60 gray cast iron has an ultimate strength of 60 ksi in tension, and elongation
in 2 inches of less than 0.5%. The design safety factor is 1.5.

(a) The arm is subject to a static axial force of P = 50000 lb and a static torsional moment
of T = 18000 lb–in. For the given dimensions, could the arm support the specified
loading without failure?

(b) During a different mode of operation, the axial force P cycles fluctuates from 50000 lb
in tension to 10000 lb in compression, and the torsional moment remains zero at all
times. What would be the estimated days of life for this mode of operation for a 99%
reliability?

Solution:

(a) The arm is subject to a static axial force of P = 50000 lb and a static torsional moment
of T = 18000 lb–in. For the given dimensions, could the arm support the specified
loading without failure?

From the problem it is known:
Sut = 60 ksi

Assuming the state of stress at the most critical location of the shaft’s cross-section
occurs for an element located at the top:

σA =




σxx τxy τxz

τyx σyy τyz

τzx τzy σzz




Thus:
σxx = σxx

∣∣
axial

=
4P
π d2 psi
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and
τxz = τ

∣∣
torsion

=
16T
π d3 psi

Thus

σ =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




4P
π d2 0

16T
π d3

0 0 0

16T
π d3 0 0




psi

For the static conditions given, under combined loads of axial tension and torsional
shear, the critical point will be at the root of the 0.125′′ radius fillet. Stress concentration
factors must be separately determined for the tensile load and the torsional load. Thus
using figures for stress concentration factor for a shaft with a fillet subject to axial and
torsion (from stress concentration charts):

d = 2 in r = 0.125 in → r

d
= 0.063

d = 2 in D = 2.25 in → D

d
= 1.13

Thus
Kta = 1.8 Kts = 1.15

Thus the state of stress is modified as follows

σ =




Kta

4P
π d2 0 Kts

16T
π d3

0 0 0

Kts

16T
π d3 0 0




=




28647.9 0 13178

0 0 0

13178 0 0




psi

The principal stresses are:
σ1 = 33787.7 psi

σ2 = 0

σ3 = −5139.76 psi

Now, note that the strain at fracture is less than 0.5 % (εf < 0.005), thus the material
is brittle, and we can use the Maximum Normal Stress Theory. Since no information is
given for Suc, let us only use

σ1

Sut

≤ 1
nSF

for σmax ≥ 0

which leads to
σ1

Sut

≤? 1
nSF

→ 0.563 < 0.667
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Thus the arm can support the specified static load without failure for a safety factor of
1.5.

(b) During a different mode of operation, the axial force P cycles fluctuates from 50000 lb in
tension to 10000 lb in compression, and the torsional moment remains zero at all times.
What would be the estimated days of life for this mode of operation for a 99% reliability?

(a) Calculate the mean and alternate loads.
This is a fluctuating cyclic load problem. Thus,

Pa =
Pmax − Pmin

2
=

(50000)− (−10000)
2

= 30000 lb

Pm =
Pmax + Pmin

2
=

(50000) + (−10000)
2

= 20000 lb

σa =




4Pa

π d2 0 0

0 0 0

0 0 0




σm =




4Pm

π d2 0 0

0 0 0

0 0 0




(b) Determine the mean and alternate state of stresses.
The state of stress is as follows

σ =




4P
π d2 0 0

0 0 0

0 0 0




Since it is brittle material, we need to apply the fatigue stress concentration factor
to the alternate stresses and static stress concentration factor to the mean stresses.
The fatigue stress concentration factor Kfa is calculated as follows,

Kfa = 1 + q (Kta − 1)

For the mean stress
Kfma = Kta

From tables we find

r = 0.125′′ Sut = 60 ksi → q ≈ 0.75

Kfa = 1 + 0.75 (1.8− 1) = 1.6
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Thus

σa =




Kfa

4Pa

π d2 0 0

0 0 0

0 0 0




=




15278.9 0 0

0 0 0

0 0 0




σm =




Kta

4Pm

π d2 0 0

0 0 0

0 0 0




=




11459.2 0 0

0 0 0

0 0 0




(c) Depending on the type of material (brittle or ductile), determine the equivalent
mean and alternate stresses. (Use factor of safety). Calculate the maximum and
minimum stresses.
The principal stresses are:

σ1,a = 15278.9 σ2,a = 0.0 σ3,a = 0.0

σ1,m = 11459.2 σ2,m = 0.0 σ3,m = 0.0

For brittle materials the mean and alternate stresses are

σa = σ1,a = 15278.9 psi σm = σ1,m = 11459.2 psi

The maximum and minimum stresses are

σmax = σm + σa = 26738 psi

σmin = σm − σa = −3819.72 psi

The stress range σr is the difference range of the maximum and minimum stresses
in the cycle:

σr = ∆σ = σmax − σmin = 30557.7 psi

The stress ratio Rs is the ratio of minimum to maximum stress amplitudes:

Rs =
σmin

σmax

= −0.142857

The amplitude or load ratio Aa is the ratio of the stress amplitude to the mean
stress:

Aa =
σa

σm

= 1.333

(d) Use Goodman or Soderberg theory to determine the equivalent design stress.
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Let us use the modified Goodman criterion:

Seq =
Sa

1− Sm

Sut

In the above expressions:

Sa = nSF σa = 22918.3 Sm = nSF σm = 17188.7

where nSF is the safety factor. Thus

Seq =
Sa

1− Sm

Sut

= 32120 psi

(e) Use S-N Diagram to determine remaining life.
Now we need to find the modified Se. First of all at N = 1 life cycle plot S = Sut =
60 ksi.
For N = 103, Sf = 0.75Sut = 45 ksi (for pure axial loading f = 0.75).
Next for cast irons with Sut ≤ 88 ksi:

S′e = 0.4Sut at N = 106 cycles

So for the class 60 Gray cast iron alloy used for this mounting arm

S′e = 0.4Sut = 24000 psi

Since Ne = 106, ge = 6. For axial loading kL = 0.85 and 99% reliability kr = 0.814.
All others are 1.0. Thus

k∞ = 0.6919

Thus the modified endurance limit is

Se = k∞ S′e = 16605.6 psi

Since Seq > Se, the part has finite life. In order to find the life cycles, we use the
equation

N =
(
S

a

) 1
b

→ N =
(
Seq

a

) 1
b

where

b =
1

3− ge

log
(
Sf

Se

)
=

1
3− ge

log
(
f Sut

Se

)
a =

Sf

103 b
=
f Sut

103 b
= (f Sut)

ge
ge−3 (Se)

3
3−ge

Note that we took S = Seq because that is the fatigue stress at which we want to
calculate the life cycles for failure.
For ge = 6:

b = −1
3

log
(
f Sut

Se

)
= −0.144319 a =

f Sut

103 b
= 121947.

c©2012 by Vijay K. Goyal. All Rights Reserved.



9.7. PROCEDURE FOR MULTIAXIAL FATIGUE ANALYSIS 602

Thus

N =
(
Seq

a

) 1
b

= 10343.6 cycles

The component has 1.03× 105 life cycles before failure. It is known:

N = 1.03× 105 cycles
(

2 minutes
1 cycle

)(
1 hour

60 minutes

)(
1 day

8 hours

)
= 43.09 days

Thus the component has about 43 days of life.

End Example �
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Example 9.6.

Life Cycle Example: Ductile Material

The wrought ferrous steel arm is subjected to tension and torsion, as shown in Figure. It
takes two minutes for completion of a full cycle. It takes two minutes for completion of a full
cycle and operates for only eight hours a day. The steel has a yield strength of 70 ksi and
ultimate strength of 90 ksi in tension, and elongation in 2 inches of greater than 0.5%. The
design safety factor is 1.5.

(a) The arm is subject to a static axial force of P = 50000 lb and a static torsional moment
of T = 18000 lb–in. For the given dimensions, could the arm support the specified
loading without failure?

(b) During a different mode of operation, the axial force P cycles fluctuates from 50000 lb
in tension to 10000 lb in compression, and the torsional moment remains zero at all
times. What would be the estimated life for this cyclic mode of operation for a 99%
reliability? Assume that the plastic strain can be avoided at the notch.

Solution:

(a) The arm is subject to a static axial force of P = 50000 lb and a static torsional moment
of T = 18000 lb–in. For the given dimensions, could the arm support the specified
loading without failure?

From the problem it is known:

Sut = 90 ksi Sy = 70 ksi

Assuming the state of stress at the most critical location of the shaft’s cross-section
occurs for an element located at the top:

σA =




σxx τxy τxz

τyx σyy τyz

τzx τzy σzz
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Thus:
σxx = σxx

∣∣
axial

=
P

A
=

4P
π d2 psi

and
τxz = τ

∣∣
torsion

=
T

Q
=

16T
π d3 psi

Thus

σ =



σxx τxy τxz

τxy σyy τyz

τxz τyz σzz


 =




4P
π d2 0

16T
π d3

0 0 0

16T
π d3 0 0




psi

For the static conditions given, under combined loads of axial tension and torsional
shear, the critical point will be at the root of the 0.125′′ radius fillet. For ductile
materials, stress concentration may be taken as one:

Kta = 1.0 Kts = 1.0

Thus the state of stress is modified as follows

σ =




4P
π d2 0

16T
π d3

0 0 0

16T
π d3 0 0




=




15915.5 0 11459.2

0 0 0

11459.2 0 0




psi

Now we determine the principal stresses:

σ1 = 21909. psi

σ2 = 0

σ3 = −5993.52 psi

τmax =
∣∣∣∣
σ1 − σ3

2

∣∣∣∣ = 13951.3 psi

Now, note that the strain at fracture is greater than 0.5 % (εf > 0.005), thus the
material is ductile, and we may use the Distortional Energy Criterion:

σeq

Sy

≤ 1
nSF

which leads to (σeq = 25440.9 psi)

σeq

Sy

≤? 1
nSF

→ 0.363442 < 0.667
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Thus the arm can support the specified static load without failure for a safety factor of
1.5.

(b) During a different mode of operation, the axial force P cycles fluctuates from 50000 lb
in tension to 10000 lb in compression, and the torsional moment remains zero at all
times. What would be the estimated life for this cyclic mode of operation for a 99%
reliability?

(a) Calculate the mean and alternate loads.
This is a fluctuating cyclic load problem. Thus,

Pa =
Pmax − Pmin

2
=

(50000)− (−10000)
2

= 30000 lb

Pm =
Pmax + Pmin

2
=

(50000) + (−10000)
2

= 20000 lb

σa =




4Pa

π d2 0 0

0 0 0

0 0 0




σm =




4Pm

π d2 0 0

0 0 0

0 0 0




(b) Determine the mean and alternate state of stresses.
The state of stress is as follows

σ =




4P
π d2 0 0

0 0 0

0 0 0




Since it is ductile material, we need to determine how to apply the fatigue stress
concentration factor to mean stresses. We apply the fatigue stress concentration
factor to both alternate using K f. The fatigue stress concentration factor Kfa is
calculated as follows

Kfa = 1 + q (Kta − 1)

From Tables and from the previous example:

r = 0.125′′ Sut = 60 ksi → q ≈ 0.75

Kfa = 1 + 0.75 (1.8− 1) = 1.6 (Kta = 1.8)

Since the plastic strain may be avoided we need to determine what case we will be
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using:

No yielding: Kfm = Kf Kf |σmax,nom| < Sy

Initial yielding: Kfm =
Kf −Kf σa,nom

|σmax,nom|
Kf |σmax,nom| > Sy

Reversed yielding: Kfm = 0 Kf |σmax,nom − σmin,nom| > 2Sy

Hence, before we proceed we need to determine the maximum nominal stresses:

σmax,nom =
4Pmax

π d2 = 15915.5 psi

Now checking the first case:

Kfa |σmax,nom| < Sy

(1.6)(15915.5) <? 70000

25464.8 < 70000

Hence, for the mean stresses we use

Kfm = Kfa

Thus

σa =




Kfa

4Pa

π d2 0 0

0 0 0

0 0 0




=




15278.9 0 0

0 0 0

0 0 0




σm =




Kfa

4Pm

π d2 0 0

0 0 0

0 0 0




=




10185.9 0 0

0 0 0

0 0 0




(c) Depending on the type of material (brittle or ductile), determine the equivalent
mean and alternate stresses. (Use factor of safety). Calculate the maximum and
minimum stresses.
For ductile materials the mean and alternate stresses are

σa = σeq,a =
√
I2
σ1,a
− 3 Iσ2,a = 15278.9 psi σm = σeq,m =

√
I2
σ1,m
− 3 Iσ2,m = 10185.9 psi

The maximum and minimum stresses are

σmax = σm + σa = 25464.8 psi

σmin = σm − σa = −5092.96 psi

c©2012 by Vijay K. Goyal. All Rights Reserved.



9.7. PROCEDURE FOR MULTIAXIAL FATIGUE ANALYSIS 607

The stress range σr is the difference range of the maximum and minimum stresses
in the cycle:

σr = ∆σ = σmax − σmin = 30557.7 psi

The stress ratio Rs is the ratio of minimum to maximum stress amplitudes:

Rs =
σmin

σmax

= −0.20

The amplitude or load ratio Aa is the ratio of the stress amplitude to the mean
stress:

Aa =
σa

σm

= 1.5

(d) Use Goodman or Soderberg theory to determine the equivalent design stress.
Let us use the modified Goodman criterion:

Sa = nSF σa = 22918.3 Sm = nSF σm = 15278.9

where nSF is the safety factor.

Sm > 0 Smax = 38.2 ksi < Sy = 70 ksi → Seq =
Sa

1− Sm

Sut

Thus
Seq =

Sa

1− Sm

Sut

= 27604.6 psi

(e) Use S-N Diagram to determine remaining life.
Now we need to find the modified Se. First of all at N = 1 life cycle plot S = Sut =
90 ksi.
For N = 103, Sf = 0.75Sut = 67.5 ksi (for axial loading f = 0.75).
Next for steels with Sut < 200 ksi:

S′e = 0.5Sut at N = 106 cycles

So for the steel used for this mounting arm

S′e = 0.5Sut = 40500. psi

For axial loading kL = 0.85 and 99% reliability kr = 0.814. All others are 1.0. Thus

k∞ = 0.6919

Thus the modified endurance limit is

Se = k∞ S′e = 31135.5 psi

Since Seq < Se, the part has infinite life.

End Example �
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Example 9.7.

Infinite Life Cycle Design Example: Ductile Material

 

T 

MM 

T 
dD 

r 

A circular shaft is made of wrought-carbon steel with yield strength of 42 ksi and ultimate
strength of 76 ksi in tension, and elongation in 2 inches of greater than 0.5%. The shaft’s
current mode of operation is such that the loads are as follows: repeated bending moment
of 50000 lb–in in tension and the repeated torsional moment of 10000 lb–in in compression.
The fillet radius is 0.1 in and D = 1.5 d. Estimate the value of the diameter d, for infinite
life. Consider the following operating conditions:

1. Operating speed is 3600 rev/min.

2. The design safety factor is 1.5.

3. A strength reliability level of 99.9%.

4. The part is to be lathe-turned from a bar of the wrought-steel alloy.

5. The plastic strain may be avoided.

Solution:

First let us locate the most critical point in the shaft. It will occur at an element at the
top (bending stress in compression) is or at the bottom (bending stress in tension). Let us
consider the element at top. Thus,

σ =




−M
Z

0
T

Q

0 0 0

T

Q
0 0




where

Z =
π d3

32
Q =

π d3

16

1. Calculate the mean and alternate loads.
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This is a repeated load in tension for bending moment and repeated load in compression
for the torsional load: Thus,

Ma =
Mmax −Mmin

2
=

(50000)− (0)
2

= 25000 lb–in

Mm =
Mmax +Mmin

2
=

(50000) + (0)
2

= 25000 lb–in

Ta =
Tmax − Tmin

2
=

(0)− (−10000)
2

= 5000 lb–in

Tm =
Tmax + Tmin

2
=

(0) + (−10000)
2

= −5000 lb–in

2. Determine the mean and alternate state of stresses.

Thus

σa =




−32Ma

π d3 0
16Ta

π d3

0 0 0

16Ta

π d3 0 0




σm =




−32Mm

π d3 0
16Tm

π d3

0 0 0

16Tm

π d3 0 0




Since it is ductile material, we apply the fatigue stress concentration factor to both
alternate and mean stresses according to three yielding criteria. First of all we need to
take an initial guess for d, let us say d = 4′′. Then

d = d in r = 0.1 in → r

d
= 0.025

d = d in D = 1.5 d in → D

d
= 1.5

Thus
Ktb = 2.6 Kts = 2.05

The fatigue stress concentration factor Kfa is calculated as follows,

Kf = 1 + q (Kt − 1)

From Tables and from the previous example:

r = 0.1′′ Sut = 76 ksi → qb ≈ 0.775 qs ≈ 0.82

Kfb = 1 + 0.775 (2.6− 1) = 2.24

Kfs = 1 + 0.82 (2.05− 1) = 1.861
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Since the plastic strain may be avoided we need to determine what case we will be using:

No yielding: Kfm = Kf Kf |σmax,nom| < Sy

Initial yielding: Kfm =
Kf −Kf σa,nom

|σmax,nom|
Kf |σmax,nom| > Sy

Reversed yielding: Kfm = 0 Kf |σmax,nom − σmin,nom| > 2Sy

Hence, before we proceed we need to determine the maximum nominal stresses:

σmax,nom =
32Mmax

π d3 = 7957.75 psi

τmax,nom =
16Tmax

π d3 = 0 psi

Now checking the first case:

Kfb |σmax,nom| < Sy

(2.24)(7957.75) <? 42000

17825.4 < 42000

Kfs |τmax,nom| < Sy

(1.861)(0) <? 42000

(1.861)(0) <? 42000

Hence, for the mean stresses we use

Kfmb = Kfb , Kfms = Kfs

Thus,

σa =




−Kfb

32Ma

π d3 0 Kfs

16Ta

π d3

0 0 0

Kfs

16Ta

π d3 0 0




σm =




−Kfb

32Mm

π d3 0 Kfs

16Tm

π d3

0 0 0

Kfs

16Tm

π d3 0 0




Substituting all values:

σa =




−570411
d3 0

47390
d3

0 0 0

47390
d3 0 0




σm =




−570411
d3 0 −47390

d3

0 0 0

−47390
d3 0 0




3. Depending on the type of material (brittle or ductile), determine the equivalent mean
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and alternate stresses. (Use factor of safety). Calculate the maximum and minimum
stresses.

For ductile materials the mean and alternate stresses are

σa = σeq,a =
√
σ2

xx,a + 3 τ2
xz,a =

258439
d3 psi σm = σeq,m =

√
σ2

xx,m + 3 τ2
xz,m =

258439
d3 psi

The maximum and minimum stresses are

σmax = σm + σa =
516879
d3 psi

σmin = σm − σa = 0

4. Use Goodman or Soderberg theory to determine the design stress.

Sa = nSF σa =
387659
d3 Sm = nSF σm =

387659
d3

where nSF is the safety factor.

Assume
Sm > 0 Smax < Sy → Seq =

Sa

1− Sm

Sut

Thus
Seq =

Sa

1− Sm

Sut

=
387659

d3 − 5.10078
psi

5. Use S-N Diagram to determine the equivalent stress.

Now we need to find the modified Se. First of all at N = 1 life cycle plot S = Sut = 76
ksi.

For N = 103 and combined loading Sf = 0.9Sut = 68.4 ksi (for combined loading
f ≈ 0.90).

Next for steels with Sut < 200 ksi:

S′e = 0.5Sut at N = 106 cycles

So for the steel used for this circular shaft

S′e = 0.5Sut = 38000. psi

The correction factors are:

(a) Loading: kL = 1.0

(b) Temperature: kt = 1.0

(c) Surface finish factor: lathe-turned is a hot rolling treatment:

ksr = e Scut = 14.4 (76)−0.718 = 0.6426

(d) Reliability: 99.9%, kr = 0.753
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(e) Gradient Size factor: Bending and torsion combined. Note assumed d = 4′′ thus
kg = 0.7

(f) Miscellaneous, Operating speed: ke = 0.9

Thus
k∞ = 0.30484

Thus the modified endurance limit is

Se = k∞ S′e = 11584 psi

6. Determine the diameter:
For infinite life take

Seq < Se → 864430
d3 − 5.10078

< 11584

Solving for d:
d > 3.38′′

Now, we need to check and ensure that our assumption was correct: d = 4′′ > 3.38′′,
which happens to be correct. We would need to iterate in the event the solution did
not satisfy the answer.

End Example �
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Example 9.8.

Check for Safety

 

k 

A spring board design is being evaluated by your company. You boss is requesting that you
suggest a reasonable warrantee for the product. A typical diver jumps can jump 1 ft on the
free end of a diving board before diving into the water. The maximum weight of a typical
user is about 225 lbs. The dimensions of the diving board are L = 4 m (from the pin to the
tip) and is 25.4 mm thick. Has a moment of inertia of Izz = 5 × 106 mm4. The supported
end of the diving board is fixed. Assume a 99.999% reliability and that material is a wrought
steel with:

E = 70 GPa Sy = 400 MPa Sut = 600 MPa

The spring rate is:
k = 16.4 kN/m

1. First determine, the margin of safety for infinite life using both yielding criterions:
Modified Goodman and Soderberg.

2. If the board is to be used during day time (8hr/day) and it is expected that on the
average a person uses it every 15 minutes. Suggest a warrantee period for a 400%
margin of safety.

Solution: First we need to calculate the maximum load due to impact and consider it as a
repeated cyclic load. In order to do so we need to first obtain the static load which can be
done using spring analysis. At the tip:

δs =
Fs

k
δb =

FB L
3

3E Izz

Fs + Fb = F

and

δs = δb → Fs

k
=

FB L
3

3E Izz
→ FB =

3E Izz Fs

k L3
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Thus
Fs + Fb = F

Fs +
3E Izz Fs

k L3 = W

Where W = 225 (4.45) = 1001.25 N. Thus

Fs + 1.00038Fs = 1001.25 → Fs = 500.53 N

Thus the static deflection is:

δst = δs =
Fs

k
= 0.0305201 m

For a freely falling object the impact factor is:

Km1 = 1 +
√

1 +
2h
δst

ηm

For a conservative approximation, take ηm = 1.0 and h = 1(12)(25.4)/1000 = 0.3048 m.
Thus impact factor is

Km1 = 1 +
√

1 +
2h
δst

ηm = 5.57971

and the impact load will be
Fe = W Km1 = 5586.68 N

The most critical point is at the fixed end and at an element at the top. At the top the
bending moment is:

Mzz = −Fe L = −22346.7 N-m

1. First determine, the margin of safety for infinite life using both yielding criterions: Mod-
ified Goodman and Soderberg.

Thus,

σ =




−M c

I
0 0

0 0 0

0 0 0




where
c =

t

2
=

25.4/1000
2

= 0.0127 m

This is a repeated load in compression for bending moment: Thus,

Ma =
Mmax −Mmin

2
=

(0)− (−22346.7)
2

= 11173.4 N–m

Mm =
Mmax +Mmin

2
=

(0) + (−22346.7)
2

= −11173.4 N–m
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Thus

σa =




−2.83803× 107 0 0

0 0 0

0 0 0




σm =




2.83803× 107 0 0

0 0 0

0 0 0




No stress concentration factors are needed.
The principal stresses are:

σ1,a = 0 σ2,a = 0 σ3,a = −2.83803× 107 Pa

σ1,m = 2.83803× 107 Pa σ2,m = 0 σ3,m = 0

For ductile materials the mean and alternate stresses are

σa = σeq,a =
√
I2
σ1,a
− 3 Iσ2,a = 2.83803× 107 Pa

σm = σeq,m =
√
I2
σ1,m
− 3 Iσ2,m = 2.83803× 107 Pa

The maximum and minimum stresses are

σmax = σm + σa = 5.67607× 107 Pa

σmin = σm − σa = 0

The stress range σr is the difference range of the maximum and minimum stresses in
the cycle:

σr = ∆σ = σmax − σmin = 5.67607× 107 Pa

The stress ratio Rs is the ratio of minimum to maximum stress amplitudes:

Rs =
σmin

σmax

= 0

The amplitude or load ratio Aa is the ratio of the stress amplitude to the mean
stress:

Aa =
σa

σm

= 1.0

Modified Goodman criterion:

Sm > 0 Smax < Sy → Seq =
Sa

1− Sm

Sut

Seq =
nSF σa

1− nSF σm

Sut

→ 1
nSF

=
σa

Seq

+
σm

Sut

For infinite life take Seq = Se, the endurance limit.
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Now we need to find the modified Se. First of all at N = 1 life cycle plot S = Sut = 600
MPa.

For N = 103 and bending Sf = 0.9Sut = 540 MPa (for bending f = 0.90).

Next wrought steels under pure bending:

S′e = 0.5Sut at N = 106 cycles

So for the steel used for this spring board

S′e = 0.5Sut = 300. MPa

The correction factors are:

(a) Loading: kL = 1.0

(b) Temperature: kt = 1.0

(c) Surface finish factor: ksr = 1.0

(d) Reliability: 99.999%, kr = 0.659

(e) Gradient Size factor: For rectangular cross-section:

d = 0.8
√
b h = 0.8

√
3.66(25.4/1000) = 0.243967 m

kg = 0.7

(f) Miscellaneous:ke = 1.0

Thus
k∞ = 0.4613

Thus the modified endurance limit is

Se = k∞ S′e = 138.39 MPa

Thus
1
nSF

=
σa

Seq

+
σm

Sut

→ nSF = 3.96

and the margin of safety is 296%.

Soderberg Criterion

Seq =
nSF σa

1− nSF σm

Sy

→ 1
nSF

=
σa

Seq

+
σm

Sy

For infinite life take Seq = Se, the endurance limit. From above the modified endurance
limit is

Se = 138.39 MPa

Thus
1
nSF

=
σa

Seq

+
σm

Sy

→ nSF = 3.623

and the margin of safety is 262%.

c©2012 by Vijay K. Goyal. All Rights Reserved.



9.7. PROCEDURE FOR MULTIAXIAL FATIGUE ANALYSIS 618

2. If the board is to be used during day time (8hr/day, 5 days) and it is expected that on
the average a person uses it every 15 minutes. Suggest a warrantee period for a 400%
margin of safety.

The safety factor is nSF = 5.0:

Sa = nSF σa = 141.902 MPa Sm = nSF σm = 141.902 MPa

Using the modified Goodman criterion:

σm > 0 σmax < Sy → Seq =
Sa

1− Sm

Sut

= 185.858 MPa

The modified endurance limit is

Se = 138.39 MPa

Since Seq > Se, the part has finite life.

In order to find the life cycles, we use the equation

N =
(
S

a

) 1
b

→ N =
(
Seq

a

) 1
b

where

b =
1

3− ge

log
(
Sf

Se

)
a =

Sf

103 b
=
f Sut

103 b
= (f Sut)

ge
ge−3 (Se)

3
3−ge

Note that we took S = Seq because that is the fatigue stress at which we want to
calculate the life cycles for failure.

For ge = 6:

b = −1
3

log
(
f Sut

Se

)
= −0.197096 a =

f Sut

103 b
= 2.10709× 109

Thus

N =
(
Seq

a

) 1
b

= 223969. cycles

The component has 2.24× 105 life cycles before failure.

N = 2.24× 105 cycles
(

1 hour
4 cycle

)(
1 day

8 hours

)(
1 week
5 days

)(
1 year

52 weeks

)
= 26.91 years

The part has 26.91 years of life. Thus warrantee could be for 25 years.

Using the Soderberg criterion:

Seq =
Sa

1− Sm

Sy

= 220.00 MPa
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The modified endurance limit is

Se = 138.39 MPa

Since Seq > Se, the part has finite life.
For ge = 6:

b = −1
3

log
(
f Sut

Se

)
= −0.197096 a =

f Sut

103 b
= 2.10709× 109

Thus

N =
(
Seq

a

) 1
b

= 95365.9 cycles

The component has 9.54× 105 life cycles before failure.

N = 9.54× 105 cycles
(

1 hour
4 cycle

)(
1 day

8 hours

)(
1 week
5 days

)(
1 year

52 weeks

)
= 11.46 years

Thus warrantee should be for ten years.

End Example �
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9.8 Cumulative fatigue damage

Aerospace structural components are not always subjected to the constant stress cycles. Many parts
may be under different severe levels of reversed stress cycles or randomly varying stress levels. Exam-
ples include aircraft structural components operating at stress levels between the fracture strength and
endurance limit. We must examine the cumulative damage when a structural component is to operate
for a finite time at higher stress. It is important to note that predicting the cumulative damage of
parts stressed above the endurance limit is at best a rough procedure. Clearly, for parts subjected to
randomly varying loads, the damage prognosis is further complicated. The simplest and most widely
accepted criterion used to explain cumulative damage is known as the Miner’s rule. In 1945, M. A. Miner
popularized a rule that had first been proposed by A. Palmgren in 1924.

 

Seq1 Seq2 … Seqr

… 

n1 n2   … nr 

N1 N2 … Nr 

Using S-N Diagrams 

S1a, 
S1m 

S2a, 
S2m 

… Sra, 
Srm 

Using Goodman or Soderberg Theory 

Number  
of applied 
load cycles 

Fatigue  
life 

Figure 9.6: Stress spectrum.
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The Linear Damage Rule (also known as Palmgren-Miner cycle-ratio summation rule or simply
Miner’s rule) is based on the concept of fatigue damage. Miner’s rule states that a damage fraction, D,
is defined as the fraction of life used up by an event or a series of events. In this context, we may predict
failure for cumulative fatigue damage using the Miner’s rule which is defined as follows

r∑

i=1

ni
Ni

= c

D = Bf

r∑

i=1

ni
Ni

=
n1

N1
+
n2

N2
+
n3

N3
+ · · ·+ nr

Nr
(9.9)

where Bf is the number of block or duty cycles, ni the number of cycles at stress levels σi, and Ni the
number of cycles to fail at stress level σi. These life cycles are taken from the appropriate S–N diagram.
Figure 9.6 shows a schematic on how to evaluate each of these terms.

The Miner’s equation assumes that the damage to the material is directly proportional to the number
of cycles at a given stress. The rule also presupposes that the stress sequence does not matter and the
rate of damage accumulation at a stress level is independent of the stress history. These have not been
completely verified in tests. Sometimes specifications are used in which the right side of Eq. (9.9) is
taken as

0.7 ≤ c ≤ 2.2

Failure is then determined by using

D = c onset of failure due to fatigue is predicted

D > c failure due to fatigue has occurred

D < c safety due to fatigue failure

Usually for design purposes, we take c = 1. Though Miner’s rule is a useful approximation in many
circumstances, it has two major limitations:

1. It fails to recognize the probabilistic nature of fatigue and there is no simple way to relate life
predicted by the rule with the characteristics of a probability distribution.

2. There is sometimes an effect in the order in which the reversals occur. In some circumstances,
cycles of low stress followed by high stress cause more damage than would be predicted by the
rule. It does not consider the effect of overload or high stress which may result in a compressive
residual stress. High stress followed by low stress may have less damage due to the presence of
compressive residual stress.

Despite these limitations, the Linear Damage Rule (Miner’s rule) is still widely used. This is due both
to its simplicity and the fact that more sophisticated methods do not always result in better predictions.
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Example 9.9.

Number of cycles

A hollow square tube with outside dimension of 1.75 inches and wall thickness of 0.125 inch
with a S–N curve for the material shown in Figure.

1. This hollow square tube is to be subject to the following sequence of completely reversed
axial force amplitudes: First 20000 lb for 5200 cycles; next, 5500 lb for 948000 cycles;
then, 8450 lb for 11100 cycles. After this loading sequence has been imposed, it is
desired to change the force amplitude to 19000 lb, still in the axial direction. Assuming
only one duty cycle, how many remaining cycles of life would you predict for the tube
at this final level of loading?

2. It is desired to design a hollow circular tube with an outside diameter of 1.75 inches with
the same material and manufacturing conditions mentioned above and with a margin
of safety of 1.5. Let the ratio of the outer diameter to be inner diameter:

β =
do
di

Determine the value of β such that the remaining life for the 19000 lb force amplitude
is n4 = 1.3615× 105 cycles.

INME4011 – Design of Machine Elements
Term: Fall 2004

University of Puerto Rico – Mayagüez Campus
Department of Mechanical Engineering

Problem 6-2: Solution

Topic: Fatigue Failure
Page 1 of 4

PROBLEM WORTH 30 PTS
A hollow square tube with outside dimension of 1.75 inches and wall thickness of 0.125

inch with a S–N curve for the material shown in Figure.

1. This hollow square tube is to be subject to the following sequence of completely
reversed axial force amplitudes: First 20000 lb for 5200 cycles; next, 5500 lb for
948000 cycles; then, 8450 lb for 11100 cycles. After this loading sequence has been
imposed, it is desired to change the force amplitude to 19000 lb, still in the axial
direction. How many remaining cycles of life would you predict for the tube at this
final level of loading? [15pts]

2. It is desired to design a hollow circular tube with an outside diameter of 1.75 inches
with the same material and manufacturing conditions mentioned above and with a
margin of safety of 1.5. Let the ratio of the outer diameter to be inner diameter:

β =
do

di

Determine the value of β such that the remaining life for the 19000 lb force amplitude
is n4 = 1.3615× 105 cycles. [15pts]

Solution:

1. This hollow square tube is to be subject to the following sequence of completely reversed
axial force amplitudes: First 20000 lb for 5200 cycles; next, 5500 lb for 948000 cycles;
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then, 8450 lb for 11100 cycles. After this loading sequence has been imposed, it is de-
sired to change the force amplitude to 19000 lb, still in the axial direction. Assuming
only one duty cycle, how many remaining cycles of life would you predict for the tube
at this final level of loading?

From the problem it is known:

Sut = 69000 psi Sy = 45000 psi

The Miner’s rule for cumulative fatigue damage for four different stress cycles is defined
as

D = Bf

4∑

i=1

ni
Ni

=
n1

N1
+
n2

N2
+
n3

N3
+
n4

N4

For one duty cycle
Bf = 1

and when D = c = 1 failure is predicted by fatigue and the Miner’s rule is written as

(1)
(
n1

N1
+
n2

N2
+
n3

N3
+
n4

N4

)
= 1

n1

N1
+
n2

N2
+
n3

N3
+
n4

N4
= 1

For our problem,
P1 = 20000 lb n1 = 5200

P2 = 5500 lb n2 = 948000

P3 = 8450 lb n3 = 11100

P4 = 19000 lb n4 =?

The problems reduces to find number of life cycles.

Since the loads are completely reversed:

P1max = 20000 lb P1min = −20000 lb

P2max = 5500 lb P2min = −5500 lb

P3max = 8450 lb P3min = −8450 lb

P4max = 19000 lb P4min = −19000 lb
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Thus the alternate and mean loads are

P1a = 20000 lb P1m = 0 lb

P2a = 5500 lb P2m = 0 lb

P3a = 8450 lb P3m = 0 lb

P4a = 19000 lb P4m = 0 lb

Only axial loads are applied,

σxx =
P

A

Thus the state of stress is

σ =




P

A
0 0

0 0 0

0 0 0




where
A = a2

o − a2
i = a2

o − (ao − 2 t)2 = 0.8125 in2

Hence the state of stress for each load will be

σ1 =




P1

A
0 0

0 0 0

0 0 0




σ2 =




P2

A
0 0

0 0 0

0 0 0




σ3 =




P3

A
0 0

0 0 0

0 0 0




σ4 =




P4

A
0 0

0 0 0

0 0 0
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The alternate state of stress is

σ1a =




P1a

A
0 0

0 0 0

0 0 0




σ2a =




P2a

A
0 0

0 0 0

0 0 0




σ3a =




P3a

A
0 0

0 0 0

0 0 0




σ4a =




P4a

A
0 0

0 0 0

0 0 0




The mean state of stress is

σ1m =




P1m

A
0 0

0 0 0

0 0 0




σ2m =




P2m

A
0 0

0 0 0

0 0 0




σ3m =




P3m

A
0 0

0 0 0

0 0 0




σ4m =




P4m

A
0 0

0 0 0

0 0 0




Since we are working with ductile materials the fully reversed equivalent mean stresses
are

σ1m = 0 σ2m = 0 σ3m = 0 σ4m = 0

and the fully reversed equivalent alternate stresses are

σ1a =
P1a

A
= 24615.4 psi

σ2a =
P2a

A
= 6769.23 psi

σ3a =
P3a

A
= 10400 psi

σ4a =
P4a

A
= 23384.6 psi
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Assuming a safety factor of one:

S1m = nSF σ1m = 0

S2m = nSF σ2m = 0

S3m = nSF σ3m = 0

S4m = nSF σ4m = 0

S1a = nSF σ1a = 24615.4 psi

S2a = nSF σ2a = 6769.23 psi

S3a = nSF σ3a = 10400 psi

S4a = nSF σ4a = 23384.6 psi

The fully reversed fatigue equivalent stresses, using Goodman criterion, are:

S1eq =
S1a

1− S1m

Sut

= S1a = 24615.4 psi

S2eq =
S2a

1− S2m

Sut

= S2a = 6769.23 psi

S3eq =
S3a

1− S3m

Sut

= S3a = 10400 psi

S4eq =
S4a

1− S4m

Sut

= S4a = 23384.6 psi

First verify failure due to yielding has not occurred:

S1max = 24615.4 psi < Sy = 45000 psi

S2max = 6769.23 psi < Sy = 45000 psi

S3max = 10400 psi < Sy = 45000 psi

S4max = 23384.6 psi < Sy = 45000 psi

Hence we continue. Next for each completely reversed stress spectrum obtain the num-
ber of life cycles (or cycles to fail). For this we use the S–N diagram (or the analytical
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equations) to obtain the number of life cycles:

S1eq = 24.6 ksi → N1 = 1.0× 105

S2eq = 6.77 ksi → N2 =∞

S3eq = 10.4 ksi → N3 = 1.0× 106

S4eq = 23.4 ksi → N4 = 1.5× 105

Thus using the Miner’s rule,

5200
1.0× 105 +

948000
∞ +

11100
1.0× 106 +

n4

1.5× 105 = 1 → n4 = 1.41× 105

Thus 1.41× 105 cycles remain for fatigue failure.

2. It is desired to design a hollow circular tube with an outside diameter of 1.75 inches with
the same material and manufacturing conditions mentioned above and with a margin
of safety of 1.5. Let the ratio of the outer diameter to be inner diameter:

β =
do
di

Determine the value of β such that the remaining life for the 19000 lb force amplitude
is n4 = 1.3615× 105 cycles.

Here
P1 = 20000 lb n1 = 5200

P2 = 5500 lb n2 = 948000

P3 = 8450 lb n3 = 11100

P4 = 19000 lb n4 = 1.3615× 105

The problems reduces to find number of life cycles for the last load.

Thus the state of stress is

σ =




P

A
0 0

0 0 0

0 0 0




where

A =
π

4
(
d2
o − d2

i

)
=
π

4
d2
o

(
1−

(
di
do

)2
)

=
π

4
d2
o

(
1− 1

β2

)

Assume that the life cycles of the first three sequences of fully reversed axial forces does
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not change. Since the material specification are the same we may use the same S–N
diagram. The problem requires a factor of safety of:

nSF = MS + 1 = 2.5

Using the Miner’s rule we need to determine the number of cycles to fail if n4 = 1.3615×
105:

5200
1.0× 105 +

948000
∞ +

11100
1.0× 106 +

1.3615× 105

N4
= 1 → N4 = 1.45× 104

Thus there are 1.45 × 104 life cycles for fatigue failure. From the S–N diagram we
proceed to find the equivalent fatigue stress

S4eq = 29 ksi

Note that the above is the maximum allowable stress, thus

nSF = 2.5 =
S4eq

σ4eq

→ σ4eq =
S4eq

nSF

= 11.6 ksi

And the area can be calculated using P4:

σ4eq =
P4

A
→ 11600 =

19000
A

→ A = 1.638 in2

The area for a hollow tubular tube is

A =
π

4
(
d2
o − d2

i

)
→ di =

√
d2
o −

4A
π

= 0.988 in

Thus
β =

do
di

= 1.77

If one assume that the life cycles of the first three sequences of fully reversed axial forces
does not change, the process becomes an iterative one. One should check the stresses
and the associated life cycles and check if it is safe, if not then continue to increase or
decrease the diameter until Miner’s rule is satisfied.

End Example �
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Example 9.10.

Duty Life Cycles

A stepped shaft, as shown in Figure, has dimensions of

D = 2′′ d = 1′′ r = 0.1′′

 

T 

MM 

T 
dD 

r 

It is machined from Titanium Ti-6Al-4V. The loading is one of completely reversed torsion
and constant bending stress of 3.08642 ksi. During a typical 30 seconds of operation under
overload conditions the nominal stress in the l-inch diameter section was measured to be
as shown in Figure. Estimate the life of the shaft for a 95% survivability when operating
continuously under these conditions. Take a safety factor of 1.2 and be conservative.

The 30 second test shows that the stepped tube is subject to the following sequence of
completely reversed torsional stress amplitudes: one 35 ksi torsional stress amplitude; two
25 ksi torsional stress amplitudes; four 20 ksi torsional stress amplitudes; thirteen 10 ksi
torsional stress amplitudes. The goal is to find the number of duty cycles in 30 second for
failure.

For Titanium Ti-6Al-4V it is known:

Sut = 150 ksi Sy = 128 ksi
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The Miner’s rule for cumulative fatigue damage for four different stress cycles is defined as

D = Bf

4∑

i=1

ni
Ni

=
n1

N1
+
n2

N2
+
n3

N3
+
n4

N4

For Bf duty cycle and taking D = c = 1 for failure prediction by fatigue, the Miner’s rule is
written as

Bf

(
n1

N1
+
n2

N2
+
n3

N3
+
n4

N4

)
= 1

For our problem,
τ1 = 35 ksi n1 = 1

τ2 = 25 ksi n2 = 2

τ3 = 20 ksi n3 = 4

τ4 = 10 ksi n4 = 13

For our problem we have the nominal stresses and the loads are a constant load in bending
and completely reversed load in torsional. Considering an element at the top we get

σa =




σxxa 0 τxza

0 0 0

τxza 0 0




σm =




σxxm 0 τxzm

0 0 0

τxzm 0 0




For each bending load cycle
σmax = σmin = 3.08642

σxxa =
σmax − σmin

2
=

(3.08642)− (3.08642)
2

= 0

σxxm =
σmax + σmin

2
=

(3.08642) + (3.08642)
2

= 3.08642 ksi
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For each torsional load cycle

τxza1 =
τxzmax1 − τxzmin1

2
=

(35)− (−35)
2

= 35 ksi

τxzm1 =
τxzmax1 + τxzmin1

2
=

(35) + (−35)
2

= 0

τxza2 =
τxzmax2 − τxzmin2

2
=

(25)− (−25)
2

= 25 ksi

τxzm2 =
τxzmax2 + τxzmin2

2
=

(25) + (−25)
2

= 0

τxza3 =
τxzmax3 − τxzmin3

2
=

(20)− (−20)
2

= 20 ksi

τxzm3 =
τxzmax3 + τxzmin3

2
=

(20) + (−20)
2

= 0

τxza4 =
τxzmax4 − τxzmin4

2
=

(10)− (−10)
2

= 10 ksi

τxzm4 =
τxzmax4 + τxzmin4

2
=

(10) + (−10)
2

= 0

Thus

σa1 =




0 0 35

0 0 0

35 0 0




σm1 =




3.08642 0 0

0 0 0

0 0 0




σa2 =




0 0 25

0 0 0

25 0 0




σm2 =




3.08642 0 0

0 0 0

0 0 0




σa3 =




0 0 20

0 0 0

20 0 0




σm3 =




3.08642 0 0

0 0 0

0 0 0




σa4 =




0 0 10

0 0 0

10 0 0




σm4 =




3.08642 0 0

0 0 0

0 0 0
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Since it is ductile material, we apply the fatigue stress concentration factor to both alternate
and mean stresses.

d = 1′′ r = 0.1′′ → r

d
= 0.1

d = 1′′ D = 2′′ → D

d
= 2.0

Thus
Ktb = 1.75 Kts = 1.46

The fatigue stress concentration factor Kfa is calculated as follows,

Kf = 1 + q (Kt − 1)

From Tables and from the previous example:

r = 0.1′′ Sut = 100 ksi → qb ≈ 0.83 qs ≈ 0.86

Kfb = 1 + 0.83 (1.75− 1) = 1.62

Kfb = 1 + 0.86 (1.46− 1) = 1.40

Thus,

σa1 =




(1.62)0 0 (1.40)35

0 0 0

(1.40)35 0 0




=




0 0 48.846

0 0 0

48.846 0 0




σm1 =




(1.62)(3.08642) 0 (1.40)0

0 0 0

(1.40)0 0 0




=




8.1125 0 0

0 0 0

0 0 0




σa2 =




(1.62)0 0 (1.40)25

0 0 0

(1.40)25 0 0




=




0 0 34.89

0 0 0

34.89 0 0




σm2 =




(1.62)(3.08642) 0 (1.40)0

0 0 0

(1.40)0 0 0




=




5.0 0 0

0 0 0

0 0 0
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σa3 =




(1.62)0 0 (1.40)20

0 0 0

(1.40)20 0 0




=




0 0 27.912

0 0 0

27.912 0 0




σm3 =




(1.62)(3.08642) 0 (1.40)0

0 0 0

(1.40)0 0 0




=




5.0 0 0

0 0 0

0 0 0




σa4 =




(1.62)0 0 (1.40)10

0 0 0

(1.40)10 0 0




=




0 0 13.956

0 0 0

13.956 0 0




σm4 =




(1.62)(3.08642) 0 (1.40)0

0 0 0

(1.40)0 0 0




=




5.0 0 0

0 0 0

0 0 0




The principal stresses for loading cycle 1 are:

σ1,a1 = 48.846 ksi σ2,a1 = 0 σ3,a1 = −48.846 ksi

σ1,m1 = 5 ksi σ2,m1 = 0 σ3,m1 = 0

The principal stresses for loading cycle 2 are:

σ1,a2 = 34.89 ksi σ2,a2 = 0 σ3,a2 = −34.89 ksi

σ1,m2 = 5 ksi σ2,m2 = 0 σ3,m2 = 0

The principal stresses for loading cycle 3are:

σ1,a3 = 27.912 ksi σ2,a3 = 0 σ3,a3 = −27.912 ksi

σ1,m3 = 5 ksi σ2,m3 = 0 σ3,m3 = 0

The principal stresses for loading cycle 4 are:

σ1,a4 = 13.956 ksi σ2,a4 = 0 σ3,a4 = −13.956 ksi

σ1,m4 = 5 ksi σ2,m4 = 0 σ3,m4 = 0
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For ductile materials the mean and alternate stresses for each cycle are

σa1 = σeq,a1 =
√
I2
σ1,a1

− 3 Iσ2,a1 = 84.60 ksi σm1 = σeq,m1 =
√
I2
σ1,m1

− 3 Iσ2,m1 = 5 ksi

σa2 = σeq,a2 =
√
I2
σ1,a2

− 3 Iσ2,a2 = 60.43 ksi σm2 = σeq,m2 =
√
I2
σ1,m2

− 3 Iσ2,m2 = 5 ksi

σa3 = σeq,a3 =
√
I2
σ1,a3

− 3 Iσ2,a3 = 48.35 ksi σm3 = σeq,m3 =
√
I2
σ1,m3

− 3 Iσ2,m3 = 5 ksi

σa4 = σeq,a4 =
√
I2
σ1,a4

− 3 Iσ2,a4 = 24.1725 ksi σm4 = σeq,m4 =
√
I2
σ1,m4

− 3 Iσ2,m4 = 5 ksi

For a safety factor of 1.2:
S1m = nSF σm1 = 6.0 ksi

S2m = nSF σm2 = 6.0 ksi

S3m = nSF σm3 = 6.0 ksi

S4m = nSF σm4 = 6.0 ksi

S1a = nSF σa1 = 101.525 ksi

S2a = nSF σa2 = 72.5175 ksi

S3a = nSF σa3 = 58.014 ksi

S4a = nSF σa4 = 29.007 ksi

Verify safety due to yielding:

S1max = 107.525 ksi < Sy = 128 ksi

S2max = 78.5175 ksi < Sy = 128 ksi

S3max = 64.014 ksi < Sy = 128 ksi

S4max = 35.007 ksi < Sy = 128 ksi
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The conservative fatigue criterion for ductile materials, we use the Soderberg criterion:

S1eq =
S1a

1− S1m

Syt

= 106.518 ksi

S2eq =
S2a

1− S2m

Syt

= 76.0839 ksi

S3eq =
S3a

1− S3m

Syt

= 60.8672 ksi

S4eq =
S4a

1− S4m

Syt

= 30.4336 ksi

Hence we continue. Next for each cyclic stress spectrum obtain the number of life cycles (or
cycles to fail). For this we use the S–N diagram (or the analytical equations) to obtain the
number of life cycles. Thus we need to find the constants a and b in

SN = aN b

In order to do so, we need to find the modified Se. First of all at N = 1 life cycle plot
S = Sut = 150 ksi. For N = 103 and fatigue in torsional loading only Sf = 0.72Sut = 108 ksi
(f = 0.72). Next for Titanium alloys:

S′e = 0.45Sut at N = 106 cycles

So for the steel used for this circular shaft

S′e = 0.65Sut = 97.5 ksi

The correction factors are:

(a) Loading (fatigue in torsion only): kL = 0.59

(b) Temperature: kt = 1.0

(c) Surface finish factor (machined or cold-drawn):

ksr = e Scut = 2.70 (150)−0.265 = 0.715648

(d) Reliability: 95%, kr = 0.868

(e) Gradient Size factor: Bending and torsion combined. For d = 1′′, kg = 0.9

(f) Miscellaneous: ke = 1.0

Thus
k∞ =
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Thus the modified endurance limit is

Se = k∞ S′e = 32.1602 ksi

For ge = 6:

b = −1
3

log
(
f Sut

Se

)
= −0.175368 a =

f Sut

103 b
= 362.685

Thus

N =
(
Seq

a

) 1
b

Thus
S1eq = 106.518 ksi > Se → N1 = 1.082× 103

S2eq = 76.0839 ksi > Se → N2 = 7.370× 103

S3eq = 60.8672 ksi > Se → N3 = 2.631× 104

S4eq = 30.4336 ksi < Se → N4 =∞
Thus

Bf

(
n1

N1
+
n2

N2
+
n3

N3
+
n4

N4

)
= 1

Bf =
1

n1

N1
+
n2

N2
+
n3

N3
+
n4

N4

=
1

0.00134761
= 742.057 duty cycles

(
30 seconds

1 duty

)(
1 minute

60 seconds

)(
1 hour

60 minutes

)
= 6.18

Thus there are approximately 6 hours of life.

End Example �
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Example 9.11.

n× 10−1

During a repeating flight time recorded data (shown in the figure above), the load factor
fluctuated steadily between n+ and n−. The maximum and minimum stress values are found
in terms of the load factors and the 1.0 g stress by means of the relations:

σmax = n+ σo σmin = n− σo

where it σo is the von Mises stress and its calculated value is 5 ksi. The S–N diagram is
given:

INME4011 – Design of Machine Elements
Term: Fall 2004

University of Puerto Rico – Mayagüez Campus
Department of Mechanical Engineering

Problem 6-2: Solution

Topic: Fatigue Failure
Page 1 of 4

PROBLEM WORTH 30 PTS
A hollow square tube with outside dimension of 1.75 inches and wall thickness of 0.125

inch with a S–N curve for the material shown in Figure.

1. This hollow square tube is to be subject to the following sequence of completely
reversed axial force amplitudes: First 20000 lb for 5200 cycles; next, 5500 lb for
948000 cycles; then, 8450 lb for 11100 cycles. After this loading sequence has been
imposed, it is desired to change the force amplitude to 19000 lb, still in the axial
direction. How many remaining cycles of life would you predict for the tube at this
final level of loading? [15pts]

2. It is desired to design a hollow circular tube with an outside diameter of 1.75 inches
with the same material and manufacturing conditions mentioned above and with a
margin of safety of 1.5. Let the ratio of the outer diameter to be inner diameter:

β =
do

di

Determine the value of β such that the remaining life for the 19000 lb force amplitude
is n4 = 1.3615× 105 cycles. [15pts]

If the margin of safety is 10%, determine the hours of operation before failure. Useful
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equations:

Bf

(
n1

N1
+
n2

N2
+
n3

N3
+
n4

N4

)
= 1 σa =

σmax − σmin

2
σm =

σmax + σmin

2

Seq =
Sa

1− Sm

Syt

Sm = nSF σm Sm = nSF σa

Solution:

1. The first load factor is read as:

n+ = 1 n− = −1

σmax1 = n+ σo = 5 ksi σmin1 = n− σo = −5 ksi

Note that this is a case of fully reversed load, thus

σa1 = 5 ksi σm1 = 0

Using the safety factor (nSF = 1.10):

Sa1 = nSF σa1 = 5.5 ksi Sm1 = nSF σm1 = 0

Using the Goodman criteria

Seq1 =
Sa1

1− Sm1

Syt

= Sa1 = 5.5 ksi < Sy

Since it is less than the yield strength, we use the S–N Diagram to determine the life
cycles for this stress:

N1 =∞

and from the gust load-time diagram:

n1 = 13

2. The second load factor is read as:

n+ = 2 n− = −2

σmax2 = n+ σo = 10 ksi σmin2 = n− σo = −10 ksi

Note that this is a case of fully reversed load, thus

σa2 = 10 ksi σm2 = 0

Using the safety factor (nSF = 1.10):

Sa2 = nSF σa2 = 11.0 ksi Sm2 = nSF σm2 = 0
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Using the Goodman criteria

Seq2 =
Sa2

1− Sm2

Syt

= Sa2 = 11.0 ksi < Sy

Since it is less than the yield strength, we use the S–N Diagram to determine the life
cycles for this stress:

N2 ≈ 8× 105

and from the gust load-time diagram:

n2 = 4

3. The third load factor is read as:

n+ = 2.5 n− = −2.5

σmax3 = n+ σo = 12.5 ksi σmin3 = n− σo = −12.5 ksi

Note that this is a case of fully reversed load, thus

σa3 = 12.5 ksi σm3 = 0

Using the safety factor (nSF = 1.10):

Sa3 = nSF σa3 = 13.75 ksi Sm3 = nSF σm3 = 0

Using the Goodman criteria

Seq3 =
Sa3

1− Sm3

Syt

= Sa3 = 13.75 ksi < Sy

Since it is less than the yield strength, we use the S–N Diagram to determine the life
cycles for this stress:

N3 ≈ 6× 105

and from the gust load-time diagram:

n3 = 2

4. The fourth load factor is read as:

n+ = 3.5 n− = −3.5

σmax4 = n+ σo = 17.5 ksi σmin4 = n− σo = −17.5 ksi

Note that this is a case of fully reversed load, thus

σa4 = 17.5 ksi σm4 = 0
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Using the safety factor (nSF = 1.10):

Sa4 = nSF σa4 = 19.25 ksi Sm4 = nSF σm4 = 0

Using the Goodman criteria

Seq4 =
Sa4

1− Sm4

Syt

= Sa4 = 19.25 ksi < Sy

Since it is less than the yield strength, we use the S–N Diagram to determine the life
cycles for this stress:

N4 ≈ 2.5× 105

and from the gust load-time diagram:

n4 = 1

5. Now applying the Miner’s rule:

Bf

(
n1

N1
+
n2

N2
+
n3

N3
+
n4

N4

)
= 1

Bf

(
13
∞ +

4
8× 105 +

2
6× 105 +

1
2.5× 105

)
= 1

Bf (0.0000123333) = 1

Thus

Bf = 81081.1 cycles
(

30 seconds
1 cycle

)(
1 minute

60 seconds

)(
1 hour

60 minutes

)
= 675.676 h

Thus, assuming the same pattern is repeated each time and no other external loads
affect the system, there are approximately 675 hours of life remaining before failure.

End Example �
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9.10 Suggested Problems

Problem 9.1.

Consider a two rectangular squared cell with different isotropic materials subject to a torque T .

4  3 2

Cell 2 Cell 1 

5  16

4  3 2

Cell 2 Cell 1 

65  1

small slit 

 

The mechanical properties are:

E12 = E45 = E36 = 3.5× 106 psi ν12 = ν45 = ν36 = 0.30

E34 = E23 = 2.5× 106 psi ν34 = ν23 = 0.25

E56 = E61 = 1.5× 106 psi ν56 = ν61 = 0.20

The geometric properties are:

a12 = a45 = a36 = a a34 = a56 = a a23 = a61 = 2 a

t12 = t45 = t36 = t t34 = t23 = 2 t

where a’s are the branch lengths and t’s the branch thicknesses.

If the reference modulus E0 is made of Titanium Ti-6Al-4V and a = 10 t, determine the values of a
and t for 30 years of life. Consider a 95% survivability. The wing box will be used during 10 hours a
day and 5 days a week. During one year four week is used for maintenance; hence during that period no
loads are applied. Take a margin of safety of 50%. A 30 second test shows that the wing box is subject
to the following sequence of completely reversed torsional load amplitudes: five 35 kips-in torsional load
amplitudes; four 25 kips-in torsional load amplitudes; one 20 kips-in torsional load amplitude; ten 10
kips-in torsional load amplitudes.

�
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Appendix A

Math Review Using MATLAB

Instructional Objectives of Appendix A

After completing this appendix, the student should be able to:

1. Get familiar with MATLABr: basic commands, functions and scripts, plotting.

2. Understand basic concepts in linear algebra: hand and MATLABr solutions.

3. Solve linear system of equations: hand and MATLABr solutions.

4. Obtain interpolation polynomials: hand and MATLABr solutions.

5. Solve the eigenvalue problem: hand and MATLABr solutions.

6. Approximate one-, two-, and three- dimensional integrals using numerical approxima-
tions: hand and MATLABr solutions.

We often encounter a great deal of problems that cannot be solved without the help of various
programs that work for high-performance numerical computation. MATLAB1 is a high-performance
language for technical computing that integrates computation, visualization, and programming in an
easy-to-use environment where problems and solutions are expressed in familiar mathematical notation.
It has become very popular for its power and ease of use. Hence, all concepts discussed in this chapter
are explained using MATLABr.

The finite element analysis heavily uses arrays to obtain the solution. In recent years, MATLABr

is becoming a popular tool for “homemade” FEA for its versatility and robustness using matrices and
vectors.

1Trademark of The MathWorks, Inc.
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A.1 What is MATLABr

The name MATLABr stands for Matrix Laboratory, because the basic data element of this software
is a matrix. MATLABr has been developed assuming its users know basic languages in C and FOR-
TRAN. Lately, university students have been introduced to programming with little or no knowledge of
other programming languages. Thus, this tutorial has the purpose to help students learn the basics of
MATLABr programming and its capabilities.

MATLABr provides an interactive environment with numerous built-in functions for technical com-
putation, graphics, and animation. It also provides easy extensibility with its own programming lan-
guage. MATLABr’s built-in functions provide excellent tools for linear algebra computations, signal
processing, data analysis, optimization, numerical solution of ordinary differential equations, and many
other types of scientific computations. It also provides an external interface to run programs from other
softwares, such as Fortran or C, from within MATLABr.

The basic building block of MATLABr is the matrix, and the fundamental data-type is the array.
Vectors, scalars, real and complex matrices are all handled as special cases of the basic data-type. The
dimensions of a matrix almost never have to be specified. The built-in functions are optimized for vector
operations, therefore, vectorized commands or codes run much faster in MATLABr.

MATLABr contains hundreds of commands used in mathematics. You can use it to graph functions,
solve equations, perform statistical tests, and do much more. You can produce sound and animate
graphics. You can do simulations and modeling. You can prepare materials for export to the World
Wide Web, and you can use it in conjunction with a word processing program to combine mathematical
computations with text and graphics to produce a polished, integrated, and interactive document.

MATLABr can be a very useful tool for a number of CAD/CAE problems. A Computer-Aided
Engineering Design covers a variety of topics that require the knowledge of a programming language;
MATLABr being the one that suits it best because of its programming and graphical power. Topics
like working with matrices, design optimization and functionals require the use of programming, making
MATLABr essential for CAD/CAE problems.

Through this appendix we will learn MATLABr programming and function creation will be intro-
duced and explained. Please remember that MATLABr is so vast of a program, that it can hardly be
covered in these few pages, in fact entire books are dedicated to specific applications in MATLABr.
The scope of this tutorial is to get a new user started with the basics, and hopefully this tutorial will
make the beginners experience more enjoyable.

A.1.1 Getting Familiar with MATLABr

No matter what software you use for the very first time, it is a challenge to learn and master it.
Mastering a software only comes with experience in solving real engineering problems. Here, we enclose
some fast-learning steps on how to start using MATLABr.

In order to get started, find the MATLABr icon in the All Programs Bar and click on it, as shown
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here2

 
 

 

Once it is opened, the main MATLABr Window will show up, as shown in Fig. A.1. This window
is composed of four sub-windows: the command window, workspace, current directory and command
history. The command window is the input area, where you type your work (i.e., define variables,
solve equations, call functions, etc.). The workspace window shows all defined variables, vectors and
matrices. The current directory window allows you to see your M-Files (we will talk about these
files shortly) while working in the command window so you can recall them if you need. The current

directory and the workspace windows are found in the same window, and you can see them one at a
time by using the switch tab. The command history encloses a record of all operations performed for
future reference.

A.1.2 Basic commands and syntax

The first thing you will see in the command window is the MATLABr prompt

>>
This indicates that the program is ready to receive instructions. Here, you write the desired arguments
(i.e., variables, equations, functions, etc.). If you type in a valid expression and press Enter, MATLABr

will immediately execute it and return the result, just like a calculator.

>> 2+2

ans = 4

>> 4^2

ans = 16

>> sin(pi/2)

ans = 1

>> 1/0

2This is shown for Windows XP and MATLABr 2007, other versions and platforms might have the icon differently
located.
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Fig. 2.1 MATLAB Principal Window 
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Figure A.1: Basic MATLABr working environment.

Warning: Divide by zero. ans = Inf

>> exp(i*pi)

ans = -1.0000 + 0.0000i

Notice some of the special expressions here: pi for π, Inf for ∞, and i or j for
√
−1. Another special

value is NaN, which stands for not-a-number. NaN is used to express an undefined value.

A.1.3 MATLABr Help Command

MATLABr is huge. You can’t learn everything about it, or even always remember things you have
done before. It is essential that you become familiar with the online help. MATLABr has an excellent
embedded help and an excellent online tutorial (http://www.mathworks.com/).
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Type your help command 

The help command written just alone provides a list of fields in which the software can help. The com-
mand is written as follows:

>> help
The main help list gives the main command categories in which all the commands can be grouped. You
can either click in the link given after prompting for help or you can after knowing in what category you
are interested write the command

>> help category
For example MATLABr/general, gives the list of all the commands that are related to the general ca-
pabilities of the software. The general category help command gives help for commands like save, quit,
and exit. You can either click the link MATLABr/general or write the command

>> help general
The help command can provide help for every command possible in the MATLABr language. Just
write the command

>> help command
For an example, if you want to learn how to use the roots command you would type:

>> help zeros
the display will be

>> help zeros

ZEROS Zeros array.
ZEROS(N) is an N-by-N matrix of zeros.

ZEROS(M,N) or ZEROS([M,N]) is an M-by-N matrix of zeros.

ZEROS(M,N,P,...) or ZEROS([M N P ...]) is an M-by-N-by-P-by-... array of
zeros.

ZEROS(SIZE(A)) is the same size as A and all zeros.

ZEROS with no arguments is the scalar 0.

ZEROS(M,N,...,CLASSNAME) or ZEROS([M,N,...],CLASSNAME) is an
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M-by-N-by-... array of zeros of class CLASSNAME.

Example:
x = zeros(2,3,’int8’);

See also eye, ones.

Reference page in Help browser
doc zeros

It can be seen here that several ways of using the command zero are displayed with the explanation of
how to use all the ways using all the necessary variables. It also gives a simple example of the command
used with real numerical values, and gives also a reference to click. In this way, we can access a more
detailed information.

A.1.4 M-Files

More than a complete algebra system, MATLABr can be used as a very powerful programming tool.
The logic behind programming in MATLABr is very similar to that employed when programming in C
or C++, but in here we will limit to only explain what are M-File, which are the script files used when
programming in MATLABr, and how they are created in MATLABr.

An M-File, or script file, is a simple text file where you can place MATLABr commands. When you
run the script file, MATLABr reads the commands and executes them exactly as it would if you had
typed each command sequentially at the MATLABr prompt or command window. All M-File names
must end with the extension “*.m”. If you create a new m-file with the same name as an existing m-file,
MATLABr will choose the one which appears first in the path order. To make life easier, choose a name
for your m-file which doesn’t already exist. To see if a filename.m exists, type help filename at the
MATLABr command window.

For simple problems, entering your requests at the MATLABr command window is fast and efficient.
However, as the number of commands increases iterations are needed, typing the commands over and
over at the MATLABr command window becomes tedious, thus writing simple programs in the form
of M-files will be helpful and almost necessary in these cases.

In order to open MATLABr’s text editor to create an M-File we must follow the following procedure:
From the MATLABr utility menu choose the File menu → New → select M-File
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This procedure brings up a text editor window in which you can enter MATLABr commands.

Now, in order to execute the M-File the user must make sure that he is working in the correct
directory where the file is stored and then he can simply type the name of the M-File in the command
window and press enter and MATLABr will automatically execute the whole code. If there are errors
within it, MATLABr will display an error message telling the number of the line where the program
thinks there is an error.

We run the M-Files directly from the prompt line: type the file’s name and this will execute the
commands included in the M-File. As for an example suppose we create an M-File with the name
filename.m then the file is called as follows:

>> filename

and this will execute whatever the files tells MATLABr to do. The following figure shows how the
M-File editor works:
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M-File Editor Utility Menu 

Line Numbers 

Different M-Files  

Saves and Runs the file  

Workspace: 
Type you commands 

Commented sections  

Active M-File 

A.1.5 Programming in MATLABr

Defining variables

A variable is a name made of a letter or several letters that are assigned to a numerical value that can
be used in statements, functions, or any MATLABr command. It is a name of a memory location. In
MATLABr, the = sign is the assignment operator. In other words,

Variable = Numerical_Value or computable_expression.

Notice that the left hand side of the assignment operator can include only one variable name. There
are basically two types of variables: Local and Global.

Local Variables are those that are called within a function or script, and are only valid for that
application. If several functions, and possibly the base workspace, all declare a particular name as
global, they all share a single copy of that variable. Any assignment to that variable, in any function, is
available to all the functions declaring it global. Students are encouraged to further investigate the use
of these definitions.
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Scripts and Functions

A function is capable of taking particular variables (called arguments) and doing something specific to
“return” some particular type of result. A function needs to start with the following line:

Function [return-values] = function_name(arguments)

and must save this file as a M-File with the function’s name function_name.m. MATLABr will recognize
this as a function. For an example:

 
 

 
 
 

  

Commands that produce 
the output  

% is used for 
commented sections  

Main M-File 
M-File Name: 

Same as function name 

Input arguments 

Function name

Output arguments 

A script is just a list of commands to be ran in some order. Placing these commands in a file that
ends in .m allows you to “run” the script by typing its name at the command line of the command
window. As an example let us create a script that calls the above function:
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Function called in M-File 

Saves and Runs the file  

Formatting commands 

% is used for 
commented sections  

Main M-File 

Calling function caedexample 

Calling function caedexample 

Calling function caedexample 

This produces the following output in the MATLABr Command Window:
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As we can see, by calling the function and asking for one output argument it will give the first

output-argument. The structure consists in providing the output from left to right as defined in the
function and whenever the arguments requested as an output are exceeded an error is returned.

Sub Functions

A subfunction, visible only to the other functions in the same file, is created by defining a new function
with the function keyword after the body of the preceding function or subfunction. For example, avg is
a subfunction within the file stat.m:

function [mean,stdev] = stat(x)

n = length(x);
mean = avg(x,n);
stdev =sqrt(sum((x-avg(x,n)).^2)/n);

function mean = avg(x,n)
mean = sum(x)/n;
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Subfunctions are not visible outside the file where they are defined. Functions normally return when the
end of the function is reached. Use a return statement to force an early return.

A.1.6 Diary on and diary off

Often we are interested in printing the output to an external file rather then seeing it on the command
window. MATLABr has the command diary for this purpose. DIARY saves all the text of the MATLABr

session to an output file. It causes a copy of all subsequent command window input and most of the
resulting command window output to be appended to the named file.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% How diary on and diary off works %
% %
% All output will be saved in the file: %
% ex3.txt %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Initial Commands %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
clc;
delete(’ex3.txt’) % ensure that the file does not exist
% otherwise it keeps writing below
% the previous data
diary(’ex3.txt’) % create the file
% can have any text extension
% including *.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Body of the script file %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
diary on % begins to print all output to file
.
.
.
diary off % stops printing to file
.
. % will not print to file after diary off
.
diary on % begins to print to file again
.
.
.
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diary off % stops printing to file
.
.
.
return;

A.1.7 Graphical Display of Functions

Plots are graphical representation of the data or function(s). A graphical display usually better commu-
nicates the behavior described by the function(s) or data provided. This substitutes huge tables with
the output and input data. MATLABr’s ability to plot is quite versatile and powerful. By no means, it
is intended that you will become an expert in plotting using MATLABr through this section, but that
you will be able to get started and with experience keeping expanding that knowledge.

2-D Plots

The most fundamental plotting command in MATLABr is plot. Normally, it uses line segments to
connect points given by two vectors of x and y coordinates. As an example:

>> t = pi*(0:0.02:2);

>> plot(t,sin(t))

The line may seem to be a smooth, continuous curve although it is connection of points. For example,

>> plot(t,sin(t),’o-’)

In the above example a circle is drawn at each of the points being connected. Just as t and sin(t) are
vectors, and not functions, curves in MATLABr are joined line segments. We can change line colors as
we plot, i.e., you now say

>> plot(t,cos(t),’r’)

which outputs a red curve representing cos(t).

Now, each time we run a MATLABr script to plot, it will overwrite the previous plot. If we do not
want to overwrite but plot two or more curves in MATLABr, we use the command hold on, i.e.,

>> plot(t,sin(t),’b’)
>> hold on
>> plot(t,cos(t),’r’)

c©2012 by Vijay K. Goyal. All Rights Reserved.



APPENDIX A. 656

We could also do multiple curves at once as shown in the following example (use column vectors):

>> t = (0:0.01:1)’;
>> plot(t,[t t.^2 t.^3])

We could give the plot a figure number, i.e.,

>> figure(1)
>> plot(t,sin(t),’b’)
>> figure(2)
>> plot(t,cos(t),’r’)

and each plot will be plotted in different figures opposed to overwriting the plots or having multiple
plots in one figure.

Other useful 2D plotting commands can be found in MATLABr’s help by typing:

>> help graph2d

3-D Plots

We often, graph 3D functions, for instance, plots of surfaces for functions such as f(x, y). These surface
plots also follow the connecting the points principle, although the details may be more complicated. The
first step for a surface plot is to create a grid of points in the x–y plane. This set of grid points are
points where f is evaluated to get the “dots” in 3D space. As an example:

>> x = pi*(0:0.02:1);
>> y = 2*x;
>> [X,Y] = meshgrid(x,y);
>> surf(X,Y,sin(X.^2+Y))

Once a 3D plot has been made, you can use the rotation button in the figure window to manipulate
the 3D viewpoint. There are additional menus that give you much more control of the view, too. The
surf plot begins by using meshgrid to make an x–y grid that is stored in the arrays X and Y. To see
the grid graphically, use

>> plot(X(:),Y(:),’k.’)

With the grid so defined, the expression

>> sin(X.^2+Y)
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is actually an array of values of z = sin(X2 + Y) on the grid. (This array could be assigned to another
variable if you wish.) Finally, surf makes a solid-looking surface in which color and apparent height
describe the given values of f . An alternative command mesh is similar to surf but makes a “wireframe”
surface.

We can also have 3D multi-plots, as follows:

>> x = pi*(0:0.02:1);
>> y = 2*x;
>> [X,Y] = meshgrid(x,y);
>> contour(X,Y,sin(X.^2+Y))
>> hold on
>> t = (0:0.01:3)’;
>> plot(t,[t t.^3])

Annotation

All graphs and figure should be always carefully labeled and explained to avoid any confusion or mis-
interpretation from the student. Hence, once the plots have been created, we proceed to label the axes
and give a title (even add a legend, if necessary). For example,

>> t = 2*pi*(0:0.01:1);
>> plot(t,sin(t))
>> xlabel(’time’)
>> ylabel(’amplitude’)
>> title(’Simple Harmonic Oscillator’)

You can also add legends, text, arrows, or text/arrow combinations to help label different data. If we
want to add Greek letters to the labels, titles, or legends we would do the following:

>> xlabel(’\gamma’)
>> ylabel(’\beta’)
>> title(’f(\alpha)’)

This will produce a x-label γ, y-label β and a title f(α).

Auto function plots

When plotting a mathematical expression, you must pick the evaluation points of the plot before calling
plot or surf. This extra step can be skipped by using special alternative MATLABr plotting commands,
i.e.,

>> ezplot( @(x) exp(3*sin(x)-cos(2*x)), [0 4] )

c©2012 by Vijay K. Goyal. All Rights Reserved.



APPENDIX A. 658

>> ezsurf( ’1/(1+x^2+2*y^2)’, [-3 3], [-3 3] )
>> ezcontour( @(x,y) x.^2-y.^2, [-1 1], [-1 1] )

Color

The coloring of lines and text is easy to understand. Each object has a Color property that can be
assigned an RGB (red, green, blue) vector whose entries are between zero and one. In addition many
one-letter string abbreviations are understood.

Surfaces are different. To begin with, the edges and faces of a surface may have different color
schemes, accessed by EdgeColor and FaceColor properties. You specify color data at all the points of
your surface. In between the points the color is determined by shading. In flat shading, each face or
mesh line has constant color determined by one boundary point. In interpolated shading, the color is
determined by interpolation of the boundary values. While interpolated shading makes much smoother
and prettier pictures, it can be very slow to render, particularly on printers. Finally, there is faceted
shading which uses flat shading for the faces and black for the edges. You select the shading of a surface
by calling shading after the surface is created.

Furthermore, there are two models for setting color data:

1. Indirect: Also called indexed. The colors are not assigned directly, but instead by indexes in a
lookup table called a colormap. This is how things work by default.

2. Direct: Also called truecolor. You specify RGB values at each point of the data.

Direct color is more straightforward, but it produces bigger files and is most suitable for photos and
similar images. Here’s how indirect mapping works. Just as a surface has XData, YData, and ZData
properties, with axes limits in each dimension, it also has a CData property and “color axis” limits. The
color axis is mapped linearly to the colormap, which is a 64× 3 list of RGB values stored in the figure.
A point’s CData value is located relative to the color axis limits in order to look up its color in the
colormap. By changing the figure’s colormap, you can change all the surface colors instantly. Consider
these examples:

>> [X,Y,Z] = peaks; % some built-in data
>> surf(X,Y,Z), colorbar
>> caxis % current color axis limits
ans = -6.5466 8.0752
>> caxis([-8 8]), colorbar % a symmetric scheme
>> shading interp
>> colormap pink
>> colormap gray
>> colormap(flipud(gray)) % reverse order

By default, the CData of a surface is equal to its ZData. But you can make it different and thereby
display more information. One use of this is for functions of a complex variable.
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>> [T,R] = meshgrid(2*pi*(0:0.02:1),0:0.05:1);
>> [X,Y] = pol2cart(T,R);
>> Z = X + 1i*Y;
>> W = Z.^2;
>> surf(X,Y,abs(W),angle(W)/pi)
>> axis equal, colorbar
>> colormap hsv % ideal for this situation

Saving figures

In MATLABr we have the versatility to make changes to an existing plot by avoiding the pain of having
to re-run the MATLABr script files. We can save a figure in a format that allows it to be recreated by
typing the following

>> saveas(gcf,’goyal.fig’)

If you save the current figure in a file goyal.fig. Later you can enter openfig goyal to recreate it.

There are three major issues that come up when you want to include some MATLABr graphics in a
document: file format, size and position, and color. The big difference in graphics file formats is between
vector and bitmap graphics. Bitmaps, including GIF, JPEG, PNG, and TIFF, are fine for photographs.
These formats fix the resolution of your image forever, whereas the resolution of your screen, your
printer, and a journal’s printer may be different. Vector formats are usually a much better choice and
they include EPS and WMF. The choice here depends somewhat on your platform and word processor. For
example, to export the current MATLABr figure to file goyal.eps, use

>> saveas(gcf,’myfig.eps’)
or
>> print -deps myfig

For color output use -depsc in the second position. EPS also works with MS Word, if you print on a
postscript printer. In this case it’s handy to use

>> print -deps -tiff myfig

in which case Word will be able to show a crude version of the graph in the document on screen.

To scale a figure before saving you need to enter

>> set(gcf,’paperpos’,[0 0 3 2.25])

where the units are in inches. Unfortunately, sometimes the axes or other elements need to be reposi-
tioned. To make the display match the paper output, you should enter

c©2012 by Vijay K. Goyal. All Rights Reserved.



APPENDIX A. 660

>> set(gcf,’unit’,’inch’,’pos’,[0 0 3 2.25])

The colored plots can be converted to grayscale. To do so, you should consider using colormap(gray)
or colormap(flipud(gray)), whichever gives less total black, before exporting the figure. Finally, the edges
of wireframe surfaces created by mesh are also converted to gray, often with poor results. Make them
all the lines black by entering

>> set(findobj(gcf,’type’,’surface’),’edgecolor’,’k’)

or by pointing and clicking.

A.1.8 Final Remarks on MATLABr

When it comes to programming, the basic tools for MATLABr are outlined in these past sections. Best
programming practices for MATLABr, as well as solutions to common problems can usually be found
within the MATLABr user groups throughout the internet. These groups are filled with experts and
new-comers of MATLABr who are most probably dealing with issues relevant to any question that you
as a new user might come across. Herein lays one of the most crucial benefits this software package
has to offer: its universality. It is so widely used in almost every science and research based industry,
that the knowledge and support base it has to offer is unequaled. Remember, there is no “right” way to
possibly teach a person how to program or develop an algorithm, since these tasks depend so much on
the application and the user’s taste and skills. These are skills a programmer acquires through practice,
experience, and of course, consulting with others who have had previous experience with many of the
same problems you might encounter.

MATLABr is a very powerful programming and simulation tool which has grown throughout the
years to better meet the demands of each industry it strives to serve. Hopefully these tools provided
may serve as a stepping stone for further programming knowledge and skill development as you become
acquainted with MATLABr.

MATLABr is a very practical, convenient tool to have when solving many computational problems
we are faced with, not only as engineering students, but as engineers and researches as well.
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A.2 Linear Algebra

Let us begin by defining some algebraic terms used throughout this book. A linear system of equations
can often be expressed in terms of a matrix and vectors, which contains all the information about the
system that is necessary to determine its solution, but in a compact form. Thus, let us review basic
concepts regarding matrices and vectors.

A.2.1 Matrices

An n ×m matrix is a rectangular array of elements with n rows and m columns in which not only is
the value of an element important, but also its position in the array. The matrices will be denoted by
a capital letter in a bold font along with a bar under the letter, e.g., A. For an example, an n × m
rectangular matrix, A, is:

A =




a11 a12 · · · a1j · · · a1m

a21 a22 · · · a2j · · · a2m

...
...

. . .
... · · ·

...
ai1 ai2 · · · aij · · · aim
...

...
...

...
. . .

...
an1 an2 · · · anj · · · anm




(A.1)

In MATLABr, matrices are defined as follows:

>> A=[1 2 3; 2 3 4]

A =

1 2 3
2 3 4

Note that each rows is separated by a semicolon and column are separated by spaces. The square
brackets represent the beginning of the matrix (“[”) and the ending of the matrix (“]”). Columns may
also be separated by commas:

>> A=[1, 2, 3; 2, 3, 4]

A =

1 2 3
2 3 4

Another alternative is to directly type the matrix:
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>> A = [1 2 3 % press "return" after the number "3" is typed
2 3 4]

A =

1 2 3
2 3 4

>> A = [1, 2, 3 % press "return" after the number "3" is typed
2, 3, 4] % with commas (no comma at the end of "3" because

% a new row will begin)

A =

1 2 3
2 3 4

The above is a 2 × 3 matrix: a matrix with two rows and three columns. In MATLABr, we can
determine the size of a matrix as follows:

>> [n,m]=size(A)

n =

2

m =

3

Each entry of the matrix is called element of matrix. The lowercase letters with double subscripts,
such as aij are used to refer to the entry at the intersection of the ith row and jth column. In the
double-subscript notation for each element, the first script always denotes the row and the second the
column in which the given entry stands. In MATLABr, the element in the second row and third column
is extracted as follows:

>> A(2,3)

ans =

4

The matrices in MATLABr can also be defined element by element:

>> A(1,1) = 1;
A(1,2) = 2;
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A(1,3) = 3;
A(2,1) = 2;
A(2,2) = 3;
A(2,3) = 4;
A

A =

1 2 3
2 3 4

In extracting values from a matrix, the use of subscripts outside the current matrix dimensions results
in error:

>> A(1,5)
??? Index exceeds matrix dimensions.

Squared Matrix

A square matrix has the same number of rows as columns, e.g., n = m. For an example, an n×n square
matrix, A, is:

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


 (A.2)

An n×n matrix is known as a squared matrix of order n. In MATLABr, a squared matrix is represented
as follows:

>> B=[1 2 3; 2 3 4; -2 3 0]

B =

1 2 3
2 3 4
-2 3 0

>> size(B)

ans =

3 3

As we can see the above matrix has the same number of rows (n = 3) and columns (m = 3).
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Symmetric Matrix

A symmetric matrix is a squared matrix where aij = aji. For an example, an n× n symmetric matrix,
A, is:

A =




a11 a12 · · · a1n

a12 a22 · · · a2n

...
...

. . .
...

a1n a2n · · · ann


 (A.3)

If we have only the upper half of the matrix in MATLABr,

>> A=[1 2 3; 0 7 4; 0 0 -10]

A =

1 2 3
0 7 4
0 0 -10

(note that the matrix was initialized to zero), then the symmetric matrix can be found as follows:

>> A=A’+A-diag(diag(A))

A =

1 2 3
2 7 4
3 4 -10

Diagonal Matrix

A diagonal matrix is a square matrix that has nonzero entries along the principal diagonal and any entry
above or below the principal diagonal must be zero. For an example, an n× n diagonal matrix, D, is:

D =




d11 0 · · · 0

0 d22
. . .

...
...

. . . . . . 0
0 · · · 0 dnn




(A.4)

A diagonal matrix in MATLABr can be easily defined as follows:

>> d=[1 2 3 4]

d =
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1 2 3 4

>> diag(d)

ans =

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

We can also extract the diagonal of a matrix as follows:

>> A=[1 2 3; 2 7 4; 3 4 -10]

A =

1 2 3
2 7 4
3 4 -10

>> diag(A)

ans =

1
7
-10

>> diag(diag(A))

ans =

1 0 0
0 7 0
0 0 -10

Identity Matrix

A special case of diagonal matrices is the identity matrix. The identity matrix of order n is defined by
a capital bold letter I along with a bar under the letter. For an example,

I =




1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1




(A.5)
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In MATLABr, the identity matrix can be defined in two different ways:

>> I=eye(3)

I =

1 0 0
0 1 0
0 0 1

>> I=eye(3,3)

I =

1 0 0
0 1 0
0 0 1

Suppose we have defined the matrix A

>> A=[1 2 3 5; 3 4 4 6; 0 1 -10 9; 10 -2 0 73]

A =

1 2 3 5
3 4 4 6
0 1 -10 9
10 -2 0 73

In order to generate an identity matrix of the same size in MATLABr, we do the following:

>> eye(size(A))

ans =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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Zero Matrix

A special type of matrices is the zero matrix. The zero matrix of order n is defined by a capital bold
letter 0 along with a bar under the letter. For an example,

0 =




0 0 · · · 0

0 0
. . .

...
...

. . . . . . 0
0 · · · 0 0




(A.6)

In MATLABr, we can define the zero matrix as follows:

>> T=zeros(4)

T =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

>> T=zeros(4,4)

T =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

>> T=zeros(4,7)

T =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

>> T=zeros(4,7,2)

T(:,:,1) =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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T(:,:,2) =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

>> T=zeros(4,3,2,2)

T(:,:,1,1) =

0 0 0
0 0 0
0 0 0
0 0 0

T(:,:,2,1) =

0 0 0
0 0 0
0 0 0
0 0 0

T(:,:,1,2) =

0 0 0
0 0 0
0 0 0
0 0 0

T(:,:,2,2) =

0 0 0
0 0 0
0 0 0
0 0 0

As we can see, we can have zero matrices in two-dimensions, three-dimensions, and so-and-so forth. As
in any computer programming, all matrices must be initialized to zero before we start to use them within
the program.
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A.2.2 Vectors

Column Vectors

An n-dimensional column vector is an n× 1 matrix and it is defined with a lowercase bold letter along
with a bar under the letter. For an example, for an n-dimensional column vector, x, is:

x =





x1

x2

...
xi
...
xn





(A.7)

In MATLABr, we define each element separated by a semicolon:

>> x=[1;2;3;4;5]

x =

1
2
3
4
5

or

>> x = [1 % press "return" after the number "1" is typed
2 % press "return" after the number "2" is typed
3 % press "return" after the number "3" is typed
4 % press "return" after the number "4" is typed
5]

x =

1
2
3
4
5

or we can define it element by element:

>> x(1,1) = 1;
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x(2,1) = 2;
x(3,1) = 3;
x(4,1) = 4;
x(5,1)=5;
x

x =

1
2
3
4
5

When defining a vector element by element in MATLABr, the default is a column vector.

Row Vectors

An n-dimensional row vector is a 1× n matrix and it is defined with a lowercase bold letter along with
a bar under the letter. For an example, for an n-dimensional row vector, y, is:

y =
{
y1 y2 · · · yj · · · yn

}
(A.8)

In MATLABr, we define each element by separating them by a comma or a space:

>> y=[1 2 3 4 5]

y =

1 2 3 4 5

>> y=[1, 2, 3, 4, 5]

y =

1 2 3 4 5

or we can define it element by element:

>> y(1,1) = 1;
y(1,2) = 2;
y(1,3) = 3;
y(1,4) = 4;
y(1,5) = 5;
y
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y =

1 2 3 4 5

Note that we have to specify the two dimensions (row number as one and the column numbers) in order
to obtain a row vector.

Zero Column Vectors

An n-dimensional zero column vector is a vector where all elements have a zero value. For an example,
for an n-dimensional column vector, 0, is:

0 =





0
0
...
0





(A.9)

A zero column vector in MATLABr is defined as follows:

>> w=zeros(3,1)

w =

0
0
0

Zero Row Vectors

An n-dimensional zero row vector is a vector where all elements have a zero value. For an example, for
an n-dimensional row vector, 0, is:

0 =
{

0 0 · · · 0
}

(A.10)

A zero row vector in MATLABr is defined as follows:

>> q=zeros(1,3)

q =

0 0 0
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Equally spaced vector

In MATLABr, there is no need to use a for loop to create a vector with q equally spaced elements
between s and t. We can easily create a row vector using the command

linspace(startValue,endValue,numberofElements)=linspace(s,t,q)

Example A.1.

Suppose we want to create a vector with 7 equally-spaced elements between 0 and 20:

>> x=linspace(0,20,7)

x =

0 3.3333 6.6667 10.0000 13.3333 16.6667 20.0000

Suppose we want to create a vector with 7 equally-spaced elements between −0.3 and 0.2:

>> x=linspace(-0.3,0.2,7)

x =

-0.3000 -0.2167 -0.1333 -0.0500 0.0333 0.1167 0.2000

Note that only row vectors are created. To obtain column vectors, take the transpose:

>> x=linspace(-0.5,0.5,11)’

x =

-0.5000
-0.4000
-0.3000
-0.2000
-0.1000

0
0.1000
0.2000
0.3000
0.4000
0.5000

End Example �
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Also, a simple vector with numbers can be created using

>> x=-1:5

x =

-1 0 1 2 3 4 5

>> x=1:5

x =

1 2 3 4 5

MATLABr has a very powerful and highly compact syntaxis referred to as colon notation. This notation
can be used either to create vectors or, combined with subscript notation, to extract ranges of matrix
elements. We can use two forms of colon notation:

vector = startValue:endValue

vector = startValue:increment:endValue

Example A.2.

For an example,

>> y=3:5

y =

3 4 5

>> y=0:0.1:0.5

y =

0 0.1000 0.2000 0.3000 0.4000 0.5000

End Example �
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A.2.3 Matrix and Vector Operations

Extracting Rows or Columns from a Matrix

A colon can be used as a wild card to refer to an entire row or column of a matrix. For an example,

>> A=[1 2 3 4
5 6 7 8
6 1 0 3]

A =

1 2 3 4
5 6 7 8
6 1 0 3

>> A(:,1)

ans =

1
5
6

>> A(1,:)

ans =

1 2 3 4

Transpose of a Matrix

The transpose of a matrix is obtained by flipping the rows and columns. For an example, the transpose
of the matrix A would be:

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


 AT =




a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · anm


 (A.11)

where AT is called the transpose of A. Likewise we can take the transpose of a vector:

c =





c1
c2
...
cn





cT =
{
c1 c2 . . . cn

}
(A.12)
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In MATLABr the transpose operator is the single quote appended to a matrix or vector.

Example A.3.

Determine the transpose of the following vectors and matrices:

A =
[

1 2 3
2 3 4

]
y =

{
1 2 3 4 5

}
x =





1
2
3
4
5





>> A = [1 2 3
2 3 4]

A =

1 2 3
2 3 4

>> A’

ans =

1 2
2 3
3 4

>> y=[1 2 3 4 5]

y =

1 2 3 4 5

>> y’

ans =

1
2
3
4
5

>> x=[1;2;3;4;5]

x =
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1
2
3
4
5

>> x’

ans =

1 2 3 4 5

We should be very careful in using transposes in MATLABr, because a single quote is
a small character that may be easy to miss. As a result, errors caused by extraneous or
missing transpose operators can be literally hard to see.

End Example �

As with the linspace function, colon expressions create row vectors by default. To create a column
vector instead, enclose the expression in parentheses and append the transpose operator:

>> y=(0:0.1:0.5)’

y =

0
0.1000
0.2000
0.3000
0.4000
0.5000

The parentheses are necessary because the transpose operator has higher precedence than the colon:

>> y=0:0.1:0.5’

y =

0 0.1000 0.2000 0.3000 0.4000 0.5000

Tabular Column Vectors

The MATLABr statement that follows create a matrix using column vectors
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>> x=[1 2 3 4 5]

x =

1 2 3 4 5

>> y=[1;2;3;4;5]

y =

1
2
3
4
5

>> D=[x’ y]

D =

1 1
2 2
3 3
4 4
5 5

Trigonometric Function Values

Apply the trigonometric functions to vectors, creates vectors containing the values of trigonometric
functions.

>> x=linspace(0,2*pi,6)

x =

0 1.2566 2.5133 3.7699 5.0265 6.2832

>> s=sin(x)

s =

0 0.9511 0.5878 -0.5878 -0.9511 -0.0000

>> c=cos(x)

c =

1.0000 0.3090 -0.8090 -0.8090 0.3090 1.0000
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>> t=tan(x)

t =

0 3.0777 -0.7265 0.7265 -3.0777 -0.0000

>> ee=exp(x)

ee =

1.0000 3.5136 12.3453 43.3762 152.4060 535.4917

If the vector x is a column vector then the result will be a column vector; if the vector x is a row vector
then the result will be a row vector.

Matrix Addition or substraction

Two matrices can be added together or subtracted from each other provided that they are of the same
size (each matrix, has the same number of rows and columns). For an example, we can add or subtract
the matrix A of dimension m × n to matrix B of dimension m × n by adding or subtracting the like
elements:

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


 B =




b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn




A±B =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


±




b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn




=




(a11 ± b11) (a12 ± b12) · · · (a1n ± b1n)
(a21 ± b21) (a22 ± b22) · · · (a2n ± b2n)

...
...

. . .
...

(am1 ± bm1) (am2 ± bm2) · · · (amn ± bmn)


 (A.13)

=




c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn


 (A.14)

In compact form,
cij = aij ± bij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n
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Example A.4.

Consider the following rectangular matrices:

A =




1 2 3 4
5 6 7 8
4 5 6 7


 B =




1 2 3
4 5 6
7 8 4
5 6 7




Determine

a) Size of A

b) Size of B

c) A + B

d) A + BT

e) AT + B

>> A=[1 2 3 4; 5 6 7 8; 4 5 6 7]

A =

1 2 3 4
5 6 7 8
4 5 6 7

>> [nA,mA]=size(A)

nA =

3

mA =

4

>> B=[1 2 3; 4 5 6; 7 8 4; 5 6 7]

B =

1 2 3
4 5 6
7 8 4
5 6 7

>> [nB,mB]=size(B)
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nB =

4

mB =

3

>> A+B % note [3x4]+[4x3] is not the same size
??? Error using ==> plus Matrix dimensions must agree.

>> A’+B % note [4x3]+[4x3] is the same size

ans =

2 7 7
6 11 11
10 15 10
9 14 14

>> A+B’ % note [3x4]+[3x4] is the same size

ans =

2 6 10 9
7 11 15 14
7 11 10 14

End Example �

Inner (dot) Product of Vectors

The inner product or dot product is obtained by the multiplication of a row vector, say a, by the column
vector, say b. The length of the vectors must be the same (the number of rows of a must equal the
number of columns of b):

a =
{
a1 a2 . . . an

}
︸ ︷︷ ︸

1×n

b =





b1
b2
...
bn





︸ ︷︷ ︸
n×1

(A.15)
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Thus, the inner product is then defined as:

a · b =
{
a1 a2 . . . an

}
︸ ︷︷ ︸

1×n

·





b1
b2
...
bn





︸ ︷︷ ︸
n×1

=
n∑

i=1

ai bi = a1 b1 + a2 b2 + . . .+ an bn

(A.16)

Note it produces a scalar. If the number of rows of the first vector is not the same as the number of
columns of the second vector then the dot product cannot be performed.

One should not confuse the dot product with:

b · a =





b1
b2
...
bn





︸ ︷︷ ︸
n×1

·
{
a1 a2 . . . an

}
︸ ︷︷ ︸

1×n

= produces a n× n matrix
(A.17)

A dot product will produce a scalar and not a matrix.
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Example A.5.

Let x and y be both row vectors of size 1× 4 and defined as:

x =
{

1 2 3 4
}

y =
{
−1 −2 −3 −4

}

Determine the inner (dot) product.

>> x=[1 2 3 4]

x =

1 2 3 4

>> y= [-1 -2 -3 -4]

y =

-1 -2 -3 -4

Note that the inner dimensions must be the same:

>> x*y % [1x4] x [1x4]
??? Error using ==> mtimes Inner matrix dimensions must agree.

The following produces a dot product:

>> dot(x,y)

ans =

-30

End Example �
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Scalar-Matrix Multiplication

When a matrix A of size m× n is multiplied by a scalar quantity such as β, the operation results in a
matrix of the same size m × n, whose elements are the product of elements in the original matrix and
the scalar quantity. For an example, consider a matrix A of size m × n. Then, the product C = βA
will produce an m× n matrix C:

C = βA = β




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




︸ ︷︷ ︸
m×n

=




β a11 β a12 · · · β a1n

β a21 β a22 · · · β a2n

...
...

. . .
...

β am1 β am2 · · · β amn




︸ ︷︷ ︸
m×n

=




c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn




︸ ︷︷ ︸
m×n

(A.18)

Example A.6.

Consider the following 3× 4 matrix A:

A =




1 −2 0 1
2 3 −4 5
10 3 5 −20




Determine:

a) βA where β = −1
b) βA where β = 0
c) βA where β = 10

>> A=[1 -2 0 1
2 3 -4 5
10 3 5 -20]

A =

1 -2 0 1
2 3 -4 5
10 3 5 -20

c©2012 by Vijay K. Goyal. All Rights Reserved.



APPENDIX A. 684

Let us take β = −1:

>> (-1)*A

ans =

-1 2 0 -1
-2 -3 4 -5

-10 -3 -5 20

>> -A % same as multiplying a minus one to A

ans =

-1 2 0 -1
-2 -3 4 -5

-10 -3 -5 20

Let us take β = 0:

>> 0*A

ans =

0 0 0 0
0 0 0 0
0 0 0 0

It produces the zero matrix instead of a scalar zero! Finally, let us take β = 10:

>> 10*A

ans =

10 -20 0 10
20 30 -40 50

100 30 50 -200

As we can see, each matrix element is multiplied by the scalar.

End Example �
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Matrix-Matrix Multiplication

Whereas any size matrix can be multiplied by a scalar quantity, matrix multiplication cannot be per-
formed for any size of matrices. Consider the following two matrices

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




︸ ︷︷ ︸
m×n

B =




b11 b12 · · · b1q
b21 b22 · · · b2q
...

...
. . .

...
bn1 bn2 · · · bnq




︸ ︷︷ ︸
n×q

(Assume m 6= q)

The product of the two matrices can be performed if and only if the number of columns of the premul-
tiplier matrix is equal to the number of rows of the postmultiplier matrix. For an example, consider the
above matrices. Then, the product C = A B (in this order) of an m× n matrix A and an n× q matrix
B will produce an m× q matrix C:

A B =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




︸ ︷︷ ︸
m×n




b11 b12 · · · b1q
b21 b22 · · · b2q
...

...
. . .

...
bn1 bn2 · · · bnq




︸ ︷︷ ︸
n×q

=




c11 c12 · · · c1q
c21 c22 · · · c2q
...

...
. . .

...
cm1 cm2 · · · cmq




︸ ︷︷ ︸
m×q

(A.19)

In order to obtain the elements of matrix C, recall that the first subscript in cmq represents the row and
the second one represents the column. Then,

cmq =
(
mth row of A

)
·
(
qth column of B

)

=
[
am1 am2 · · · amn

]
·




b1q
b2q
...
bnq


 =

n∑

k=1

amk bkq
(A.20)

where the “·” represents the inner or dot product.
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However,

B A =




b11 b12 · · · b1q
b21 b22 · · · b2q
...

...
. . .

...
bn1 bn2 · · · bnq




︸ ︷︷ ︸
n×q




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




︸ ︷︷ ︸
m×n

= can not be performed when q 6= m

(A.21)

Example A.7.

Consider the following matrices

A =




1 2 3 4
5 6 7 8
4 5 6 7


 B =




1 2 3
4 5 6
7 8 4
5 6 7




Determine:

a) A B

b) B A

c) AT B

d) A BT

>> A=[1 2 3 4; 5 6 7 8; 4 5 6 7]

A =

1 2 3 4
5 6 7 8
4 5 6 7

>> B=[1 2 3; 4 5 6; 7 8 4; 5 6 7]

B =

1 2 3
4 5 6
7 8 4
5 6 7

>> A*B % [3x4] x [4x3] = [3x3]

ans =
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50 60 55
118 144 135
101 123 115

>> B*A % [4x3] x [3x4] = [4x4]

ans =

23 29 35 41
53 68 83 98
63 82 101 120
63 81 99 117

>> A’*B % [4x3] x [4x3]: m not equal to n
??? Error using ==> mtimes Inner matrix dimensions must agree.

>> A*B’ % [3x4] x [3x4]: m not equal to n
??? Error using ==> mtimes Inner matrix dimensions must agree.

End Example �

Example A.8.

Consider the following vectors

x =
{

1 2 3 4
}

y =
{
−1 −2 −3 −4

}

Determine:

a) y xT

b) x yT

c) yT x

d) xT y

Note we can obtain the dot product by using matrix multiplication rules (note the transpose
on x)

>> x=[1 2 3 4]
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x =

1 2 3 4

>> y=[-1 -2 -3 -4]

y =

-1 -2 -3 -4

>> y*x’ % [1x4] x [4x1] = [1x1] =scalar
% (note the transpose on x)

ans =

-30

>> x*y’ % [1x4] x [4x1] = [1x1] =scalar
% (note the transpose on y)

ans =

-30

The following is not a dot product but a matrix

>> x’*y % [4x1] x [1x4] = [4x4]

ans =

-1 -2 -3 -4
-2 -4 -6 -8
-3 -6 -9 -12
-4 -8 -12 -16

>> y’*x % [4x1] x [1x4] = [4x4]

ans =

-1 -2 -3 -4
-2 -4 -6 -8
-3 -6 -9 -12
-4 -8 -12 -16

End Example �
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Element-by-Element Multiplication

The array operator symbols are a combination of a period and one of the conventional operators.
Element-by-element multiplication is obtained with the “ .* ” operator, element-by-element division
is obtained with the “ . / ” operator:

>> x=[1 2 3 4]

x =

1 2 3 4

>> y=[9; 10; 11; 12]

y =

9
10
11
12

>> x.*y
??? Error using ==> times Matrix dimensions must agree.

>> x.*y’

ans =

9 20 33 48

>> x./y’

ans =

0.1111 0.2000 0.2727 0.3333

>> x.^2

ans =

1 4 9 16

Array operations apply to matrices as well as vectors (note that this is an element-by-element multipli-
cation, thus the matrices must be of the same size):

>> A=[1 2 3 4; 5 6 7 8; 4 5 6 7]
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A =

1 2 3 4
5 6 7 8
4 5 6 7

>> B=[1 2 3; 4 5 6; 7 8 4; 5 6 7]

B =

1 2 3
4 5 6
7 8 4
5 6 7

>> A.*B % [3x4] .x [4x3] = not possible

??? Error using ==> times Matrix dimensions must agree.

>> B.*A % [4x3] x [3x4] = not possible

??? Error using ==> times Matrix dimensions must agree.

>> A’.*B % [4x3] x [4x3]

ans =

1 10 12
8 30 30
21 56 24
20 48 49

>> A.*B’ % [3x4] x [3x4]
??? Error using ==> mtimes Inner matrix dimensions must agree.

ans =

1 8 21 20
10 30 56 48
12 30 24 49

The array exponentiation operator raises the individual elements of a matrix to a power:

>> A=[1 2 3 4; 5 6 7 8; 4 5 6 7]

A =

1 2 3 4
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5 6 7 8
4 5 6 7

>> A.^2

ans =

1 4 9 16
25 36 49 64
16 25 36 49

>> A.^(1/2)

ans =

1.0000 1.4142 1.7321 2.0000
2.2361 2.4495 2.6458 2.8284
2.0000 2.2361 2.4495 2.6458

Also, trigonometric functions may be evaluated:

>> x=linspace(0,2*pi,5)

x =

0 1.5708 3.1416 4.7124 6.2832

>> y=sin(x)./cos(x)

y =

1.0e+016 *

0 1.6331 -0.0000 0.5444 -0.0000

>> y=tan(x)

y =

1.0e+016 *

0 1.6331 -0.0000 0.5444 -0.0000

In the above example, we see that both methods produce the same result.
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Determinant of a matrix

Obtaining the determinant of a matrix can be of great importance in engineering problems such as
solving eigenvalue problems. Thus, here only a brief review on how to obtain the determinant of a
square matrix is given. It should be clear that we can only obtain the determinant of square matrices.
A determinant is represented by long bars (|.|) and it is an expression associated with a squared matrix.

Various methods exist in finding the determinant of a matrix. However, here we discuss only one of
them. Let us begin with a 2× 2 matrix:

A =
[
a11 a12

a21 a22

]
(A.22)

Then, the determinant of matrix A is

det [A] =
∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ = a11 a22 − a12 a21

Now, consider a 3× 3 matrix:

A =



a11 a12 a13

a21 a22 a23

a31 a32 a33


 (A.23)

Let us eliminate the first row. However, we can eliminate any row or even columns, just follow the
following checkerboard pattern

+ − +
− + −
+ − +

Then, the determinant of matrix A is

det [A] =

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11

∣∣∣∣
a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣
a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣
a21 a22

a31 a32

∣∣∣∣

Only the determinant of a squared matrix is defined. In general, it is a single number although for some
problems, such as dynamics problems, it may lead to a polynomial expression.

In MATLABr the determinants are found as follows:

>> A=[1 2 3 4; 5 6 7 8; 4 5 6 7; 3 -4 -5 6]

A =

1 2 3 4
5 6 7 8
4 5 6 7
3 -4 -5 6

>> det(A)
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ans =

0

>> B=[10 2 3 4; 5 6 7 8; 4 5 6 7; 3 -4 -5 6]

B =

10 2 3 4
5 6 7 8
4 5 6 7
3 -4 -5 6

>> det(B)

ans =

108

Singular matrix

A squared matrix is a singular matrix if its determinant is zero. An alternative approach could be to find
the eigenvalues of the matrix and show that at least one eigenvalue is zero. Solution to the eigenvalue
problem will be discussed later in this chapter.

In the above example, matrix A is singular, whereas matrix B is not.

Inverse of a matrix

In the set of real numbers, we know that for each real number a 6= 0 there exists a real number a−1 such
that

a a−1 = 1

The number a−1 is called the inverse of the number a relative to multiplication, or multiplicative inverse
of a. We use this idea to define the inverse of a squared matrix.

If A is a nonsingular squared matrix of order n and if there exists a matrix A−1 such that

A A−1 = I

then A−1 is called the inverse of A. To better understand the definition, let us consider the following
example.
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Review of Matrix Row Operations:

Before we proceed let us review basic row operations. There are three basic operations used on the rows
of a matrix when we are trying to find either the inverse of a matrix or the solve to a system of linear
equations. The goal is usually to get the left part of the matrix to look like the identity matrix. To
illustrate three operations let us consider the following matrix:




2 −2 1
3 1 −1
1 −3 2

1 0 0
0 1 0
0 0 1




1. Switching rows: We can switch any row and obtain a new matrix. For instance, let us start by
choosing the leftmost nonzero column and get a 1 at the top row. This is done by switching the
first and third rows:




2 −2 1
3 1 −1
1 −3 2

1 0 0
0 1 0
0 0 1


 R1 ↔ R3 ⇒




1 −3 2
3 1 −1
2 −2 1

0 0 1
0 1 0
1 0 0




We can repeat this step anytime during the procedure. Note that, it is a good idea to use some
form of notation (such as the arrows and subscripts above) in order to keep track of the work.
Matrices operations can be very messy and this may help to check the work in case of errors.

2. Multiplying a Row by a Number: We can multiply any row by a number. (This means
multiplying every entry in the row by the same number.) For instance, we may multiply the first
row by three:




1 −3 2
3 1 −1
2 −2 1

0 0 1
0 1 0
1 0 0


 R1 → 3R1 ⇒




3 −9 6
3 1 −1
2 −2 1

0 0 3
0 1 0
1 0 0




Note all others remained untouched. We may multiply two rows at once:



1 −3 2
3 1 −1
2 −2 1

0 0 1
0 1 0
1 0 0


 R1 → 3R1

R3 → 0.5R3
⇒




3 −9 6
3 1 −1
1 −1 0.5

0 0 3
0 1 0

0.5 0 0




3. Adding or Subtracting Rows: We can add two rows together, and replace a row with the
result. By doing so, we can “reduce” (get more leading zeroes in) the second or third row by
adding the first row to it (the general goal with matrices at this stage being to get a “1” or “0’s”
and then a “1” at the beginning of each matrix row). For instance, use multiples of the first row
to get zeros below the one obtained in the previous step:



1 −3 2
3 1 −1
2 −2 1

0 0 1
0 1 0
1 0 0


 R2 → R2 − 3R1 ⇒




1 −3 2
0 10 −7
2 −2 1

0 0 1
0 1 −3
1 0 0




As we can see we get a zero in the first column of the second row.

4. Important Note: If the equations represented by the original matrix represent identical or parallel
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lines, we will not be able to get the identity matrix using these row operations. In this case, the
solution either does not exist or there are infinitely many solutions to the system.

Example A.9.

Determine the inverse of the following squared matrix:

A =
[

2 3
1 2

]

We are looking for

A−1 =
[
a c
b d

]

such that
A A−1 = I

[
2 3
1 2

] [
a c
b d

]
=
[

1 0
0 1

]

We are trying to find a, b, c, and d so that the product of A and A−1 is the indentity matrix
I. Hence, multiplying the left side we get

A A−1 = I
[

2 3
1 2

] [
a c
b d

]
=
[

(2 a+ 3 b) (2 c+ 3 d)
(a+ 2 b) (c+ 2 d)

]
=
[

1 0
0 1

]

This produces a system of equations with four unknowns:

(2 a+ 3 b) = 1
(2 c+ 3 d) = 0

(a+ 2 b) = 0
(c+ 2 d) = 1

The solution to this system of equations is a = 2, b = −1, c = −3, d = 2. Thus, the inverse is

A−1 =
[

2 −3
−1 2

]

However, the method outlined above for finding the inverse, if it exists, gets very involved
for matrices of order larger than 2. Now, that we know what we are looking for let us use the
concept of augmented matrices to simplify the process. Basically, the idea is the following.
Write the matrix as follows:

[
2 3
1 2

1 0
0 1

]
=
[

A I
]

Now, we try to perform operations on matrix 1 until we obtain a row-equivalent matrix that
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looks like matrix 2, i.e., [
1 0
0 1

a b
c d

]
=
[

I B
]

If the above can be done then the new matrix to the right of the vertical bar is the inverse
of A,

B = A−1

Let us do this step-by-step.
[

2 3
1 2

1 0
0 1

]
=
[

A I
]

Let us start by multiplying the second row by 2 and subtract it from the first row
[

2 3
1 2

1 0
0 1

]
R2 → 2R2 −R1 ⇒

[
2 3
0 1

1 0
−1 2

]

Now, let us multiply the second row by 3 and subtract first row from the second row
[

2 3
0 1

1 0
−1 2

]
R1 → R1 − 3R2 ⇒

[
2 0
0 1

4 −6
−1 2

]

Lastly, let us divide the first row by 2:
[

2 0
0 1

4 −6
−1 2

]
R1 →

R1

2
⇒

[
1 0
0 1

2 −3
−1 2

]

End Example �

The inverse of a matrix may be easily evaluated in MATLABr using the following command

inv(matrix)

The command inv(A) gives the inverse of the square matrix A. A warning message is printed if A is
badly scaled or nearly singular.

Example A.10.
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Determine the inverse of the following matrices

A =




1 2 3
4 5 6
7 8 9


 B =




1 2 3
4 5 6
−9 −8 −7


 C =




2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2




>> A=[1:3; 4:6; 7:9]

A =

1 2 3
4 5 6
7 8 9

>> inv(A)
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 1.541976e-018.

ans =

1.0e+016 *

-0.4504 0.9007 -0.4504
0.9007 -1.8014 0.9007

-0.4504 0.9007 -0.4504

>> B=[1:3; 4:6; -9:-7]

B =

1 2 3
4 5 6
-9 -8 -7

>> inv(B)
Warning: Matrix is singular to working precision.

ans =

Inf Inf Inf
Inf Inf Inf
Inf Inf Inf

>> C=[2 -1 0 0; -1 2 -1 0; 0 -1 2 -1; 0 0 -1 2]

C =

2 -1 0 0
-1 2 -1 0
0 -1 2 -1
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0 0 -1 2

>> inv(C)

ans =

0.8000 0.6000 0.4000 0.2000
0.6000 1.2000 0.8000 0.4000
0.4000 0.8000 1.2000 0.6000
0.2000 0.4000 0.6000 0.8000

End Example �

Example A.11.

Determine the inverse by hand and using MATLAB of the following matrix:

A =




2 −2 1
3 1 −1
1 −3 2




The solution is obtained by:



2 −2 1
3 1 −1
1 −3 2

1 0 0
0 1 0
0 0 1


 =

[
A I

]

If the inverse exists then the above can be expressed as follows:
[

I B
]

Let’s apply matrix row operations. First, let us switch the first and third rows:



2 −2 1
3 1 −1
1 −3 2

1 0 0
0 1 0
0 0 1


 R1 ↔ R3 ⇒




1 −3 2
3 1 −1
2 −2 1

0 0 1
0 1 0
1 0 0




Now, continue to apply the matrix operations.



1 −3 2
3 1 −1
2 −2 1

0 0 1
0 1 0
1 0 0


 R2 → R2 − 3R1 ⇒




1 −3 2
0 10 −7
2 −2 1

0 0 1
0 1 −3
1 0 0
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1 −3 2
0 10 −7
2 −2 1

0 0 1
0 1 −3
1 0 0


 R3 → R3 − 2R1 ⇒




1 −3 2
0 10 −7
0 4 −3

0 0 1
0 1 −3
1 0 −2




Now, we repeat the previous step but to make sure that the element in the second row and
second column is one:



1 −3 2
0 10 −7
0 4 −3

0 0 1
0 1 −3
1 0 −2


 R2 →

1
10
R2 ⇒




1 −3 2
0 1 −0.7
0 4 −3

0 0 1
0 0.1 −0.3
1 0 −2




Now, we need a zero in the third row and second column:



1 −3 2
0 1 −0.7
0 4 −3

0 0 1
0 0.1 −0.3
1 0 −2


 R3 → R3 − 4R2 ⇒




1 −3 2
0 1 −0.7
0 0 −0.2

0 0 1
0 0.1 −0.3
1 −0.4 −0.8




Now, we need a one at B33,



1 −3 2
0 1 −0.7

0 0 −0.2

0 0 1
0 0.1 −0.3
1 −0.4 −0.8


 R3 → −5R3 ⇒




1 −3 2
0 1 −0.7
0 0 1

0 0 1
0 0.1 −0.3
−5 2 4




Now, we need to have zeros at B12, B13 and B23:



1 −3 2
0 1 −0.7
0 0 1

0 0 1
0 0.1 −0.3
−5 2 4


 R2 → R2 +

7
10
R3 ⇒




1 −3 2
0 1 0
0 0 1

0 0 1
−3.5 1.5 2.5
−5 2 4







1 −3 2
0 1 0
0 0 1

0 0 1
−3.5 1.5 2.5
−5 2 4


 R1 → R1 − 2R3 ⇒




1 −3 0
0 1 0
0 0 1

10 −4 −7
−3.5 1.5 2.5
−5 2 4







1 −3 0
0 1 0
0 0 1

10 −4 −7
−3.5 1.5 2.5
−5 2 4


 R1 → R1 + 3R2 ⇒




1 0 0
0 1 0
0 0 1

−0.5 0.5 0.5
−3.5 1.5 2.5
−5 2 4




Hence, the inverse is:

B = A−1




1 0 0
0 1 0
0 0 1




Let us verify this solution using MATLAB:

>> A=[2 -2 1; 3 1 -1; 1 -3 2]

A =

2 -2 1
3 1 -1
1 -3 2

>> B=inv(A)
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B =

-0.5000 0.5000 0.5000
-3.5000 1.5000 2.5000
-5.0000 2.0000 4.0000

End Example �

A.2.4 General Rules for Matrix Operations

When performing matrix operations, we should keep in mind couple of rules. MATLABr has these rules
integrated, so the output will always satisfy the following rules of operation:

(a) Matrix operation is not commutative except for very special cases, e.g.,

A B 6= B A

(b) Matrix multiplication is associative, e.g,

A (B C) = (A B) C

(c) The distributive law holds true for matrix multiplication, e.g.,

A (B + C) = A B + A C

or
(A + B) C = A C + B C

(d) For a squared matrix, the matrix may be raised to an integer power n in the following manner:

An = A A · · ·A︸ ︷︷ ︸
n times

(e) The identity matrix is a squared matrix matching size of A. Then, the following can be shown:

A I = I A = A

(f) If the transpose of a matrix produces the same matrix then the matrix is symmetric:

AT = A = symmetric

(g) The transpose of a matrix times the same matrix, always produces a symmetric matrix:

AT A = B = symmetric or A AT = C = symmetric
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(h) When we take the transpose of the transpose of the matrix, we get the same matrix:
[
AT
]T

= A

(i) When performing matrix operations dealing with transpose of matrices, the following identities are
true: [

A + B + · · ·+ Z
]T

= AT + BT + · · ·+ ZT

[
A B · · ·Z

]T
= ZT · · ·BT AT

Note the change in the order of multiplication.

(j) When performing matrix operations dealing with inverse of matrices, the following identities are
true: [

A + B + · · ·+ Z
]−1

= A−1 + B−1 + · · ·+ Z−1

[
A B · · ·Z

]−1

= Z−1 · · ·B−1 A−1

Note the change in the order of multiplication.

A.2.5 Norm of a Vector

Suppose we have an n× 1 column vector x:

x =





x1

x2

...
xi
...
xn





The Euclidean norm of the vector x is defined as

‖x‖2 =

√√√√
n∑

i=1

x2
i (A.24)

The above norm is also known as the L2 norm and it represents the usual notion of the distance from
the origin. If x is a column vector then the norm can also be expressed as

‖x‖2 =
√

xT · x (A.25)

where xT is the transpose of x and “·” represents the inner product. If y is a 1× n row vector then the
norm is ∥∥y

∥∥
2

=
√

y · yT (A.26)

where yT is the transpose of y.
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The built-in norm function in MATLABr computes p-norms of vectors:

‖x‖p =
{
|x1|p + |x2|p + · · ·+ |xn|p

}1/p

‖x‖∞ = max (|x1| , |x2| , . . . , |xn|)
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Example A.12.

Consider the row vector:
x =

{
−2 −1 0 1 2

}

Determine

a) L1 norm.

b) L2 norm.

c) L3 norm.

d) L∞ norm.

Consider the following row vector

>> x=-2:2

x =

-2 -1 0 1 2

If only one argument is passed to norm, then the Euclidean (L2) norm is returned:

>> norm(x)

ans =

3.1623

A second argument is used to specify the value of p:

>> norm(x,1)

ans =

6

>> norm(x,2)

ans =

3.1623

>> norm(x,3)
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ans =

2.6207

>> norm(x,Inf)

ans =

2

End Example �
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A.3 Solution to Linear System of Equations

Consider the following linear system of equations:

a11 x1 + a12 x2 + · · · + a1n xn = b1

a21 x1 + a22 x2 + · · · + a2n xn = b2

... +
... +

. . . +
... =

...

an1 x1 + an2 x2 + · · · + ann xn = bn

The above system of equations can be expressed in matrix form as follows:




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann








x1

x2

...
xn





=





b1
b2
...
bn





or in compact form as follows:
A x = b

where A is an n× n known square matrix, x an n× 1 unknown column vector, and b an n× 1 known
column vector. To obtain the unknown vector x, we can do the following:

A x = b → A−1 A x = A−1 b → I x = A−1 b → x = A−1 b

In MATLAB,

x=inv(A)*b

The inverse of a matrix is very costly, and in some cases cumbersome to obtain, especially for very large
matrices. In fact, it is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of
inv arises when solving the system of linear equations of the form

A x = b

A more efficient way to solve this in MATLABr, from both an execution time and numerical accuracy
standpoint, is to use the matrix division operator “\”:

x=A\b

This produces the solution using Gaussian elimination, without forming the inverse. The MATLABr

command
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MLDIVIDE(A,b) % should be all lowercase

is called for the syntax “A\b” when A or b is an object.

Before we proceed with an example, let us review some important statements, which are equivalent
for any n× n matrix A, in solving linear system of equations:

a) The equation A x = 0 has the unique solution x = 0.

b) The linear system A x = b has a unique solution for any n-dimensional column vector b.

c) The matrix A is nonsingular; that is, A−1 exists, and det [A] 6= 0.

Example A.13.

Solve the following system of equations:

2x1 − 2x2 + x3 = 3
3x1 + x2 − x3 = 7
x1 − 3x2 + 2x3 = 0

The above can be written in matrix form as follows:

A x = b



2 −2 1
3 1 −1
1 −3 2







x1

x2

x3



 =





3
7
0





The solution is obtained by:
A x = b

A−1 A x = A−1 b

I x = A−1 b = c

Using Gauss-Jordan elimination,



2 −2 1
3 1 −1
1 −3 2

3
7
0


 =

[
A b

]

If the above can be done then the new vector to the right of the vertical bar will be the
solution, [

I c
]
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Let us start by choosing the leftmost nonzero column and get a 1 at the top row:



2 −2 1
3 1 −1
1 −3 2

3
7
0


 R1 ↔ R3 ⇒




1 −3 2
3 1 −1
2 −2 1

0
7
3




Now, we use multiples of the first row to get zeros below the one obtained in the previous
step:




1 −3 2
3 1 −1
2 −2 1

0
7
3


 R2 → R2 − 3R1 ⇒




1 −3 2
0 10 −7
2 −2 1

0
7
3







1 −3 2
0 10 −7
2 −2 1

0
7
3


 R3 → R3 − 2R1 ⇒




1 −3 2
0 10 −7
0 4 −3

0
7
3




Now, we repeat the previous step but to make sure that the element in the second row and
second column is one:




1 −3 2
0 10 −7
0 4 −3

0
7
3


 R2 →

1
10
R2 ⇒




1 −3 2
0 1 −0.7
0 4 −3

0
0.7
3




Now, we need a zero in the third row and second column:



1 −3 2
0 1 −0.7
0 4 −3

0
0.7
3


 R3 → R3 − 4R2 ⇒




1 −3 2
0 1 −0.7
0 0 −0.2

0
0.7
0.2




Now, we need a one at B33,



1 −3 2
0 1 −0.7
0 0 −0.2

0
0.7
0.2


 R3 → −5R3 ⇒




1 −3 2
0 1 −0.7
0 0 1

0
0.7
−1




Now, we need to have zeros at B12, B13 and B23:



1 −3 2
0 1 −0.7
0 0 1

0
0.7
−1


 R2 → R2 +

7
10
R3 ⇒




1 −3 2
0 1 0
0 0 1

0
0
−1







1 −3 2
0 1 0
0 0 1

0
0
−1


 R1 → R1 − 2R3 ⇒




1 −3 0
0 1 0
0 0 1

2
0
−1







1 −3 0
0 1 0
0 0 1

2
0
−1


 R1 → R1 + 3R2 ⇒




1 0 0
0 1 0
0 0 1

2
0
−1




Hence, the solution is: 



x1

x2

x3



 =





2
0
−1
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Let us verify this solution using MATLAB:

>> A=[2 -2 1; 3 1 -1; 1 -3 2]

A =

2 -2 1
3 1 -1
1 -3 2

>> b=[3; 7; 0]

b =

3
7
0

>> x=inv(A)*b

x =

2.0000
0.0000

-1.0000

>> x=mldivide(A,b)

x =

2.0000
0.0000

-1.0000

>> x=A\b

x =

2.0000
0.0000

-1.0000

End Example �
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A.4 Polynomial Approximation

For many type of problems, we do not have the actual polynomial but a set of data points. For such
cases, we may built an approximate polynomial that fits the data using interpolation functions.

A.4.1 Lagrange Interpolation Functions

For a set of data points:

{(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xn, yn)} for i = 1, 2, . . . , n (n > 0)

the elementary Lagrange interpolation formula is

Lni (x) =
n∏

j=1,j 6=i

x− xj
xi − xj

, i = 1, 2, . . . , n (A.27)

where Lni (x) is a polynomial with degree no greater than n − 1. Its value at any data point xk within
the data set is either 1 or 0:

Lni (xk) =
n∏

j=1,j 6=i

xk − xj
xi − xj

= δik =
{

0, fori 6= k;
1, fori = k

(A.28)

Thus, the Lagrange interpolation polynomial of degree n− 1 is

pn−1(x) =
n∑

i=1

yi L
n
i (x) (A.29)

For the simplest case where n = 1, there are only two data points:

{(x1, y1), (x2, y2)}

and is a linear function which passes through the two data points. Thus, is just a straight line with its
two end points being the two data points:

p1(x) = y1
x− x2

x1 − x2
+ y2

x− x1

x2 − x1

For n = 3, there are only three data points:

{(x1, y1), (x2, y2), (x3, y3)}

and it is a quadratic polynomial that passes through three data points:

p1(x) = y1
(x− x2) (x− x3)

(x1 − x2) (x1 − x3)
+ y2

(x− x1) (x− x3)
(x2 − x1) (x2 − x3)

+ y3
(x− x1) (x− x2)

(x3 − x1) (x3 − x2)
(A.30)

An advantageous property of the Lagrange interpolation polynomial is that the data points do not need
to be arranged in any particular order, as long as they are mutually distinct. Thus, the order of the
data points is irrelevant. For an application of the Lagrange interpolation polynomial, say we know y1
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and y2 or y1,y2 and y3, then we can estimate the function y(x) anywhere in x ∈ [x1, x2] linearly and
x ∈ [x1, x3] quadratically. This is what we do in finite element analysis.

A.4.2 Newton Interpolating Polynomial

Suppose there is a known polynomial pn−1(x) that interpolates the data set:

{(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xn, yn)} for i = 1, 2, . . . , n (n > 0)

When one more data point (xn+1, yn+1), which is distinct from all the old data points, is added to the
data set, we can construct a new polynomial that interpolates the new data set. Keep also in mind that
the new data point does not need to be at the end of the old data set. Consider the following polynomial
of degree n

pn(x) = pn−1(x) + cn

n∏

i=1

(x− xi) (A.31)

where cn is an unknown constant. In the case of n = 1, we specify p0(x) as

p0(x) = y1

where data point 1 does not need to be at the beginning of the data set. If we expand the recursive
form, the right-hand-sides of the above equation, we obtain the more familiar form of a polynomial

pn−1(x) = c0 + c1 (x− x1) + c2 (x− x1) (x− x3) + · · ·+ cn (x− x1) (x− x2) · · · (x− xn) (A.32)

which is called the Newton’s interpolation polynomial. Its constants can be determined from the data
set:

p0(x1) = y1 = c0

p1(x2) = y2 = c0 + c1 (x2 − x1)

p2(x3) = y3 = c0 + c1 (x3 − x1) + c2 (x3 − x1) (x3 − x2)

which gives
c0 = y1

c1 =
y2 − c0
x2 − x1

c2 =
y3 − c0 − c1 (x3 − x1)
(x3 − x1) (x3 − x2)

Thus,

cn =
pn (xn+1)− pn−1 (xn+1)

n∏

i=1

(xn+1 − xi)
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We should note that forcing the polynomial through data with no regard for rates of change in the
data (i.e., derivatives) results in a C0 continuous interpolating polynomial. Alternatively, each data
condition p(xi) = yi is called a C0 constraint. It is important to realize that both the Lagrange and
Newton polynomials are C0 continuous and each would generate the same result.

A.4.3 Hermite Interpolation Polynomial

The Hermite interpolation accounts for the derivatives of a given function. The advantage is that it
takes information regarding the slope at the known point.

1. Consider: y = a x3 + b x2 + c x+ d and x ∈ [0, 1].

2. Apply conditions
x = 0 ;x = 1

Case 1: y = 1, y′ = 0; y = 0, y′ = 0

Case 2: y = 0, y′ = 1; y = 0, y′ = 0

Case 3: y = 0, y′ = 0; y = 1, y′ = 0

Case 4: y = 0, y′ = 0; y = 0, y′ = 1

3. Solve each case for a, b, c, d.
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A.5 Numerical Integration

An important aspect of isoparametric finite element analysis is the use of an appropriate numerical
integration scheme. Whether a one-, two- or three-dimensional integrals, we usually do not employ
exact integration. Although it might seems practical, it is good for only very few cases. In fact,
numerical integration with modern computers can be obtained in faster and more convenient manner
than using exact close form solutions to finite element equations. The close form solutions are good
in understanding how the finite element method is employed, however the computer implementation
uses numerical methods rather than close form solutions. In general, the required integrals in the finite
element calculations have the form

∫
F (ξ) dξ;

∫∫
F (ξ, η) dξ dη;

∫∫∫
F (ξ, η, ζ) dξ dη dζ

in the one-, two-, and three-dimensional cases, respectively. These integrals can be approximated nu-
merically by using weighted factors as follows:

∫
F (ξ) dξ =

∑

i

wi F (ξi) + Rn

∫∫
F (ξ, η) dξ dη =

∑

j

∑

i

wij F (ξi, ηj) + Rn

∫∫∫
F (ξ, η, ζ) dξ dη dζ =

∑

k

∑

j

∑

i

wijk F (ξi, ηj , ζk) + Rn

where the summations extend over all i, j, and k specified, the weighting factors are wi’s and Fi’s are
the matrices evaluated at the ith point. The matrices Rn are the error matrices which in practice we
ignore in the calculation.

Here, we present the theory and practical implications of numerical integrations. As the case of most
numerical techniques, we are interested in accuracy and hence the number of required integration points
plays a big role here. Basically, the finite element method uses widely two integration schemes:

1. Newton-Cotes: Requires (n + 1) function evaluations to integrate without error a polynomial of
order n.

2. Gauss quadrature: Requires n function evaluations to integrate exactly a polynomial of order
(2n− 1).

Here, we will discuss the Gauss quadrature because in the finite element analysis a large number of
function evaluations directly increases the cost of analysis and hence this method is more attractive for
the fewer number of function evaluations. However, we also use the Newton-Cotes formulas because
they may be more efficient for nonlinear analysis. Once we choose the appropriate integration scheme,
we need to determine the order of numerical integration in evaluated the various finite element integrals.
The choice of the order of numerical integration is important because first the cost increases when a
higher-order integration is employed, and secondly using different integration orders may vary the results
by a large amount.
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A.5.1 One-Dimensional Gauss Rules

The numerical integration scheme that is mainly adopted and accepted in most of the finite element
applications is known as Gauss-Legendre Quadrature3, or simply Gaussian quadratures. The main
reason to use this scheme is because they use an interval from −1 to +1, as is the case of isoparametric
finite element formulations. The basic goal behind the Gauss-Legendre formulas is to represent an
integral in terms of the sum of product of certain weighting coefficients and the value of the function at
some selected points.

To better explain this, consider the integral over a linear domain:

I =
∫ xb

xa

f(x) dx

Now, we map the local coordinates to the natural coordinates, as follows:

x =
(
xb + xa

2

)
+
(
xb − xa

2

)
ξ

Hence, the isoparametric representation, as shown in Fig. A.2, is

I =
∫ xb

xa

f(x) dx =
∫ 1

−1

f(ξ) |J| dξ

where the Jacobian is defined as

J =
[
∂x

∂ξ

]

 

X 

x 

0 ℓk 

X=0 X=L 

LOCAL COORDINATES 

GLOBAL COORDINATES 

x 

-1 1 

NATURAL COORDINATES 

0 

X 

Y 

x 
x=0 x=a

y 

y=0

y=b
x 

x=-1 x=1

h 

h=-1 

h=1 

GLOBAL COORDINATES LOCAL COORDINATES NATURAL COORDINATES 

ONE-DIMENSIONAL 

TWO-DIMENSIONAL 

Local coordinate Natural coordinate 

Figure A.2: The kth linear element in local and mapped coordinates.

Since the we are performing a linear mapping, |J| will be a constant number, hence

I =
∫ xb

xa

f(x) dx = |J|
∫ 1

−1

f(ξ) dξ ≈ |J|
n∑

i=1

wi f(ξi)

we usually use two-, three-, four-, and five-point samplings. The weighted factors are given in Table A.1.
Note that as we increase the evaluation points, the accuracy of the integral calculation increases.

3The term quadrature means numerical integration.
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If ng is the number of Gauss points, the polynomial of order p that can be integrated exactly is given
by

p ≤ 2ng − 1

The reason for this is that the polynomial of order p is defined by p+ 1 parameters. Hence, the number
of integration points we need to integrate a polynomial of order p exactly is given by

ng ≥
p+ 1

2

We can calculate the Gauss quadrature points and weights for any number of integration points, as
given in Table A.1. In the finite element program, we usually program these values once so that we do
not have to obtain there values repeatedly. Figure A.3 shows the first five one-dimensional Gauss rules.
Sample point locations are marked with black circles. The radii of those circles are proportional to the
integration weights. Table A.1 summarizes the one-dimensional Gauss rules.

11–9 §11.5 NUMERICAL INTEGRATION BY GAUSS RULES

§11.5. Numerical Integration by Gauss Rules

The following material on numerical integration is transcribed here from Chapter 17
of the IFEM Notes for convenience. The Gauss quadrature information modules listed
below are used in the element implementations covered in the next two Chapters.

The use of numerical integration is essential for practical evaluation of integrals over isoparametric
element domains. The standard practice has been to use Gauss integration because such rules use a
minimal number of sample points to achieve a desired level of accuracy. This economy is important
for efficient element calculations, since a matrix product is evaluated at each sample point. The
fact that the location of the sample points in Gauss rules is usually given by non-rational numbers
is of no concern in digital computation.

p = 1

p = 2

p = 3

p = 4

p = 5

ξ = −1 ξ = 1

Figure 11.3. The first five unidimensional Gauss rules p = 1, 2, 3, 4, 5 depicted over the
line segment ξ ∈ [−1, +1]. Sample point locations are marked with black circles. The radii

of those circles are proportional to the integration weights.

§11.5.1. One Dimensional Rules

The classical Gauss integration rules are defined by

∫ 1

−1
F(ξ) dξ ≈

p∑
i=1

wi F(ξi ). (11.19)

Here p ≥ 1 is the number of Gauss integration points (also known as sample points), wi are the
integration weights, and ξi are sample-point abcissae in the interval [−1,1]. The use of the canonical
interval [−1,1] is no restriction, because an integral over another range, say from a to b, can be
transformed to [−1, +1] via a simple linear transformation of the independent variable, as shown
in the Remark below.

The first five unidimensional Gauss rules, illustrated in Figure 11.3, are listed in Table 11.1. These
integrate exactly polynomials in ξ of orders up to 1, 3, 5, 7 and 9, respectively. In general a
unidimensional Gauss rule with p points integrates exactly polynomials of order up to 2p −1. This
is called the degree of the formula.

11–9

Figure A.3: Gauss one-dimensional numerical integrations sample points over a line segment ξ ∈ [−1,+1]
for Gauss rules p = 1, 2, 3, 4, 5.

c©2012 by Vijay K. Goyal. All Rights Reserved.



APPENDIX A. 715

Table A.1: One-Dimensional Gauss Rules with 1 through 6 sampling points (interval −1 to +1).

Points Order of Polynomial Weighting factors Evaluation points
(n) (p) (wi) (ξi)

1 p ≤ 1 w1 = 2 ξ1 = 0

2 p ≤ 3 w1 = 1 ξ1 = −1/
√

3

w2 = 1 ξ2 = 1/
√

3

w1 = 5/9 ξ1 = −
√

3/5
3 p ≤ 5 w2 = 8/9 ξ2 = 0

w3 = 5/9 ξ3 =
√

3/5

w1 = 1/2−
√

5/216 ξ1 = −
√

3/7 +
√

24/245

4 p ≤ 7 w2 = 1/2 +
√

5/216 ξ2 = −
√

3/7−
√

24/245

w3 = 1/2 +
√

5/216 ξ3 =
√

3/7−
√

24/245

w4 = 1/2−
√

5/216 ξ4 =
√

3/7 +
√

24/245

w1 = (322− 13
√

70)/900 ξ1 = −
√

5/9 + 2
√

10/567

w2 = (322 + 13
√

70)/900 ξ2 = −
√

5/9− 2
√

10/567

5 p ≤ 9 w3 = 512/900 ξ3 = 0

w4 = (322 + 13
√

70)/900 ξ4 =
√

5/9− 2
√

10/567

w5 = (322− 13
√

70)/900 ξ5 =
√

5/9 + 2
√

10/567

w1 = 0.1713244924 ξ1 = −0.9324695142
w2 = 0.3607615730 ξ2 = −0.6612093865

6 p ≤ 11 w3 = 0.4679139346 ξ3 = −0.2386191861
w4 = 0.4679139346 ξ4 = 0.2386191861
w5 = 0.3607615730 ξ5 = 0.6612093865
w6 = 0.1713244924 ξ6 = 0.9324695142

The p are recommended only for polynomial and are not applicable for nonlinear equations not represented

by polynomials. For finite element analysis, programming for ng = 5 is good enough for linear finite element

analysis.
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Example A.14.

Use Gauss-Legendre Quadrature to evaluate the following integral:
∫ 6

2

(1 + x) (1− x2) dx

First, we proceed to express the integral in its isoparametric representation (map from x to
ξ):

x =
(
xb + xa

2

)
+
(
xb − xa

2

)
ξ → dx =

xb − xa
2

dξ

x = 4 + 2 ξ → dx = 2 dξ

Hence,
f(x) = (1 + x) (1− x2) → f(ξ) = (2ξ + 5)

(
1− (2ξ + 4)2

)

and the Jacobian is:

J =
[
dx

dξ

]
=
[

2
]
→ |J| = 2

Hence, the isoparametric representation is

I =
∫ b

a

f(x) dx = |J|
∫ 1

−1

f(ξ) dξ

I =
∫ 6

2

(1 + x) (1− x2) dx = |J|
∫ 1

−1

(2ξ + 5)
(
1− (2ξ + 4)2

)
dξ

The exact solution is (obtained through direct integration):

I = −1108
3

= −369.333

Using Gauss-Legendre Quadrature:

1. One-point
ξ1 = 0 w1 = 2 f1 = f(ξ1) = −75.00

Hence,
I ≈ |J| (w1 f1) = (2)

[
(2)(−75)

]
= −300

2. Two-point
ξ1 = −0.57735 w1 = 1 f1 = f(ξ1) = −27.2852
ξ2 = 0.57735 w2 = 1 f2 = f(ξ2) = −157.381

Hence,

I ≈ |J| (w1 f1 + w2 f2) = (2)
[
(1)(−27.2852) + (1)(−157.381)

]
= −369.333

3. Three-point (There is no need to continue since exact solution was achieved. However,
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just to highlight the methodology we will complete it.)

ξ1 = −0.774597 w1 = 0.555556 f1 = f(ξ1) = −17.2763
ξ2 = 0 w2 = 0.888889 f2 = f(ξ2) = −75.00
ξ3 = 0.774597 w3 = 0.555556 f3 = f(ξ3) = −195.124

Hence,

I ≈ |J| (w1 f1 + w2 f2 + w3 f3)

= (2)
[
(0.555556)(−17.2763) + (0.888889)(−75.00) + (0.555556)(−195.124)

]

= −369.333

1 2 3 4
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Figure A.4: Convergence plot for Example A.14.

End Example �
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Example A.15.

Gauss Rules to evaluate the following elemental stiffness matrix:

Ke =
∫ 80

0

[
− 1

80
1
80

] [
E
(

1 +
x

40

)2
] [
− 1

80
1
80

]
dx

First, we proceed to express the integral in its isoparametric representation (map from x to
ξ):

x =
(
xb + xa

2

)
+
(
xb − xa

2

)
ξ → dx =

xb − xa
2

dξ

x = 40 + 40 ξ → dx = 40 dξ

Hence,

F(x) =
[
− 1

80
1
80

] [
E
(

1 +
x

40

)2
] [
− 1

80
1
80

]
→

F(ξ) =
[
− 1

80
1
80

] [
E

(
1 +

40 + 40 ξ
40

)2
]
[
− 1

80
1
80

]

and the Jacobian is:

J =
[
dx

dξ

]
=
[

40
]
→ |J| = 40

Hence, the isoparametric representation is

Ke =
∫ b

a

F(x) dx = |J|
∫ 1

−1

F(ξ) dξ

Ke =
∫ 80

0

[
− 1

80
1
80

] [
E
(

1 +
x

40

)2
] [
− 1

80
1
80

]
dx

= 40
∫ 1

−1

[
− 1

80
1
80

] [
E

(
1 +

40 + 40 ξ
40

)2
]
[
− 1

80
1
80

]
dξ

The exact solution is (obtained through direct integration):

Ke =
∫ 80

0

[
− 1

80
1
80

] [
E
(

1 +
x

40

)2
] [
− 1

80
1
80

]
dx =

13E
240

[
1 −1
−1 1

]

Using Gauss-Legendre Quadrature:

1. One-point
ξ1 = 0 w1 = 2

F1 = F(ξ1) =
[
− 1

80
1
80

] [
E

(
1 +

40 + 40 ξ1
40

)2
]
[
− 1

80
1
80

]

=
[
− 1

80
1
80

] [
E

(
1 +

40
40

)2
]
[
− 1

80
1
80

]
=

E

1600

[
1 −1
−1 1

]
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Hence,

Ke ≈ |J|
(
w1 F1

)
= (40)

(
(2)

E

1600

[
1 −1
−1 1

])

=
12E
240

[
1 −1
−1 1

]

2. Two-point

ξ1 = −0.57735 w1 = 1 F1 = F(ξ1) =
[
− 1

80
1
80

] [
E

(
1 +

40 + 40 ξ1
40

)2
]
[
− 1

80
1
80

]

ξ2 = 0.57735 w2 = 1 F2 = F(ξ2) =
[
− 1

80
1
80

] [
E

(
1 +

40 + 40 ξ2
40

)2
]
[
− 1

80
1
80

]

ξ1 = −0.57735 w1 = 1 F1 =

(
−6 +

√
3
)2
E

57600

[
1 −1
−1 1

]

ξ2 = 0.57735 w2 = 1 F2 =

(
6 +
√

3
)2
E

57600

[
1 −1
−1 1

]

Hence,

Ke ≈ |J| (w1 F1 + w2 F2)

= (40)

{
(1)

((
−6 +

√
3
)2
E

57600

[
1 −1
−1 1

])
+ (1)

((
6 +
√

3
)2
E

57600

[
1 −1
−1 1

])}

=
13E
240

[
1 −1
−1 1

]

3. Three-point (There is no need to continue since exact solution was achieved.)

End Example �
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Example A.16.

Gauss Rules to evaluate the following elemental mass matrix:

Me =
∫ 80

0

[
1− x

80
x
80

] [
ρ
(

1 +
x

40

)2
] [

1− x
80

x
80

]
dx

First, we proceed to express the integral in its isoparametric representation (map from x to
ξ):

x =
(
xb + xa

2

)
+
(
xb − xa

2

)
ξ → dx =

xb − xa
2

dξ

x = 40 + 40 ξ → dx = 40 dξ

Hence,

F(x) =
[

1− x
80

x
80

] [
ρ
(

1 +
x

40

)2
] [

1− x
80

x
80

]
→

F(ξ) =
[

1− 40+40 ξ
80

40+40 ξ
80

] [
ρ

(
1 +

40 + 40 ξ
40

)2
]
[

1− 40+40 ξ
80

40+40 ξ
80

]

and the Jacobian is:

J =
[
dx

dξ

]
=
[

40
]
→ |J| = 40

Hence, the isoparametric representation is

Me =
∫ b

a

F(x) dx = |J|
∫ 1

−1

F(ξ) dξ

Me =
∫ 80

0

[
1− x

80
x
80

] [
ρ
(

1 +
x

40

)2
] [

1− x
80

x
80

]
dx

= 40
∫ 1

−1

[
1− 40+40 ξ

80
40+40 ξ

80

] [
ρ

(
1 +

40 + 40 ξ
40

)2
]
[

1− 40+40 ξ
80

40+40 ξ
80

]
dξ

The exact solution is (obtained through direct integration):

Me =
∫ 80

0

[
1− x

80
x
80

] [
ρ
(

1 +
x

40

)2
] [

1− x
80

x
80

]
dx =

ρ

6

[
384 336
336 1024

]

Using Gauss-Legendre Quadrature:

1. One-point
ξ1 = 0 w1 = 2

F1 = F(ξ1) =
[

1− 40+40 ξ1
80

40+40 ξ1
80

] [
ρ

(
1 +

40 + 40 ξ1
40

)2
]
[

1− 40+40 ξ1
80

40+40 ξ1
80

]

= ρ

[
1 −1
−1 1

]
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Hence,
Me ≈ |J|

(
w1 F1

)

= (40)
(

(2) ρ
[

1 −1
−1 1

])
=
ρ

6

[
480 480
480 480

]

2. Two-point
ξ1 = −0.57735 w1 = 1 F1 = F(ξ1)
ξ2 = 0.57735 w2 = 1 F2 = F(ξ2)

F1 = F(ξ1) =
[

1− 40+40 ξ1
80

40+40 ξ1
80

] [
ρ

(
1 +

40 + 40 ξ1
40

)2
]
[

1− 40+40 ξ1
80

40+40 ξ1
80

]

F2 = F(ξ2) =
[

1− 40+40 ξ2
80

40+40 ξ2
80

] [
ρ

(
1 +

40 + 40 ξ2
40

)2
]
[

1− 40+40 ξ2
80

40+40 ξ2
80

]

ξ1 = −0.57735 w1 = 1 F1 =
ρ

6

[
7.55342 7.55342
2.02393 2.02393

]

ξ2 = 0.57735 w2 = 1 F2 =
ρ

6

[
1.77992 1.77992
6.64273 6.64273

]

Hence,

Ke ≈ |J| (w1 F1 + w2 F2)

= (40)
{

(1)
(
ρ

6

[
7.55342 7.55342
2.02393 2.02393

])
+ (1)

(
ρ

6

[
1.77992 1.77992
6.64273 6.64273

])}

=
ρ

6

[
373.3 346.7
346.7 1013.3

]

3. Three-point

ξ1 = −
√

3/5 w1 = 5/9 F1 = F(ξ1)
ξ2 = 0.0 w2 = 8/9 F2 = F(ξ2)

ξ3 =
√

3/5 w3 = 5/9 F3 = F(ξ3)

F1 = F(ξ1) =
[

1− 40+40 ξ1
80

40+40 ξ1
80

] [
ρ

(
1 +

40 + 40 ξ1
40

)2
]
[

1− 40+40 ξ1
80

40+40 ξ1
80

]

F2 = F(ξ2) =
[

1− 40+40 ξ2
80

40+40 ξ2
80

] [
ρ

(
1 +

40 + 40 ξ2
40

)2
]
[

1− 40+40 ξ2
80

40+40 ξ2
80

]

F3 = F(ξ3) =
[

1− 40+40 ξ3
80

40+40 ξ3
80

] [
ρ

(
1 +

40 + 40 ξ3
40

)2
]
[

1− 40+40 ξ3
80

40+40 ξ3
80

]

ξ1 = −
√

3/5 w1 = 5/9 F1 =
ρ

6

[
7.09331 7.09331
0.900968 0.900968

]

ξ2 = 0.0 w2 = 8/9 F2 =
ρ

6

[
6 6
6 6

]

ξ3 =
√

3/5 w3 = 5/9 F3 =
ρ

6

[
0.586694 0.586694
4.61903 4.61903

]
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Hence,

Ke ≈ |J| (w1 F1 + w2 F2 + w3 F3)

= (40)
{(

5
9

)(
ρ

6

[
7.09331 7.09331
0.900968 0.900968

])
+
(

8
9

)(
ρ

6

[
6 6
6 6

])

+
(

5
9

)(
ρ

6

[
0.586694 0.586694
4.61903 4.61903

])}

=
ρ

6

[
384 336
336 1024

]

Note that for this mass matrix we require three-point integration. We need a higher-order
integration in calculating the mass matrix because it is obtained from the displacement
interpolation functions, whereas the stiffness matrix is calculated using derivatives of the
displacement functions. It is interesting to note that with too low an order of integration
the total mass of the element and the total load to which the element is subject is not taken
fully into account.

End Example �

Although we obtained the exact value of the integrals in the previous examples, this is absolutely
not true. In fact:

1. numerical integration is not always exact but an approximation

2. numerical integration converges to exactness as we increase the number of integration points.

Usually, when the integrand is a polynomial, one can achieve exact solution; however, in all other cases,
only approximations are achieved. The following example will help illustrate this point.
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Example A.17.

Use Gauss-Legendre Quadrature to evaluate the following integral:

I =
∫ 1

−1

ξ2 − 1
(ξ + 3)2 dξ

Note that this integral is expressed in its isoparametric representation. Hence, we we can
proceed to directly use Gauss Rules at this point. The integrand is:

f(ξ) =
ξ2 − 1

(ξ + 3)2

The exact solution is (obtained through direct integration):

I =
∫ 1

−1

ξ2 − 1
(ξ + 3)2 dξ = 4− ln(64) = −0.158883

Using Gauss-Legendre Quadrature:

1. One-point
ξ1 = 0 w1 = 2 f1 = f(ξ1) = −0.111111

Hence,
I ≈ w1 f1 = (2)(−0.111111) = −0.222222

2. Two-point
ξ1 = −0.57735 w1 = 1 f1 = f(ξ1) = −0.113587
ξ2 = 0.57735 w2 = 1 f2 = f(ξ2) = −0.0520938

Hence,

I ≈ w1 f1 + w2 f2 = (1)(−0.113587) + (1)(−0.0520938) = −0.16568

3. Three-point

ξ1 = −0.774597 w1 = 0.555556 f1 = f(ξ1) = −0.0807686
ξ2 = 0 w2 = 0.888889 f2 = f(ξ2) = −0.111111
ξ3 = 0.774597 w3 = 0.555556 f3 = f(ξ3) = −0.0280749

Hence,

I ≈ w1 f1 + w2 f2 + w3 f3

= (0.555556)(−0.0807686) + (0.888889)(−0.111111) + (0.555556)(−0.0280749) = −0.159234
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4. Four-point

ξ1 = −0.861136 w1 = 0.347855 f1 = f(ξ1) = −0.0564938
ξ2 = −0.339981 w2 = 0.652145 f2 = f(ξ2) = −0.124993
ξ3 = 0.339981 w3 = 0.652145 f3 = f(ξ3) = −0.0792806
ξ4 = 0.861136 w4 = 0.347855 f4 = f(ξ4) = −0.0564938

Hence,

I ≈ w1 f1 + w2 f2 + w3 f3 + w4 f4

= (0.347855)(−0.0564938) + (0.652145)(−0.124993)
+ (0.652145)(−0.0792806) + (0.347855)(−0.0173355) = −0.158898

As we can see that we never reach the exact value, instead we convergence to the exact value.
We can increase the convergence by increasing the number of sampling or Gauss points.
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Figure A.5: Convergence plot for Example A.17.

End Example �
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A.5.2 2D Gauss Rules for a Quadrilateral Domain

To better explain this, consider the surface integral over a quadrilateral domain:

I =
∫ yb

ya

∫ xb

xa

f(x, y) dx dy

Now, we map the local coordinates to the natural coordinates, as follows:

x =
(
xb + xa

2

)
+
(
xb − xa

2

)
ξ, y =

(
yb + ya

2

)
+
(
yb − ya

2

)
η

Hence, the isoparametric representation, as shown in Fig. A.6, is

I =
∫ yb

ya

∫ xb

xa

f(x, y) dx dy =
∫ 1

−1

∫ 1

−1

f(ξ, η) |J| dξ dη

where the Jacobian is defined as

J =




∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η




Since the we are performing a linear mapping, |J| will be a constant number, hence

I =
∫ yb

ya

∫ xb

xa

f(x, y) dx dy = |J|
∫ 1

−1

∫ 1

−1

f(ξ, η) dξ dη

 

(x1,y1) 

(x2,y2) (x3,y3) 

1 

2 3 

x 

y 

ξ

η

Local coordinate Natural coordinate 

3 
(1,1,0) 

2 
(1,−1,0)

1 
(−1, −1,0)

4 
(x4,y4) 

4 
(−1,1,0)

1 
(−1, −1) 

2 
(1, −1) 

3 
(1, 1) 

4 
(−1,1) 

2 

1 
3 4 

Figure A.6: The kth four-node bilinear quadrilateral element in local and mapped coordinates.
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Integration on square elements usually relies on tensor products of the one-dimensional formulas,
which we illustrated in Section A.5.1. Thus, the application of 1D Gauss Rules to a two-dimensional
integral on a canonical [−1, 1]× [−1, 1] square domain yields the approximation:

I = |J|
∫ 1

−1

{∫ 1

−1

f(ξ, η) dξ
}
dη ≈ |J|

∫ 1

−1

{
n∑

i=1

wi f(ξi, η)

}
dη ≈ |J|

m∑

j=1

wj

{
n∑

i=1

wi f(ξi, ηj)

}

≈ |J|
n∑

i=1

m∑

j=1

wi wj f(ξi, ηj)

where n and m are the number of Gauss points in the ξ and η directions, respectively. Usually, we choose
n = m if we choose the same shape function in the ξ and η directions. The weighted factors are those
given for one-dimensional Gauss rules in Table A.1. Figure A.7 shows the first four two-dimensional
Gauss product rules for quadrilateral regions. Sample point locations are marked with black circles.

 

ξ

η 

(1×1 rule) 

1 
(−1, −1) 

2 
(1, −1) 

3 
(1, 1) 

4 
(−1,1) 

ξ

η

1 
(−1, −1) 

2 
(1, −1) 

3 
(1, 1) 

4 
(−1,1) 

(2×2 rule) 

ξ

η 

(3×3 rule) 

1 
(−1, −1) 

2 
(1, −1) 

3 
(1, 1) 

4 
(−1,1) 

ξ

η

1 
(−1, −1) 

2 
(1, −1) 

3 
(1, 1) 

4 
(−1,1) 

(4×4 rule) 

Figure A.7: Gauss two-dimensional numerical integration sample points over a straight-sided quadrilat-
eral region (ξ ∈ [−1,+1], η ∈ [−1,+1]) for Gauss product rules 1× 1, 2× 2, 3× 3, 4× 4.
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Example A.18.

Using 1 through 3 product rules in Gauss-Legendre Quadrature, evaluate the following two-
dimensional integral defined over a quadrilateral region:

∫ 2

0

∫ 6

2

(
1 +

1
x2

) (
1− (x y)2

)
dx dy

First, we proceed to express the integral in its isoparametric representation (map from x to
ξ):

x =
(
xb + xa

2

)
+
(
xb − xa

2

)
ξ → x = 4 + 2 ξ

y =
(
yb + ya

2

)
+
(
yb − ya

2

)
η → y = 1 + η

Hence,

f(x, y) =
(

1 +
1
x2

) (
1− (x y)2

)
→ f(ξ, η) =

(
1 +

1
(2ξ + 4)2

)(
1− (η + 1)2(2ξ + 4)2

)

and the Jacobian is:

J =




∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η


 =




2 0

0 1


 → |J| = 2

Hence, the isoparametric representation is

I = |J|
∫ 1

−1

{∫ 1

−1

f(ξ, η) dξ
}
dη ≈ |J|

n∑

i=1

m∑

j=1

wi wj f(ξi, ηj)

The exact solution is (obtained through direct integration):

I =
∫ 2

0

∫ 6

2

(
1 +

1
x2

) (
1− (x y)2

)
dx dy = −1682

9
= −186.889

Using Gauss-Legendre Quadrature:

1. One-point

ξ1 = 0 → wξ1 = 2
η1 = 0 → wη1 = 2

}
→ f11 = f(ξ1, η1) = −15.9375

Hence,
I ≈ |J| (wξ1 wη1 f11)

= (2)
[
(2)(2)(−15.9375)

]
= −127.5
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2. Two-point

ξ1 = −0.57735 → wξ1 = 1
η1 = −0.57735 → wη1 = 1

}
→ f11 = f(ξ1, η1) = −0.501274

ξ1 = −0.57735 → wξ1 = 1
η2 = 0.57735 → wη2 = 1

}
→ f12 = f(ξ1, η2) = −21.507

ξ2 = 0.57735 → wξ2 = 1
η1 = −0.57735 → wη1 = 1

}
→ f21 = f(ξ2, η1) = −3.88744

ξ2 = 0.57735 → wξ2 = 1
η2 = 0.57735 → wη2 = 1

}
→ f22 = f(ξ2, η2) = −67.5598

Hence,

I ≈ |J| (wξ1 wη1 f11 + wξ1 wη2 f12 + wξ2 wη1 f21 + wξ2 wη2 f22)

= (2)
[
(1)(1)(−0.501274) + (1)(1)(−21.507) + (1)(1)(−3.88744) + (1)(1)(−67.5598)

]

= −186.911

3. Three-point

ξ1 = −0.774597 → wξ1 = 0.555556
η1 = −0.774597 → wη1 = 0.555556

}
→ f11 = f(ξ1, η1) = 0.810513

ξ1 = −0.774597 → wξ1 = 0.555556
η2 = 0.00000 → wη2 = 0.888889

}
→ f12 = f(ξ1, η2) = −5.83997

ξ1 = −0.774597 → wξ1 = 0.555556
η3 = 0.774597 → wη3 = 0.555556

}
→ f13 = f(ξ1, η3) = −20.8982

ξ2 = 0.00000 → wξ2 = 0.888889
η1 = −0.774597 → wη1 = 0.555556

}
→ f21 = f(ξ2, η1) = 0.198787

ξ2 = 0.00000 → wξ2 = 0.888889
η2 = 0.00000 → wη2 = 0.888889

}
→ f22 = f(ξ2, η2) = −15.9375

ξ2 = 0.00000 → wξ2 = 0.888889
η3 = 0.774597 → wη3 = 0.555556

}
→ f23 = f(ξ2, η3) = −52.4738

ξ3 = 0.774597 → wξ2 = 0.555556
η1 = −0.774597 → wη1 = 0.555556

}
→ f31 = f(ξ3, η1) = −0.58285

ξ3 = 0.774597 → wξ2 = 0.555556
η2 = 0.00000 → wη2 = 0.888889

}
→ f32 = f(ξ3, η2) = −30.7611

ξ3 = 0.774597 → wξ2 = 0.555556
η3 = 0.774597 → wη3 = 0.555556

}
→ f33 = f(ξ3, η3) = −99.0916

Hence,

I ≈ |J| (wξ1 wη1 f11 + wξ1 wη2 f12 + wξ1 wη3 f13 + wξ2 wη1 f21 + wξ2 wη2 f22 + wξ2 wη3 f23

+wξ3 wη1 f31 + wξ3 wη2 f32 + wξ3 wη3 f33)
= −186.891
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Figure A.8: Convergence plot for Example A.18.

End Example �
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(0,0) (1,0) 
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(1,0,0) 
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(0,1,0) 
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3 

2 

Figure A.9: The kth three-node linear triangular element in local and mapped coordinates.

A.5.3 2D Gauss Rules for a Triangular Domain

The Gauss points for a triangular region differ from the square regions. For a triangular region, we can
show that ∫∫

A

dA =
∫ 1

0

∫ 1−η

0

dξ dη

We can further show, that we can represent surface integrals over a triangular region in their isopara-
metric representation, as shown in Fig. A.9, as follows:

∫ 1

0

∫ 1−η

0

F (ξ, η) |J| dξ dη

where the Jacobian is defined as

J =




∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η




This type of surface integrals can be approximated using Gauss rules as follows:

∫ 1

0

∫ 1−η

0

F (ξ, η) |J| dξ dη =
1
2
|J|

n∑

i=1

wi F (ξi, ηi)

where the summations extend over all i specified, the weighting factors are wi’s and Fi’s are the matrices
evaluated at the ith point, n are the number of Gauss points in the triangular region. Note that the
enclosed area for a straight triangle is given by:

Ae =
1
2
|J|
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The procedure is similar to that of quadrilateral region; however, we use use Table A.2, Gauss rules for a
triangle, and express the integrals are expressed from: 0 < η < 1 and 0 < ξ < 1− η. Figure A.10 shows
the first six two-dimensional Gauss rules for triangular regions. Sample point locations are marked with
black circles.
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Figure A.10: Gauss two-dimensional numerical integrations sample points over a triangular region (0 <
η < 1, 0 < ξ < 1− η).
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Table A.2: Gauss rules for a triangular region (0 < η < 1, 0 < ξ < 1− η).

Gauss Degree of Weighting Evaluation
Rule precision factors points
(n) (wi) (ξi) (ηi)

1 1 1 1/3 1/3

1/3 2/3 1/6
3 2 1/3 1/6 2/3

1/3 1/6 1/6

1/3 0 1/2
−3 2 1/3 1/2 0

1/3 1/2 1/2

−27/48 1/3 1/3
4 3 25/48 0.6 0.2

25/48 0.2 0.6
25/48 0.2 0.2

0.22338158967801146570 0.10810301816807022736 0.44594849091596488632
0.22338158967801146570 0.44594849091596488632 0.10810301816807022736

6 4 0.22338158967801146570 0.44594849091596488632 0.44594849091596488632
0.10995174365532186764 0.81684757298045851308 0.091576213509770743460
0.10995174365532186764 0.091576213509770743460 0.81684757298045851308
0.10995174365532186764 0.091576213509770743460 0.091576213509770743460

3/10 2/3 1/6
3/10 1/6 2/3

−6 4 3/10 1/6 1/6
1/30 0 1/2
1/30 1/2 0
1/30 1/2 1/2

0.12593918054482715260 0.79742698535308732240 0.10128650732345633880
0.12593918054482715260 0.10128650732345633880 0.79742698535308732240
0.12593918054482715260 0.10128650732345633880 0.10128650732345633880

7 5 0.13239415278850618074 0.059715871789769820459 0.47014206410511508977
0.13239415278850618074 0.47014206410511508977 0.059715871789769820459
0.13239415278850618074 0.47014206410511508977 0.47014206410511508977

9/40 1/3 1/3

0.050844906370206816921 0.87382197101699554332 0.063089014491502228340
0.050844906370206816921 0.063089014491502228340 0.87382197101699554332
0.050844906370206816921 0.063089014491502228340 0.063089014491502228340
0.11678627572637936603 0.50142650965817915742 0.24928674517091042129
0.11678627572637936603 0.24928674517091042129 0.50142650965817915742
0.11678627572637936603 0.24928674517091042129 0.24928674517091042129

13 6 0.082851075618373575194 0.059715871789769820459 0.47014206410511508977
0.082851075618373575194 0.053145049844816947353 0.31035245103378440542
0.082851075618373575194 0.31035245103378440542 0.053145049844816947353
0.082851075618373575194 0.053145049844816947353 0.63650249912139864723
0.082851075618373575194 0.31035245103378440542 0.63650249912139864723
0.082851075618373575194 0.63650249912139864723 0.053145049844816947353
0.082851075618373575194 0.63650249912139864723 0.31035245103378440542

Gauss Rules are 1, 3, −3, 6, −6, 7, and 13, the order of the rule. As we can see, there are two rules of order 3

and 6: hence, the negative value returns the second one.

c©2012 by Vijay K. Goyal. All Rights Reserved.



APPENDIX A. 734

Example A.19.

Using 1 and 3 sampling points in Gauss-Legendre Quadrature, evaluate the following two-
dimensional integral defined over a triangular region:

∫ 1

0

∫ 1−η

0

(
4 ξ − 1

)(
6 ξ − 4 η

)
|J| dξdη

where the Jacobian is

J =



−2 −6

5 −4




First, let us calculate the determinant of the Jacobian:

|J| =

∣∣∣∣∣∣

−2 −6

5 −4

∣∣∣∣∣∣
= 38

The integrand is
f(ξ, η) =

(
4 ξ − 1

)(
6 ξ − 4 η

)

Using Gauss Quadrature

I =
∫ 1

0

∫ 1−η

0

(
4 ξ − 1

)(
6 ξ − 4 η

)
|J| dξdη ≈ 1

2
|J|

n∑

i=1

wi f(ξi, ηi)

The exact solution is (obtained through direct integration):

I =
∫ 1

0

∫ 1−η

0

(
4 ξ − 1

)(
6 ξ − 4 η

)
(38) dξdη = 38

Using Gauss-Legendre Quadrature:

1. One-point
ξ1 = 0.333333
η1 = 0.333333
w1 = 1



 → f1 = f(ξ1, η1) = 0.222222

Hence,

I ≈ 1
2
|J| (w1 f1)

=
1
2

(38)
[
(1)(0.222222)

]
= 4.22222

2. Three-point (+3)

ξ1 = 0.666667
η1 = 0.1666667
w1 = 0.333333



 → f1 = f(ξ1, η1) = 5.55556
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ξ2 = 0.1666667
η2 = 0.666667
w2 = 0.333333



 → f2 = f(ξ2, η2) = 0.555556

ξ3 = 0.1666667
η3 = 0.1666667
w3 = 0.333333



 → f3 = f(ξ3, η3) = −0.111111

Hence,

I ≈ 1
2
|J| (w1 f1 + w2 f2 + w3 f3)

=
1
2

(38)
[
(0.333333)(5.55556) + (0.333333)(0.555556) + (0.333333)(−0.111111)

]

= 38

3. Three-point (−3)

ξ1 = 0
η1 = 0.5
w1 = 0.333333



 → f1 = f(ξ1, η1) = 2

ξ2 = 0.5
η2 = 0
w2 = 0.333333



 → f2 = f(ξ2, η2) = 3

ξ3 = 0.5
η3 = 0.5
w3 = 0.333333



 → f3 = f(ξ3, η3) = 1

Hence,

I ≈ 1
2
|J| (w1 f1 + w2 f2 + w3 f3)

=
1
2

(38)
[
(0.333333)(2) + (0.333333)(3) + (0.333333)(1)

]

= 38

This example shows how bad the approximate is when using only one Gauss point. We can
also note that it does not matter what 3-point (either +3 or −3) we use, we will get the same
answer in both cases.
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Figure A.11: Convergence plot for Example A.19.

End Example �
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A.5.4 Gaussian Quadrature Code

Following is an explanation of the Gaussian Quadrature function we developed in MATLAB:

function [I]= GaussQuadratures(Type,Np,f)

The function GaussianQuadrature.m approximates line integrals as well as two-dimensional integrals
over both triangular and quadrilateral regions. We must express the integrals in their natural coordinates
in order to use the function. The function requires the following input: Type, Np, f.

Type: The type of Gauss Quadrature to perform: “1” for a one-dimensional region; “2” for a two-
dimensional quadrilateral region; “3” for a two-dimensional triangular region.

Np: The number of Gauss Points to approximate the integral. For triangular elements, the Gauss Points
and their corresponding weight factors are given for the following cases: 1, 3, −3, 4, 6, −6, 7 and
13. The function will always return values for −3 or −6 for triangular regions.

f: The integrand (the function to integrate). We must define the function (which may be a scalar, vector,
or a matrix) as follows:

f = @(xi) [integrand function goes here] % for one-dim
f = @(xi,eta) [integrand function goes here] % for two-dim

Now, the function chooses the appropriate Gauss Rule, as requested by the user. First, determines what
type of integral we are approximating, i.e.,

switch(Type)
case(1) %One Dimensional Gaussian Quadrature
.
.
.
case(2) %Two Dimensional Quadrilateral Quadrature
.
.
.
case(3) %Two Dimensional Triangular Quadrature
.
.
.
end

Then it chooses the number of Gauss rules we are interested in and reads the Gauss rules and points,
i.e.,

switch(abs(Np))
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case(1)
w(1)=2;
xi(1)=0;

case(2)
w(1)=1;
w(2)=1;
xi(2)=1/sqrt(3);
xi(1)=-xi(2);

.

.

.
end

The function returns the approximate value of the integral. For one-dimensional region:

I=0;
for ii=1:abs(Np); %Subscript for xi

I = I + w(ii)*f(xi(ii));
end

For a two-dimensional quadrilateral region:

I=0;
for ii=1:abs(Np); %Subscript for xi

for jj=1:abs(Np); %Subscript for eta
I = I + w(ii)*w(jj)*f(xi(ii),eta(jj));

end
end

For a two-dimensional triangular region:

I=0;
for ii=1:abs(Np); %Subscript for xi and eta

I = I + 0.5*w(ii)*f(xi(ii),eta(ii));
end
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Example A.20.

Redo all Gauss Quadrature examples using MATLAB:

1. Example B.14

f=@(xi) 2*(2*xi+5)*(1-(2*xi+4)^2)
I = GaussQuadratures(1,5,f);

Output is

The approximation is I =
-369.3333

2. Example B.15 (Note that E is taken as one)

f=@(xi) 40*[-1/80; 1/80]*[(1+(40+40*xi)/40)^2]*[-1/80 1/80]
I = GaussQuadratures(1,5,f);

Output is

The approximation is I =
0.0542 -0.0542

-0.0542 0.0542

3. Example B.16 (Note that ρ is taken as one)

f=@(xi) 40*[1-(40+40*xi)/80; (40+40*xi)/80]...
*[(1+(40+40*xi)/40)^2]*[1-(40+40*xi)/80 (40+40*xi)/80]
I = GaussQuadratures(1,5,f);

Output is

The approximation is I =
64.0000 56.0000
56.0000 170.6667

4. Example B.17

f=@(xi) (xi^2-1)/(xi+3)^2
I = GaussQuadratures(1,5,f);

Output is

The approximation is I =
-0.1589

5. Example B.18

f=@(xi,eta) 2*(1+1/(2*xi+4)^2)*(1-(eta+1)^2*(2*xi +4)^2)
I = GaussQuadratures(2,5,f);

Output is

The approximation is I =
-186.8889
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6. Example B.19

f=@(xi,eta) 38*(4*xi-1)*(6*xi-4*eta)
I = GaussQuadratures(3,5,f);

Output is

The approximation is I =
38

End Example �
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A.6 Roots of polynomials

In MATLABr, roots of polynomials of the form

cn x
n + · · ·+ c2 x

2 + c1 x+ c0 = 0

can be obtained as follows:

>> c=[c_n ... c_2 c_1 c_0]

>> roots(c)

A.6.1 Linear Equations

The general form of a linear equation is given by:

c1 α+ c0 = 0

and the solution to the above equation is:
α1 = −c0

c1
(A.33)

A.6.2 Quadratic Equations

The general form of a quadratic equation is given by:

c2 α
2 + c1 α+ c0 = 0 (A.34)

and the solution to the above equation is:

α =
−c1 ±

√
c21 − 4 c2 c0

2 c2

α1 =
−c1 +

√
c21 − 4 c2 c0

2 c2
α2 =

−c1 −
√
c21 − 4 c2 c0

2 c2
(A.35)

A.6.3 Cubic Equations

The general form of a Cubic equation is given by:

α3 + c2 α
2 + c1 α+ c0 = 0 (A.36)
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and the solution to the above equation is (note that c3 = +1, positive one):

α1 = −c2
3

+
2
3

√
c22 − 3 c1 cos

(
β

3

)
(A.37a)

α2 = −c2
3

+
2
3

√
c22 − 3 c1 cos

(
β

3
+

2π
3

)
(A.37b)

α3 = −c2
3

+
2
3

√
c22 − 3 c1 cos

(
β

3
+

4π
3

)
(A.37c)

where:

β = cos−1

{
−2 c32 + 9 c1 c2 − 27 c0

2
(
c22 − 3 c1

)3/2

}
(must be in radians)

Example A.21.

Using MATLABr, find the roots of

α2 + 7α+ 6 = 0

>> c=[1 7 6]

c =

1 7 6

>> roots(c)

ans =

-6
-1

End Example �

Example A.22.
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Find the roots of
−8 + 13α+ 6.5α2 − α3 = 0

First, ensure that c3 = 1:
α3 − 6.5α2 − 13α+ 8 = 0

Using the cubic equation we get (from course handout):

c2 = −6.5 c1 = −13 c0 = 8

and the solution to the above equation is (note that c3 = 1):

β = cos−1

{
−2 c32 + 9 c1 c2 − 27 c0

2
(
c22 − 3 c1

)3/2

}
(must be in radians)

= 0.72769 rads

α1 = −c2
3

+
2
3

√
c22 − 3 c1 cos

(
β

3

)
= −2.0

α2 = −c2
3

+
2
3

√
c22 − 3 c1 cos

(
β

3
+

2π
3

)
= 0.5

α3 = −c2
3

+
2
3

√
c22 − 3 c1 cos

(
β

3
+

4π
3

)
= 8.0

End Example �

Example A.23.

Using MATLABr, find the roots of

α3 − 6α2 − 15α+ 29 = 0

>> c=[1 -6 -15 29]
c =
1 -6 -15 29

>> roots(c)
ans =
7.4862

-2.8469
1.3607
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End Example �
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A.7 The Eigenvalue Problem

The term eigen is German and means “proper” or “characteristic”. One could think of characteristic of
your professor, a friend and, most likely, it is unique of that person. The same way when talking about
the eigenvalue problem, we are talking about the characteristic of a matrix. Here, we will discuss an
algebraic eigenvalue problem. This information will be crucial in solving optimization problems.

Derivation

A linear system of equations can be expressed as follows:

A x = b (A.38)

where A is an n × n square matrix, x an n × 1 column vector, and b an n × 1 column vector. When
b is a nonzero vector, the linear equations are commonly referred as a nonhomogeneous system. For a
nonhomogeneous system, unique solutions exist as long as the determinant of matrix A is nonzero.

We may express the linear system of equations one where the vector b is a scalar multiplied by the
x, e.g.,

b = αx (A.39)

and this leads to a set of linear equations of the form

A x = αx (A.40)

Now, using matrix algebra, we know that
x = I x (A.41)

where I is an identity matrix of order n. Thus, Eq. (A.40) can be rewritten as

A x = α I x (A.42)

It is of common practice to express Eq. (A.42) as

A x− α I x = 0

or
[A− α I] x = 0 (A.43)

where A is an n× n square matrix, I the identity matrix of order n, x an n× 1 unknown vector, and α
an unknown scalar. Eq. (A.43) is called an eigenvalue problem.

This type of problems are very useful to engineers in solving buckling problems, vibration of elastic
structures, electrical systems, principal stresses, and optimization problems, among other applications.

c©2012 by Vijay K. Goyal. All Rights Reserved.



APPENDIX A. 746

Solution

The matrix eigenvalue problem is
[A− α I] x = 0 (A.44)

Here, both vector x and scalar α are unknown and our goal is to determine both.

Before we proceed with the solution to the eigenvalue problem, review the statements, which are
equivalent for any n×n matrix A, in solving linear system of equations, provided in Section A.3. These
statements imply that the eigenvalue problem, Eq. (A.44), has two possible solutions: (i) when x = 0,
(ii) and when x 6= 0. It is very important to note that in order to solve an eigenvalue problem the square
matrix A should be nonsingular.

When x = 0 is a solution of Eq. (A.44) for any value of α, this is of no practical interest because it
gives no information regarding the problem in hand. This is often known as the trivial solution and we
wish to study the nonzero solutions corresponding to the eigenvalue problems.

However, when x 6= 0 is the solution we are interested in. A value of α for which Eq. (A.44) has
a solution x 6= 0 is called an eigenvalue, or characteristic value, of the matrix A. The corresponding
solutions x 6= 0 of Eq. (A.44) are called eigenvectors, or characteristic vectors, of A corresponding to
that eigenvalue of α.

Eigenvalues

Here, we shall outline the basic steps in obtaining eigenvalues. Let us begin with the eigenvalue problem:

[A− α I] x = 0 (A.45)
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Since we are only interested in nonzero values of x, we want

det [A− α I] = 0 (A.46a)

∣∣∣∣∣∣∣∣∣∣




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


− α




1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1




∣∣∣∣∣∣∣∣∣∣

= 0 (A.46b)

∣∣∣∣∣∣∣∣∣∣




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


−




α 0 · · · 0

0 α
. . .

...
...

. . . . . . 0
0 · · · 0 α




∣∣∣∣∣∣∣∣∣∣

= 0 (A.46c)

∣∣∣∣∣∣∣∣∣

(a11 − α) a12 · · · a1n

a21 (a22 − α) · · · a2n

...
...

. . .
...

an1 an2 · · · (ann − α)

∣∣∣∣∣∣∣∣∣
= 0 (A.46d)

Thus, we define the characteristic determinant as:

p(α) =

∣∣∣∣∣∣∣∣∣

(a11 − α) a12 · · · a1n

a21 (a22 − α) · · · a2n

...
...

. . .
...

an1 an2 · · · (ann − α)

∣∣∣∣∣∣∣∣∣
(A.47)

Then, the characteristic equation of matrix A is

p(α) = 0 (A.48)

and it is in terms of α. If the size of matrix A is n× n then the characteristic equations will produce a
nth degree polynomial. Consequently, has at most n distinct roots, some of which may be complex. In
short,

• The roots of the characteristic equation of A are the eigenvalues of the square matrix A.

• An n× n matrix has at least one eigenvalue and at most n numerically different eigenvalues.

• The eigenvalues must be determined first.

If a matrix has zero eigenvalues, the matrix is a singular matrix.

In practice, eigenvalues of large matrices are not computed using the characteristic polynomial. Faster
and more numerically stable methods are available, for instance the QR/QZ decompositions. MATLABr

uses robust and stable algorithms based on LAPACK libraries to obtain eigenvalues:
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E = EIG(A,B)

The vector E is a vector containing the generalized eigenvalues of square matrices A and B.

[V,D] = EIG(A,B)

The above statement produces a diagonal matrix D of generalized eigenvalues and a full matrix V whose
columns are the corresponding eigenvectors so that A V = B V D.

EIG(A,B,’chol’)

The above is the same as EIG(A,B) for symmetric A and symmetric positive definite B. It computes
the generalized eigenvalues of A and B using the Cholesky factorization of B.

EIG(A,B,’qz’)

The above ignores the symmetry of A and B and uses the QZ algorithm. In general, the two algorithms
return the same result, however using the QZ algorithm may be more stable for certain problems. The
flag is ignored when A and B are not symmetric.

Example A.24.

Obtain the eigenvalues for the following matrix:

A =
[
−5 2
2 −2

]

[A− α I] x = 0

Since we are only interested in nonzero values of x, we want

det [A− α I] = 0

∣∣∣∣
[
−5 2
2 −2

]
− α

[
1 0
0 1

]∣∣∣∣ =
∣∣∣∣
[
−5 2
2 −2

]
−
[
α 0
0 α

]∣∣∣∣ = 0

∣∣∣∣
(−5− α) 2

2 (−2− α)

∣∣∣∣ = 0

Thus, we define the characteristic determinant as:

p(α) =
∣∣∣∣

(−5− α) 2
2 (−2− α)

∣∣∣∣ = (−2− α)(−5− α)− 4 = 0

Then, the characteristic equation of matrix A is

p(α) = α2 + 7α+ 6 = (α+ 6)(α+ 1) = 0
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and the eigenvalues are then:
α = −1,−6

Using MATLABr,

>> A=[-5,2;2,-2]

A =

-5 2
2 -2

>> alpha =eig(A)

alpha =

-6
-1

End Example �

Example A.25.

Obtain the eigenvalues for the following matrix:

A =



−2 0 3
1 4 3
2 3 4




[A− α I] x = 0

Since we are only interested in nonzero values of x, we want

det [A− α I] = 0

∣∣∣∣∣∣



−2 0 3
1 4 3
2 3 4


− α




1 0 0
0 1 0
0 0 1



∣∣∣∣∣∣

=

∣∣∣∣∣∣



−2 0 3
1 4 3
2 3 4


−



α 0 0
0 α 0
0 0 α



∣∣∣∣∣∣

= 0
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∣∣∣∣∣∣

(−2− α) 0 3
1 (4− α) 3
2 3 (4− α)

∣∣∣∣∣∣
= 0

Thus, we define the characteristic determinant as:

p(α) =

∣∣∣∣∣∣

(−2− α) 0 3
1 (4− α) 3
2 3 (4− α)

∣∣∣∣∣∣
= −α3 + 6α2 + 15α− 29 = 0

Then, the characteristic equation of matrix A is

p(α) = α3 − 6α2 − 15α+ 29 = 0

and the eigenvalues are then:

α = 7.4862,−2.8469, 1.3607

Using MATLABr,

>> A=[-2,0,3;1,4,3;2,3,4]

A =

-2 0 3
1 4 3
2 3 4

>> alpha =eig(A)

alpha =

7.4862
-2.8469

1.3607

End Example �
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A.9 Suggested Problems

Problem A.1.
You are asked to create a program using MATLABr. The program should consist in: a script file, a
function file, and an output file. All input and output must be done from the script file only. All output
must be done to an external file. The files must be well documented. The following is a description of
what the program should do:

1. The function cadprog takes as an input three arbitrary real numbers a, b and c. The output should
be:

(a) z1 = a eb

(b) z2 = ln c

(c) z3 = cb

(d) z4 = a/c

(e) z5 a condition for not running the function if c = 0.

Make sure the function does not print anything.

2. The script file should:

(a) Contain all the input variables.

(b) Print the input variables (with an explanation).

(c) Call the function.

(d) Place a condition, where the output of the variables is only printed if c 6= 0. Otherwise use
your condition z5 to print a line saying there is an error.

3. Use good programming skills.

�
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Problem A.2.
Solve this problem by hand and verify your answers using MATLABr. Consider the following matrices
and vectors:

A =




x −y 1 1

x z z2 y x

−y z y3 z 2


 B =




8 −2 0

−2 4 −3

0 −3 3


 C =




a b c 0

b a3 −a4

0 −c b2 a c b2


 d =





20
0
−4





Taking
x = y = z = 1, a = 2 b = −3 c = 6

determine the following:

a) AT B

b) det[C]. Is matrix C singular? Justify your answer.

c) Use Gauss-Jordan elimination to determine the inverse of matrix [AT A]. Verify your answer
using MATLAB.

d) A d

e) dT

f) dT A

g) d dT

h) dT d

i) B + dT

j) B + AT

k) B + CT

l) Eigenvalues of A

m) Eigenvalues of C

n) Eigenvalues of d

�
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Problem A.3.
Solve this problem by hand and verify your answers using MATLABr. Consider the following matrices
and vectors:

A =




−y2 −y2 1 0

x z y x z y z2 y

−y −y z 10 z


 B =




−3 2 −1

−2 1 −3

0 −3 3

10 3 2




C =




a −b c2

−b a3 a2 b

c2 a2 b a


 d =

{
1 1 −2 1

}

Taking
x = y = 2 z = 2, a = 2 b = 1 c = 1

determine the following:

a) AT A. Is the matrix symmetric?

b) d I

c) (A B)T

d) det[C]. Is matrix C singular? Justify your answer.

e) Use Gauss-Jordan elimination to determine the inverse of matrix [AT A]. Verify your answer
using MATLAB.

f) ‖γ dT‖2 where γ = 2

g) AT dT

h) A dT

i) d AT

j) d dT

k) dT d

l) B + AT

m) A I

n) Eigenvalues of C

�
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Problem A.4.
Solve this problem by hand (using Gauss-Jordan elimination) and verify your answers using MATLABr.
Solve the given system of equations:

(a) 3x1 + 2x2 = 18
18x1 + 17x2 = 123

(b) x1 − 4x2 + 2x3 = 81
− 4x1 + 25x2 + 4x3 = −153
2x1 + 4x2 + 24x3 = 7

(c)




2 1 7

0 4 −3

0 0 5








x1

x2

x3





=





7

−27

5





�
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Problem A.5.
Consider the following linear system of equations:



ε −1

1 1







x1

x2



 =




−2

2





a) For what values of ε, does the system of equations have a solution? Verify your answer using
MATLABr and Gauss-Jordan elimination.

b) For what values of ε, the system of equations does not have a finite number of solutions? Justify
your answer using MATLABr.

�
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Problem A.6.
Create the MATLABr function cadcourse and script file, that will take as input the following matrices,
vectors, and variables:

A =




−y2 −y2 1 0

x z y x z y z2 y

−y −y z 10 z


 B =




−3 2 −1

−2 1 −3

0 −3 3

10 3 2




C =




a −b c2

−b a3 a2 b

c2 a2 b a


 d =

{
1 1 −2 1

}

x = y = 2 z = 2, a = 2 b = 1 c = 1

and the function should output the following:

a) Z1 = ATA

b) Z2 = (A B)T

c) mm =det[C]

d) nn = ‖d‖2
e) Z3 = dT d

f) Phi = Eigenvalues of C. (Phi must be a row vector and not a diagonal matrix.)

Provide a printout of the M-Files. Print the output to a different file and print this output-file.
�
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Problem A.7.
Solve by hand and use the MATLAB function to evaluate the following one-dimensional integrals us-
ing Gauss quadrature. Provide a convergence plot using the first six Gauss rules for one-dimensional
domains: one-, two-, three-, four-, five-, and six- point.

a) ∫ 4

2

(
x2 + 1

)
cosx dx

b) ∫ 3

0

(
3 ex + x2 +

1
x+ 2

)
cosx dx

�

Problem A.8.
Solve by hand and use the MATLAB function to evaluate the following two-dimensional quadrilateral
regions integrals using Gauss quadrature. Provide a convergence plot using the first five Gauss product
rules for quadrilateral domains.

a) ∫ 1

0

∫ 1

0

e−(x2+y2) dy dx

b) ∫ 1

0

∫ 1

0

tan−1(x y) dy dx

c) ∫ 2π

π

∫ π

0

(sinx+ cos y) dx dy

�
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Problem A.9.
Solve by hand and use the MATLAB function to evaluate the following two-dimensional triangular
regions integrals using Gauss quadrature. Provide a convergence plot using the first five Gauss rules for
triangular domains: one-, three- (+3 or −3), four-, six- (+6 or −6), and seven- point.

a) ∫ 1

0

∫ 1−η

0

(
1− ξ − 1√

34
η

) (
1 + ξ − 1√

34
η

)
|J| dξ dη

J =
[

2 1
0 2

]

b) ∫ 1

0

∫ 1−η

0

(
1 + ξ − 1√

34
η

)
|J| dξ dη

J =
[

2 1
0 2

]

�
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Overview Mohr’s Circle

B.1 Mohr’s Circle in Stress Analysis

In order to better understand the Mohr’s cirlce, let the stress vector T(n) on an arbitrary plane at P be
decomposed into a normal component to the plane (σnn) and a shear component which acts in the plane
(σtt). As previously shown:

σnn = T(n) n̂

σtt = T(n) ·T(n) − σ2
nn

Let the state of stress at P be referenced to principal planes and the principal stresses be ordered
according to

σ1 > σ2 > σ3 (B.1)

As a consequence,
σnn = σ1 n

2
1 + σ2 n

2
2 + σ3 n

2
3

σ2
nn + σ2

tt = σ2
1 n

2
1 + σ2

2 n
2
2 + σ2

3 n
2
3

(B.2)

which along with the condition
n2

1 + n2
2 + n2

3 = 1

provide us with three equations for the three direction cosines n1, n2, and n3. For simplicity let:

σ = σnn and τ = σtt

Solving the three equations in terms of n1, n2, and n3 we get

n2
1 =

(σ − σ2) (σ − σ3)− τ2

(σ1 − σ2) (σ1 − σ3)
(B.3)

n2
2 =

(σ − σ3) (σ − σ1)− τ2

(σ2 − σ3) (σ2 − σ1)
(B.4)

n2
3 =

(σ − σ1) (σ − σ2)− τ2

(σ3 − σ1) (σ3 − σ2)
(B.5)

Note that the principal stresses
σ1 > σ2 > σ3

are known and σ and τ are functions of the direction cosines ni. Our intention here is to interpret these
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 Figure B.1: Typical Mohr’s circles for a given state of stress.

equations graphically by representing conjugate pairs of σ-τ values, which satisfy Eqs. (B.3) to (B.5), as
a point in the stress plane having σ as abscissa and τ as ordinate (see Fig. B.1).

To develop this interpretation of the three-dimensional stress state in terms of σ and τ , first note
that the denominator of Eq. (B.3) is positive since both σ1 − σ2 > 0 and σ1 − σ3 > 0 (from Eq. (B.1)),
and since n2

1 > 0, the numerator of the right-hand side satisfies the relationship:

(σ − σ2) (σ − σ3)− τ2 ≥ 0 (B.6)

For the case in which the equality sign holds, this equation may be rewritten, after some simple algebraic
manipulations, to read [

σ −
(
σ2 + σ3

2

)]2
+ τ2 =

[(σ2 − σ3

2

)]2
(B.7)

which is the equation of a circle in the σ-τ plane, with its center at the point

C(σ, τ) = C

(
0,
σ2 + σ3

2

)

and a radius of
R =

σ2 − σ3

2
We label this circle C1 and it is shown in Fig. B.1. For the case in which the inequality sign holds
for Eq. B.6, we observe that conjugate pairs of values of σ and τ which satisfy this relationship result
in stress points having coordinates exterior to circle C1. Thus, combinations of σ and τ which satisfy
Eq. (B.3) lie on, or exterior to, circle C1 in Fig. B.1.

Examining Eq. (B.4), we note that the denominator is negative since σ2 − σ3 > 0 and σ2 − σ1 < 0
(from Eq. (B.1)). The direction cosines are real numbers, so that n2

2 > 0 and thus the numerator of the
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right-hand side satisfies the relationship:

(σ − σ3) (σ − σ1)− τ2 ≤ 0 (B.8)

For the case of the equality sign defines the circle

[
σ −

(
σ1 + σ3

2

)]2
+ τ2 =

[(σ1 − σ3

2

)]2
(B.9)

which is the equation of a circle in the σ-τ plane, with its center at the point

C(σ, τ) = C

(
0,
σ1 + σ3

2

)

and a radius of
R =

σ1 − σ3

2
This circle is labeled C2 in Fig. B.1, and the stress points which satisfy the inequality of Eq. (B.8) lie
interior to it.

Following the same general procedure, we can rearrange Eq. (B.5) into an expression from which
we extract the equation of the third circle C3 in Fig. B.1. Examining Eq. (B.5), we note that the
denominator is positive since σ3 − σ1 < 0 and σ3 − σ2 < 0 (from Eq. (B.1)). The direction cosines are
real numbers, so that n2

3 > 0 and thus the numerator of the right-hand side satisfies the relationship:

(σ − σ1) (σ − σ2)− τ2 ≥ 0 (B.10)

For the case of the equality sign defines the circle

[
σ −

(
σ1 + σ2

2

)]2
+ τ2 =

[(σ1 − σ2

2

)]2
(B.11)

which is the equation of a circle in the σ-τ plane, with its center at the point

C(σ, τ) = C

(
0,
σ1 + σ2

2

)

and a radius of
R =

σ1 − σ2

2
This circle is labeled C3 in Fig. B.1. Admissible stress points in the σ-τ which satisfy the inequality of
Eq. (B.10) lie on or exterior to this circle.

The three circles defined above and shown in Fig. B.1 are called Mohr’s circles for a stress point. All
possible pairs of values of σ and τ at P which satisfy Eqs. (B.3) to (B.5) lie on these circles or within the
shaded areas enclosed by them. We see that the sign of the shear component is arbitrary so sometimes
only the top half of the symmetrical circle diagram is drawn. In addition, it should be clear from the
Mohr’s circles diagram that the maximum shear stress value at P is the radius of circle C2.
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B.2 Procedure for the Mohr’s Circle

Six specific steps can be identified in using Mohr’s circle approach:

1. Calculate the radius and center

2. Draw the circle and locate the points

3. Calculate all angles

4. Determine the normal and shear stresses on the inclined plane(s)

5. Determine the maximum normal stresses, the in-plane maximum shear and the overall maximum
shear

6. Show all results on sketches of properly oriented elements
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Step I. Calculate the radius and center of the Mohr’s circle

σave =
σxx + σyy

2
σdiff =

σxx − σyy

2
(B.12)

R =
√
τ2
xy + σ2

diff C = C(σave, 0) (B.13)

Step II. Draw the circle and locate all points
Note that the positive convention.

 

 

 

 x 

 y 

 σxx 

 σyy 

 σyy 

 σxx 

 τxy 

 τxy 

(a) Positive stresses on a two dimen-
sional element

Step II. Draw the circle and locate all points
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 y 
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 σyy 

 σxx 

 τxy 

 τxy 

a) Positive stresses on a two di-
mensional element

 

 

 

C(σσσσave, 0) 

Q1(σσσσx, ττττxy) 

Q2(σσσσy, -ττττxy) 

σσσσ 

ττττ 

σσσσ1σσσσ2

A1(σσσσx1, ττττx1y1)  

2θθθθA 

2αααα  

A2(σσσσy1, -ττττx1y1) 

2θθθθp 

b) Mohr’s circle for plane stress in the xy plane.
Point Q is the location of the defined state of
stress. Point A is the location in the Mohr’s circle
where information is desired.

Fig. 1

2 of 10

(b) Mohr’s circle for plane stress in the xy plane. Point Q
is the location of the defined state of stress. Point A is the
location in the Mohr’s circle where information is desired.

Figure B.2: Sketch of the given information on the Mohr’s circle.

Locate the following points:

Q1 = Q1(σxx, τxy) Q2 = Q2(σyy,−τxy) C = C(σave, 0) (B.14)
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Step III. Calculate angles:
(All measured positive clockwise from Q1C )

First calculate 2 θ′p,

tan 2 θ′p =
τxy

σdiff

2 θ′p = tan−1

{
τxy

σdiff

}
(B.15)

Now consider the location of Q1:

CASE A: Q1 → first quadrant (σxx > 0, τxy > 0) 2 θp = 2 θ′p

CASE B: Q1 → second quadrant (σxx < 0, τxy > 0) 2 θp = 180◦ −
∣∣2 θ′p

∣∣

CASE C: Q1 → third quadrant (σxx < 0, τxy < 0) 2 θp = 180◦ +
∣∣2 θ′p

∣∣

CASE D: Q1 → fourth quadrant (σxx > 0, τxy < 0) 2 θp = 360◦ −
∣∣2 θ′p

∣∣

Principal stresses act on an element inclined at an angle θp are

θp =
1
2

(2 θp) (B.16)

Minimum/maximum in-plane shear stresses act on an element inclined at an angle θs

2 θs = 2 θp ± 90◦ (B.17)

Note that at a rotation of 2 θs = 2 θp + 90◦ from Q1C the value of the in-plane shear stress is negative
thus it gives the minimum shear stress, the maximum is obtained by taking 2 θs = 2 θp − 90◦. In short,

Maximum Shear Stress: 2 θs = 2 θp − 90◦ → τmax

Minimum Shear Stress: 2 θs = 2 θp + 90◦ → τmin

If 2 θs > 360◦ then let

2 θs = (360◦ − 2 θp)± 90◦ (B.18)

Transformed stresses act on an element inclined at an angle α

2 θA = 2 θp − 2α

If 2 θA < 0, then let

2 θA = (2 θp − 2α) + 360◦ (to measure clockwise)

Note: When working in the x–y and y–z plane, all angles are measured positive clockwise in the Mohr’s
circle but are positive counterclockwise in the rotation of the differential element. When working in
the x–z plane, all angles are measured positive clockwise in the Mohr’s circle and in the rotation of the
differential element. Also, note that 2 θp is measured from Q1C to positive σ-axis.
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Step IV. Determine the normal and shear stresses on the inclined plane

The normal stresses acting on an element inclined at an angle α are

σx1 = σave +R cos (2 θA) (B.19)

σy1 = σave +R cos (2 θA + 180◦) = σave −R cos (2 θA) (B.20)

The shear stresses acting on an element inclined at an angle α are

τx1y1 = R sin (2 θA) (B.21)

Step V. Determine the maximum normal stresses, the in-plane maximum shear and the
overall maximum shear

Note that when calculating principal stresses 2α = 2 θp → 2 θA = 0◦, therefore the principal normal
stresses are found as follows

λ1 = σave +R

λ2 = σave −R
λ3 = 0

The principal stresses are chosen as:
σ1 = max[λ1, λ2, λ3]

σ3 = min[λ1, λ2, λ3]

Thus the principal stresses are given as follows

σ1 > σ2 > σ3

The maximum and minimum normal stresses acting on an element inclined at an angle θp are

σmax = σ1 (B.22)

σmin = σ3 (B.23)

The in-plane maximum shear stresses acting on an element inclined at an angle θs are

τmax

∣∣∣
in-plane

= R =
σ1 − σ2

2
(B.24)

The overall maximum shear stress acting on an element inclined at an angle θs is

τmax =
∣∣∣∣
σmax − σmin

2

∣∣∣∣ (B.25)
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Step VI. Show all results on sketches of properly oriented elements
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(d)

Figure B.3: a) Stresses acting on an element in plane stress. b) Stresses acting on an element oriented
at an angle θ = α. c) Principal normal stresses. d) Maximum in-plane shear stresses.

B.3 Mohr’s Circle in Three-Dimensional Stresses

Mohr’s circle can be generated for triaxial stress state, but it is often unnecessary. In most cases it is
not necessary to know the orientations of the principal stresses but it is sufficient to know their values.
Thus, Eq. (2.26) is usually all that is needed:

λ3 − Iσ1 λ
2 + Iσ2 λ− Iσ3 = 0
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In such cases, the Mohr’s circle will consist of three circles, two externally tangent and inscribed within
the third circle. Recall: that the principal stresses chosen such that σ1 > σ2 > σ3.

Opposed to the case of plane stress, where λ3 = 0, for general state of stress this might not be the
case. As for an example, at a point the state of stress is

σ =




6 0 0
0 2 0
0 0 −1




and we would like to draw the Mohr’s circle. First of all, note that in the above equation all are principal
stress thus

σ1 = 6 σ2 = 2 σ3 = −1

The principal stresses are point in the σ-axis. Thus the Mohr’s Circle is

 

 

                    

                    
                    

                    

                    
                    

                    

                    

                    
                    

                    

                    
                    

                    

                    
                    

                    

                    

                    
                    

 

ττττ 

σσσσ 
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c©2012 by Vijay K. Goyal. All Rights Reserved.



APPENDIX B. 769

Example B.1.

An element in plane stress at the surface of a wing panel is subjected to the following stresses

σ =




15 −4 0
−4 −5 0

0 0 0


 MPa

b. An element in plane stress at the surface of a wing panel is subjected to the following stresses

[σ] =




15 −4 0
−4 −5 0

0 0 0


 MPa (6)

 

 

 

 x 

 y 

 15 MPa 

 4 MPa 

 5 MPa 

Fig. 1

Considering only the in-plane stresses and using Mohr Circle determine:

1. Stresses acting on a element inclined at an angle θ = 40◦. (10pts)

2. Principal stresses and maximum shear stresses. (10pts)

(Show all results on sketches of properly oriented elements)

Step I. Calculate the radius and Mohr’s circle center

σave =
σxx + σyy

2
=

(15) + (−5)
2

MPa = 5 MPa (7)

σdif =
σxx − σyy

2
=

(15)− (−5)
2

MPa = 10 MPa (8)

R =
√

τ2
xy + σ2

dif =
√

(−4)2 + (10)2 MPa = 10.7703 MPa (9)

C = C(σave, 0) = C(5 MPa, 0) (10)

2 of 4

Homework # 3

Considering only the in-plane stresses and using Mohr’s Circle determine:

1. Stresses acting on a element inclined at an angle θ = 40◦.

2. Principal stresses and maximum shear stresses.

B.1a) Calculate the radius and center of the Mohr’s circle

The average stress acting on the differential element will be:

σave =
σxx + σyy

2
=

(15) + (−5)
2

MPa = 5 MPa

The difference in stresses acting on the differential element will be:

σdiff =
σxx − σyy

2
=

(15)− (−5)
2

MPa = 10 MPa

The radius of the inplane state of stress is:

R =
√
τ2
xy + σ2

diff =
√

(−4)2 + (10)2 MPa = 10.7703 MPa
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The center of the circle is:

C = C(σave, 0) = C(5 MPa, 0)

B.1b) Draw the circle and locate all points

Q1 = Q1(15,−4) Q2 = Q2(−5, 4) C = C(5, 0)

 

 x 

 y 

 15 MPa 

 4 MPa 

 5 MPa 

(a) stresses on a two dimensional element

 

Q2(σy, -τxy) = 
Q2(-5, 4) 

Q1(σx, τxy) = Q1(15, -4) 

σ, MPa

τ, MPa 

σ1 σ3 

A2(σy1, -τx1y1)  

A1(σx1, τx1y1)  

2θp 
C(5, 0)

2α=80°

2θA 

σ2 

(b) Mohr’s circle for plane stress in the x-y plane

Figure B.4: Mohr’s circle for plane stress in the x-y plane.
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B.1c) Calculate angles:

Principal stresses act on an element inclined at an angle θp

2 θ′p = tan−1

[
τxy

σdiff

]
= tan−1

[
(−4)
(10)

]
= −21.8014◦

2θp = 360◦ −
∣∣2θ′p

∣∣ = 338.199◦

θp = 169.099◦

Note that we are in CASE D (See Appendix B) because 2 θp is measured from Q1C

to positive σ-axis. Minimum and maximum inplane shear stresses act on an element
inclined at an angle θs

2θs = 2θp ± 90◦ = 338.199◦ ± 90◦

θs = θp ± 45◦ = 169.099◦ ± 45◦

Transformed stresses act on an element inclined at an angle α = 40◦

2 θA = 2 θp − 2α = 338.199◦ − 80◦ = 258.199◦

Note that all angles are measured positive clockwise in the Mohr’s circle but are positive
counterclockwise in the rotation of the differential element.

B.1d) Determine the normal and shear stresses on the inclined plane(s)

The normal stresses acting on an element inclined at an angle α are

σx1 = σave +R cos (2 θA) = (5) + (10.7703) cos (258.199◦) = 2.79725 MPa

σy1 = σave −R cos (2 θA) = (5)− (10.7703) cos (258.199◦) = 7.20275 MPa

The shear stresses acting on an element inclined at an angle α are

τx1y1 = R sin (2 θA) = (10.7703) sin (258.199◦) = −10.5427 MPa

B.1e) Determine the maximum normal stresses, the in-plane maximum shear and the overall
maximum shear

Note that when calculating principal stresses 2α = 2 θp → 2 θA = 0◦, therefore the
principal stresses are

λ1 = σave +R = (5) + (10.7703) = 15.7703 MPa

λ2 = σave −R = (5)− (10.7703) = −5.77033 MPa

λ3 = 0 MPa
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The principal stresses are chosen as:

σ1 = max[λ1, λ2, λ3] = 15.7703 MPa

σ3 = min[λ1, λ2, λ3] = −5.77033 MPa

σ2 = 0

Note σ1 > σ2 > σ3.

The maximum and minimum normal stresses acting on an element inclined at an angle
θp are

σmax = σ1 = 15.7703 MPa

σmin = σ3 = −5.77033 MPa

The in-plane maximum shear stresses acting on an element inclined at an angle θs are

τmax

∣∣∣
in-plane

= R =
σ1 − σ2

2
= 10.7703 MPa

The maximum inplane shear stresses will be:

τ12 =
σ1 − σ2

2
= 7.885 MPa

τ13 =
σ1 − σ3

2
= 2.885 MPa

τ23 =
σ2 − σ3

2
= 10.770 MPa

The overall maximum shear stress acting on an element inclined at an angle θs is

τmax =
∣∣∣∣
σmax − σmin

2

∣∣∣∣ = 10.7703 MPa

B.1f) Show all results on sketches of properly oriented elements
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Figure B.5: a) Stresses acting on an element in plane stress. b) Stresses acting on an element oriented
at an angle θ = α. c) Principal normal stresses. d) Maximum in-plane shear stresses.

End Example �
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B.4 Final Remarks

Mohrs circle displays in a graphical manner many important features characterizing the state of stress
at a point:

1. The stress components acting on two mutually orthogonal faces are represented by two diametri-
cally opposite points on Mohrs circle. Since the center of the circle is on the horizontal axis, the
shear stresses on those two faces are equal in magnitude and opposite in sign, as required by the
principal of reciprocity of shear stresses.

2. The faces corresponding to the principal stress orientation are represented by the points at the
intersection of Mohrs circle with the horizontal axis. Clearly, the shear stresses vanish on the
principal stress faces.

3. The faces on which the maximum shear stresses occurs are represented by the points at the inter-
section of Mohrs circle with a vertical line passing through its center. It is clear that the magnitude
of the maximum shear stress equals the radius of Mohrs circle. The angle between the principal
stress directions and those of the face of maximum shear is 45 degrees. Finally, the normal stresses
acting on the faces of maximum shear equal the average of the principal stresses,

4. Finally, it must be noted that all the points on Mohrs circle represent the same state of stress
at one point of the solid. Of course, this state of stress is represented by stress components that
depend on the orientation of the face on which they act. Mohrs circle is a graphical representation
of all the stress components corresponding to a single state of stress.
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B.6 Suggested Problems

Problem B.1.

�
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Strain-Gradient Matrix Expressions

In chapter 2 expressions for the Green-Lagrange strain components were given as

ε1 = exx = g1 +
1
2
(
g2

1 + g2
2 + g2

3

)

ε2 = eyy = g5 +
1
2
(
g2

4 + g2
5 + g2

6

)

ε3 = ezz = g9 +
1
2
(
g2

7 + g2
8 + g2

9

)

ε4 = 2 eyz = g6 + g8 + g4 g7 + g5 g8 + g6 g9

ε5 = 2 exz = g3 + g7 + g1 g7 + g2 g8 + g3 g9

ε6 = 2 exy = g2 + g4 + g1 g4 + g2 g5 + g3 g6

and were rewritten in the quadratic form

εi = hT
i g +

1
2

gT Hi g

where the displacements gradients in vector form are

gT =
{
g1 g2 g3 g4 g5 g6 g7 g8 g9

}

The vectors hi’s are sparse 9× 1 vectors:

hT
1 =

{
1 0 0 0 0 0 0 0 0

}

hT
2 =

{
0 0 0 0 1 0 0 0 0

}

hT
3 =

{
0 0 0 0 0 0 0 0 1

}

hT
4 =

{
0 0 0 0 0 1 0 1 0

}

hT
5 =

{
0 0 1 0 0 0 1 0 0

}

hT6 =
{

0 1 0 1 0 0 0 0 0
}
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The matrices Hi’s are very sparse 9× 9 symmetric matrices:

H1 =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




H2 =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




H3 =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




H4 =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0




H5 =




0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0




H6 =




0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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Distance Perpendicular to the

Contour
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t ̂ r(s) 
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θ 
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r(s) 

θ 

n ^ 

O 

Figure D.1: Distance perpendicular from a reference point to the contour at s.

In order to derive the distance perpendicular from a reference point to the contour, let us consider
Fig. D.1. The reference point O can be any point within or outside the cross-sectional domain. The
distance from point O to the location s of the contour is given by:

r(s) = y(s) ĵ + z(s) k̂

where y(s) and z(s) are the parametric equation in terms of the distance s along the contour. The unit
normal at the point of interest on the contour is:

n = − cos θ ĵ + sin θ k̂

Now the magnitude of the distance perpendicular from a reference point to the contour can be found
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taking the dot product:

r(s) = r · n =
{
y(s) z(s)

} { − cos θ
sin θ

}
= −y cos θ + z sin θ

At the contour,

cos θ =
dz

ds
, sin θ =

dy

ds

Hence,

r(s) = −y dz
ds

+ z
dy

ds

Or more generally written as:

ri(si) = −∂zi
∂si

yi(si) +
∂yi
∂si

zi(si) i = 1, 2, . . . , n (D.1)

where i represents the various sections of the cross-section.
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