Machine Components: Shafts, Keys, and Couplings

ME 72 Engineering Design Laboratory

Shafts

- Shaft Functions
 - Provide an axis of rotation
 - Used to transmit power
 - Used to position/mount gears, pulleys, bearings, etc.
- Shaft Design Issues
 - Geometry (stepped cylindrical geometry)
 - Loading
 - Stress and Deflection (Strength and Rigidity)

Shaft Design Procedure

- Develop a static free-body diagram.
- Draw a bending moment diagram in two planes.
- Develop a torque diagram.
- Establish the location of the critical cross section.
- Perform a Stress Analysis for sizing.

Shaft Design Guidelines

- Keep shafts short and minimize cantilever designs.
- Hollow shafts have better stiffness/mass ratios, but are more expensive.
- Configure shaft geometry to reduce stress concentrations.
- Remember that gears can produce radial, tangential, and axial loads.
- Be aware of maximum shaft deflection requirements of bearings.
- Shaft natural frequency should be as high as practical.

- Pins
- Splines
- Tapered fits
- Press or shrink fits

- Shoulders
- Ring and groove
- Collar and set screw
- Split hub

Class	Misalignment Tolerated				
	Axial	Angular	Parallel	Torsional	Comments
Rigid	large	none	none	none	requires accurate alignment
Jaw	slight	slight (<2 °)	slight (3% <i>d</i>)	moderate	shock absorption— significant backlash
Gear	large	slight (<5 °)	slight (<1/2% <i>d</i>)	none	slight backlash—large torque capacity
Spline	large	none	none	none	slight backlash—large torque capacity
Helical	slight	large (20 °)	slight (<1% <i>d</i>)	none	one piece - compact—no backlash
Bellows	slight	large (17 °)	moderate (20% <i>d</i>)	none	subject to fatigue failure
Flexible disc	slight	slight (3 °)	slight (2 <i>% d</i>)	slight to none	shock absorption—no backlash
Linkage (Schmidt)	none	slight (5°)	large (200% <i>d</i>)	none	no backlash—no sideloads on shaft
Hooke	none	large	large (in pairs)	none	slight backlash—speed variation unless used in pair
Rzeppa	none	large	none	none	constant velocity

Summary

- Shafts transmit rotary power.
- Shafts are typically designed for maximum stiffness and minimum deflection.
- Keys and similar elements are used to attach parts and align components along a shaft.
- Couplings are used to transmit power between two misaligned shafts.

