

TABLE 17-1 Cha	aracteristics of Sliding and Rol	ling Contact Bearings	
Bearing	Sliding	Rolling	
Characteristics	Hydrodynamic	Hydrostatic	Bearings
Load	Oil film	Oil film	Bodies capable
carried by	generated by rotation journal and suitable oil grooves	generated by a pump placed outside the bearing	of rolling under load
Friction at start-up	Large, due to direct contact between journal and sleeve	Zero; journal and sleeve are separated by an oil film	Low
Friction during operation	Moderate; bearing acts as a pump with low efficiency	Low (fluid friction)	Low (rolling friction)
Life	Limited due to wear at start-up and stop	Unlimited; no contact between metallic parts during operation	Limited (materia fatigue in the races)
Relative cost	Low	High	Low

Rolling-Element Bearings

• Pros

- Low starting and running friction
- Easy lubrication
- Small axial space
- Radial and axial loads
- Predictable failure
- Standards (ABEC)
- Can be preloaded
- Easy mounting

- Cons
 - Greater diametrical space
 - More expensive
 - Noisy
 - Finite life
 - Vulnerable to dirt
 - Limited shock loading

Bearing Specifications

- Types, series, options
- Dimensions
- Load Ratings
 - Static (C₀): maximum (pre-damage) load
 - Dynamic (C): the load that will give a life of 10⁶ revolutions
 - Axial/Radial
- Speed Rating

				-	веа	ring	gs				
Prin	cipal Dimen	sions	Basic loa	d ratings	Allowable	Speed	ratings	Abu	tment and	fillet	Designation
			dynami	static	load limit	aronco	oil		Dimensions		
d _b	da	\mathbf{b}_{w}	c C	C ₀	$\mathbf{w}_{\mathrm{all}}$	grease	on	$\mathbf{D}_{\mathrm{b,min}}$	D _{a.max}	r _{a,max}	
mm in	mm in	mm in	N lbf			rpm		mm in	mm in	mm in	•
2.5 0.0984	8 0.3150	2.8 0.1102	319 71.7	106 23.8	4 0.899	67000	80000	3.7 0.146	6.8 0.268	0.1 0.004	60/2.5
5	11	3	637	255	11	53000	63000	6.2	9.8	0.1	618/5
0.1969	0.4331	0.1181	143	57.3	2.47	26000	42000	0.244	0.386	0.004	(25
	0 7480	0 2362	387	139	20 5.85	30000	43000	0 276	0.669	0.012	035
7	14	3.5	956	400	17	45000	53000	8.2	12.8	0.1	618/7
0.2756	0.5512	0.1378	215	89.9	3.82			0.323	0.504	0.004	
10	19	5	1380	585	25	36000	43000	12	17	0.3	61800
0.3937	0.7480	0.1969	310	132	5.62	20000	2.0000	0.472	0.669	0.012	6000
	26	8	4620	1960	83	30000	36000	12	24	0.3	6000
	35	11	8060	3400	143	20000	26000	14	31	0.012	6300
	1.3780	0 4331	1810	764	32.1	20000	20000	0.551	1.220	0.024	0500
15	24	5	1560	800	34	28000	34000	17	22	0.3	61802
0.5906	0.9449	0.1969	351	180	7.64			0.669	0.866	0.012	
	28	7	4030	2040	85	24000	30000	17	26	0.3	61902
	1.1024	0.2756	906	459	19.1			0.669	1.024	0.012	
	32	8	5590	2850	120	22000	28000	17	30	0.3	16002
	1.2598	0.3150	1260	041 2850	27.0	22000	28000	0.669	1.181	0.012	6002
	1 2598	0 3543	1260	2050 641	27.0	22000	20000	0.669	1 1 8 1	0.012	0002
	35	11	7800	3750	160	19000	24000	19	31	0.6	6202
	1.3780	0.4331	1750	843	36.0	1,000	21000	0.748	1.220	0.024	5262
	42	13	11400	5400	228	17000	20000	20	37	1	6302
	1.6535	0.5118	2560	1210	51.3			0.787	1 4 5 7	0.039	

Bearing Life

• Bearing Life-Load Equation

$$\frac{L_1}{L_2} = \left(\frac{F_2}{F_1}\right)^a$$

- L = life, millions of revolutions
- F = load
- a = 3 for ball bearings, 3.33 for roller bearings
- Design Equation $\frac{L_1}{10^6} = \left(\frac{C}{F_1}\right)^a$

Radial and Thrust Loads

• Equivalent Radial Load

$$P = XVF_r + YF_a$$

- P = equivalent load
- F_r = applied constant radial load
- F_a = applied constant thrust load
- V =rotation factor (1.0 IRR, 1.2 ORR)
- *X* = radial factor (provided by manufacturer)
- *Y* = thrust factor (provided by manufacturer)

Capacity Formulas for Radial and Angular Bearings

Bearing type		е	Si	ngle ro	w beari	ngs	Double row bearings			
			Pa/	Pr <e< th=""><th>Pa/</th><th>Pr>e</th><th>Pa</th><th colspan="2">Pa/Pr<e pa="" pr=""></e></th><th>Pr>e</th></e<>	Pa/	Pr>e	Pa	Pa/Pr <e pa="" pr=""></e>		Pr>e
			X	Y	X	Y	X	Y	x	Y
Deep groove	$P/C_0=0.025$	0.22	1	0	0.56	2.0				
ball bearings	$P/C_0 = 0.04$	0.24	1	0	0.56	1.8				
	$P/C_0=0.07$	0.27	1	0	0.56	1.6				
	$P/C_0=0.13$	0.31	1	0	0.56	1.4				
	$P/C_0=0.25$	0.37	1	0	0.56	1.2				
	$P/C_0=0.50$	0.44	1	0	0.56	1				
Angular contact	β=20°	0.57	1	0	0.43	1	1	1.09	0.70	1.63
ball bearings	β=25°	0.68	1	0	0.41	0.87	1	0.92	0.67	1.41
	β=30°	0.80	1	0	0.39	0.76	1	0.78	0.63	1.24
	$\beta = 35^{\circ}$	0.95	1	0	0.37	0.66	1	0.66	0.60	1.07
	β=40°	1.14	1	0	0.35	0.57	1	0.55	0.57	0.93
	β=45°	1.33	1	0	0.33	0.50	1	0.47	0.54	0.81
Self-aligning		1.5 x					1	0.42 x	0.65	0.65 x
ball bearings		tanβ						cotβ		cotβ
Spherical roller		1.5 x					1	0.45 x	0.67	0.67 x
bearings		tanβ						cotβ		cotβ
Tapered roller		1.5 x	1	0	0.40	0.40 x	1	0.42 x	0.67	0.67 x
bearings		tanβ				cotß		cotß		cotβ

		Clas	sses of Fit
Class	Description	Туре	Applications
1	Loose	Clearance	Where accuracy is not essential, such as in road- building and mining equipment.
2	Free	Clearance	In rotating journals with speeds of 600 rpm or greater, such as in engines and some automotive parts.
3	Medium	Clearance	In rotating journals with speeds under 600 rpm, suc as in accurate machine tools and precise automotive parts.
4	Snug	Clearance	Where small clearance is permissible and where moving parts are not intended to move freely under load.
5	Wringing	Interference	Where light tapping with a hammer is necessary to assemble the parts.
6	Tight	Interference	In semipermanent assemblies suitable for drive of shrink fits on light sections.
7	Medium	Interference	Where considerable pressure is needed to assemble and for shrink fits of medium sections; suitable for press fits on generator and motor armatures and for car wheels.
8	Heavy force or shrink	Interference	Where considerable bonding between surfaces is required, such as locomotive wheels and heavy crankshaft disks of large engines

Summary

- Sliding bearings use hydrodynamic forces to support loads and lubricant shear to provide low friction.
- Rolling element bearings are configured to support a variety of axial and radial loads and provide low rolling friction between a shaft and hub.
- Bearings are typically press fit into a housing and slip fit onto a shaft.

