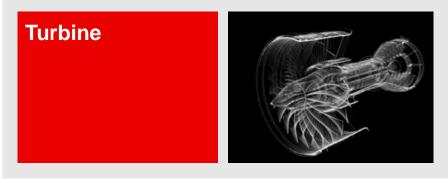


Oerlikon Balzers Aerospace and Gas Turbine Surface Solutions

JUNE 2018

BALINIT® coatings for Aerospace

Landing gear


Engine

mounts

Engine pylons BALINIT[®] A or BALINIT[®] C reduce the danger of fretting corrosion (pins).

Shafts, pins and bearings BALINIT[®] C protects lightweight titanium alloys against seizure.

- Bearings
- Accessory gear box
- Fuel injection nozzles
- Compressor blades & blisks
 BALINIT[®] coatings protect compressor blades
 & blisks against erosion.

Page 2 Oerlikon Balzers new anti-erosion coating Aerospace & IGT

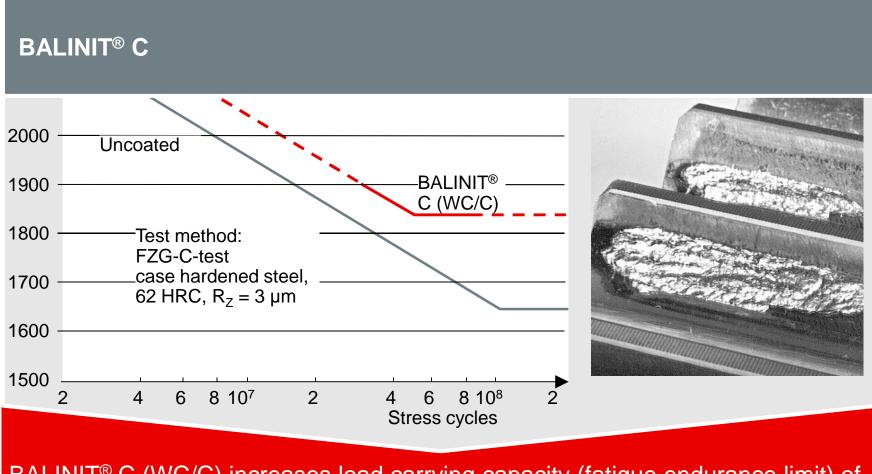
BALINIT® coatings for Aerospace

- Flight control systems
- Thrust reverser
- Door locking mechanism
- Landing Flaps BALINIT[®] A or BALINIT[®] C reduces the danger of seizure of landing flap connecting bolts.

Hydraulic systems & Fuel pumps

Axial piston pump BALINIT[®] C reduces the friction and protects against wear for longer service life.

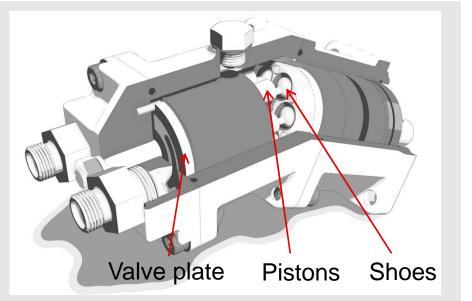
Interior decoration



Cabin elements

Instruments Black and grey colored coatings like BALINIT[®] DLC make instrument dials non reflective.

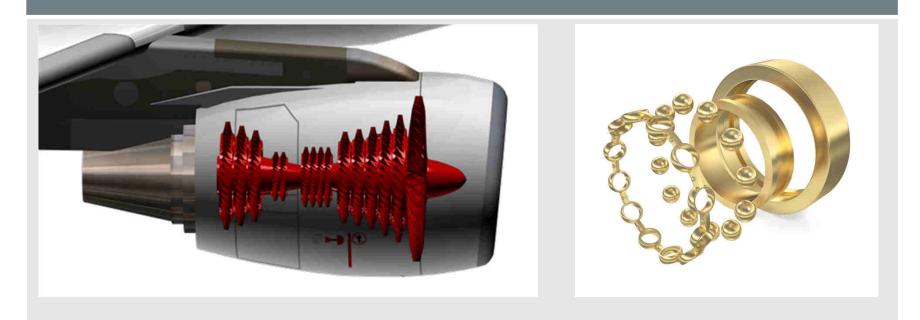
BALINIT[®] coatings on Gears (highly loaded / fast running)


BALINIT[®] C (WC/C) increases load carrying capacity (fatigue endurance limit) of case hardened gears by 10 - 15%. The reason is the reduced hertzian stress due to lowering of the friction and running in of the coating.

BALINIT[®] coatings for Fuel Pumps (axial piston pumps)

BALINIT® A (TiN), BALINIT® DLC

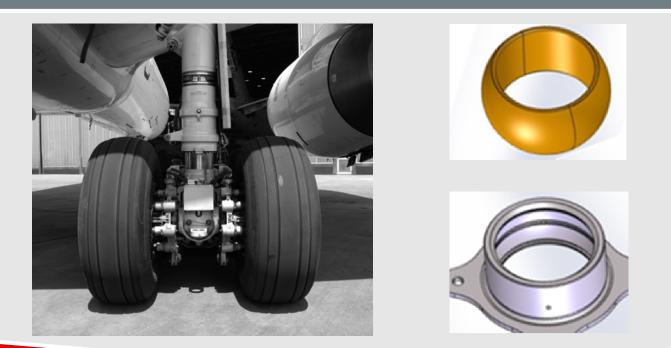
- The replacement of bronze shoes by steel shoes coated with WC/C results in lower wear and higher load carrying capacity.
- Coating of valve plate for increased wear resistance, durability and reduced friction



Benefit BALINIT[®] A (TiN) and BALINIT[®] DLC coatings offer excellent wear resistance.

BALINIT[®] coatings for Aerospace Turbine bearing

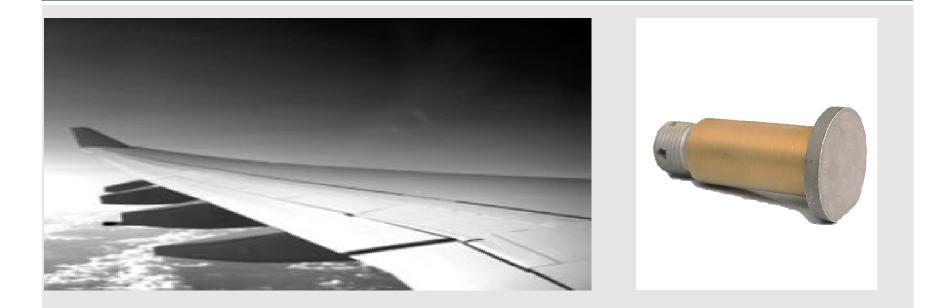
BALINIT[®] A


Benefit

BALINIT[®] A (TiN) coated ring boards prevent wear and spark formation in case of cage contact under extreme conditions.

BALINIT[®] coatings for Aerospace Landing Gear Components

Chrome replacement


Benefit

BALINIT® A (TiN) coated bearing bush running against BALINIT® CNI (CrN) coated housing is an excellent protection against fretting.

BALINIT[®] coatings for Aerospace Fasteners and Bushes

BALINIT® C for Chrome replacement

Benefit BALINIT[®] C (WC/C) coated pin against fretting wear

Page 8 Oerlikon Balzers new anti-erosion coating Aerospace & IGT

BALINIT[®] coatings for Aerospace Hydraulic Actuators

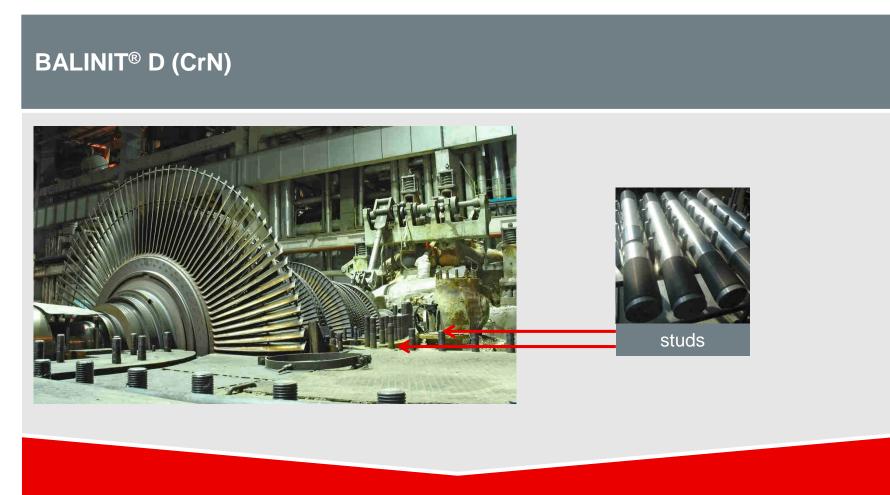
BALINIT® DLC


Benefit

BALINIT[®] DLC coating on piston rods for chrome replacement offers reduced friction and extends seal life.

BALINIT[®] coatings for Aerospace sliding sheet pivot – flap track fairing

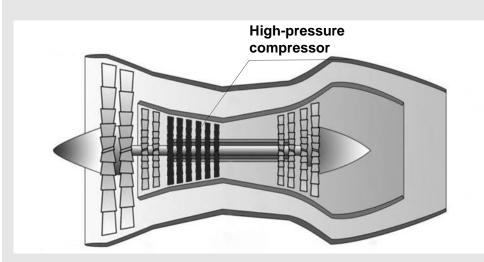
BALINIT[®] C

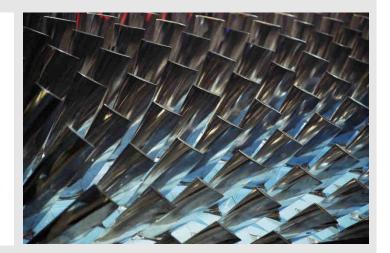


Benefit BALINIT[®] C coated «sliding sheet» acts as anti-fretting inlay.

Page 10 Oerlikon Balzers new anti-erosion coating Aerospace & IGT

BALINIT[®] coatings on Studs – Chrome replacement



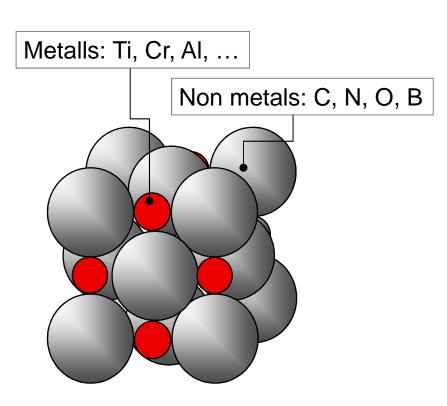

Hard Chrome replacement and improvement on fretting wear resistance for connecting studs with a 10 micron protective coating.

BALINIT[®] surface solutions for compressor blades in turbines – new erosion coating

BALINIT® TURBINE PRO - New anti-erosion coating

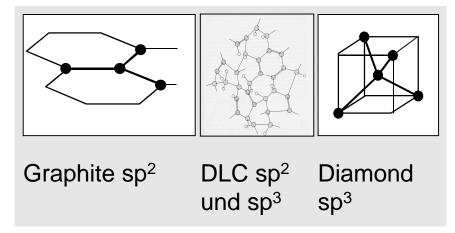
Benefit BALINIT[®] erosion resistant turbine coatings allow longer maintenance cycles and fuel efficiency.

Coating Properties


	BALINIT® TURBINE PRO	BALINIT® C	BALINIT [®] DLC	BALINIT® CNI	BALINIT [®] DLC STAR	BALINIT® A	BALINIT® ALCRONA PRO
Coating material	TiAIN	a-C:H:Me (W)	a-C:H	CrN	a-C:H + CrN	TiN	AICrN
Coating type		C1000 C1500					
Typical Microhardness (HK 0.01)*	3,300	1,000 1,500	> 2,000	1,750	> 2,000	2,300	3,200
Typical coating thicknesses (µm)	5 - 35	1 - 4	0.5 - 3	1 - 4	2 - 5	1 - 4	1 - 4
Coeff. of friction against steel (dry)*	0.4	0.1 - 0.2	0.1 - 0.2	0.5	0.1	0.4	0.4
Coating temperature (°C)	< 500	(~160) < 250	< 250	< 250	< 250	< 500	< 500
Resistance to oxidation (°C)	900	~350	~350	700	350	600	1100

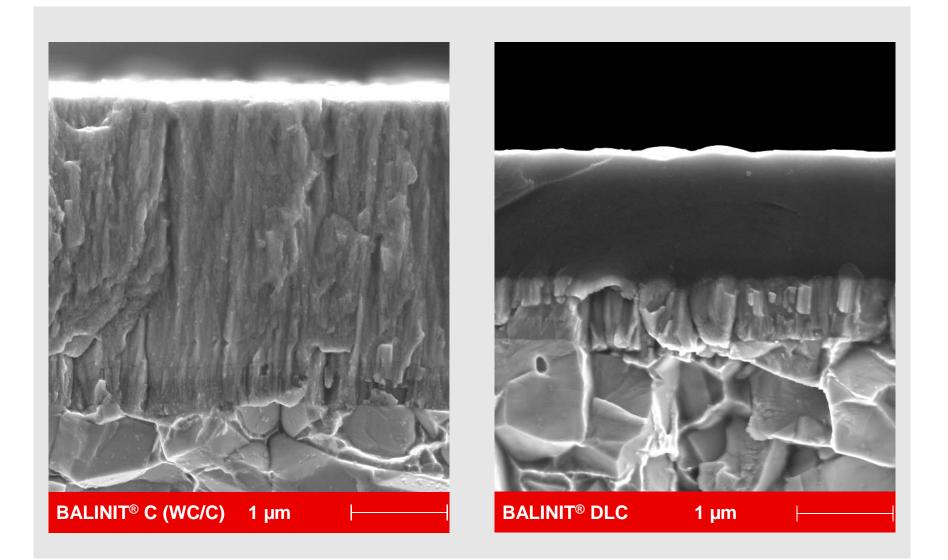
* depending on application and test conditions / ** no reliable results available

Coating materials – a versatile toolbox

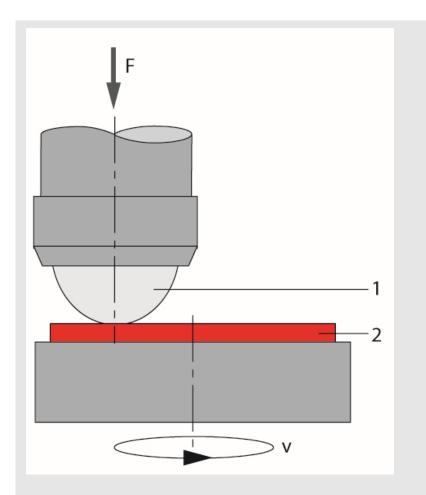


Nitrides/Carbides

High hardness (erosion and wear resistance) and **oxidation resistance**.


Carbon based coatings

Nitride coatings like TiN or CrN have a crystalline structure, while carbon coatings (WC/C or DLC) consist of an amorphous carbon-hydrogen network with graphite – and diamond bondings between the carbon atoms. This structure combine in an unique way **low friction** and **high hardness**.

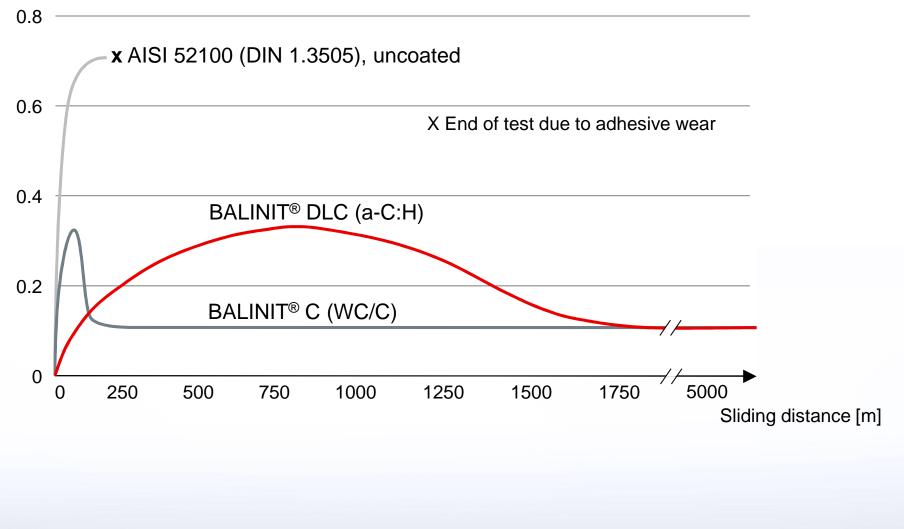

BALINIT[®] C and BALINIT[®] DLC

Sliding wear test

Experimental method:

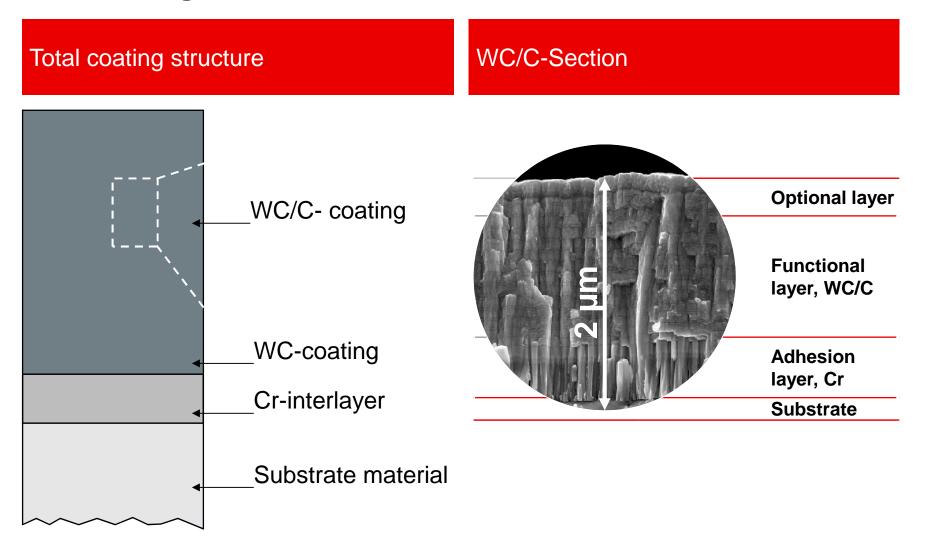
- 1. Ball, non rotating, diameter 3mm, AISI 52100 (DIN 1.3505), 60 HRC
- Test ring: AISI 52100 (DIN 1.3505), 60 HRC Abrasive-blasted or polished, N4, coated

Test conditions:

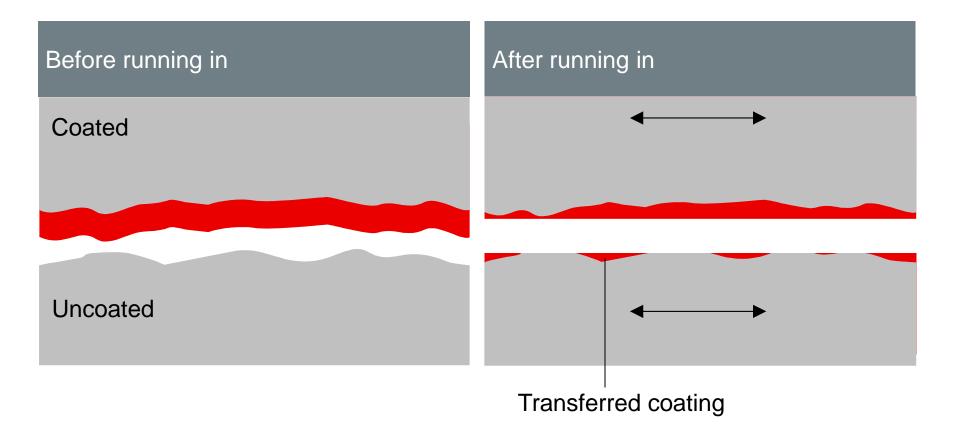

F = 30 Nv = 0.3 m/s dry contact

The key property against seizure at poor lubricating condition is the coefficient of friction. It is measured with a pin on disc test under dry running condition.

Dry running properties of BALINIT[®] carbon coatings



Coefficient of friction


Structure of the BALINIT[®] C – Coating feature: high hardness & low COF

Running in behaviour of BALINIT[®] C (WC/C)

BALINIT® C (WC/C) shows excellent running in behaviour.

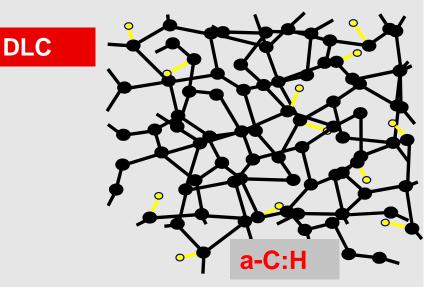
Page 19 Oerlikon Balzers new anti-erosion coating Aerospace & IGT

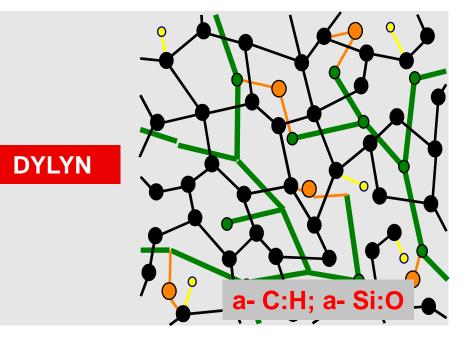
Oerlikon Balzers DLC coating families

Hard amorphous carbon thin film

- very hard
- electrically insulating
- wear resistant

Comprises C, H (a-C:H)


Carbon in sp³ bonding => "Diamond-like" properties DLC is a family of coatings (doped / undoped)


Hard amorphous carbon thin film

- very hard
- electrically insulating
- wear resistant
- lower friction
- Iow film stress

Comprises C, H, Si, O

a-C:H ~ "Diamond-like" properties a-Si:O ~ enhances high temperature stability DYLYN[®] is a family of coatings

BALINIT[®] TURBINE PRO Benefits

- BALINIT[®] TURBINE PRO: the new anti-erosion coating offers a new level in erosion and corrosion protection for turbine blades.
- 5 times more erosion protection than previous multilayer coatings on the market
- Minimal fatigue debit of around 5%
- Cavitation results in less than 0.1% mass loss on titanium substrates

Coating Properties

	BALINIT® TURBINE PRO	BALINIT® C		BALINIT [®] DLC	BALINIT® CNI	BALINIT [®] DLC STAR	BALINIT® A	BALINIT® ALCRONA PRO
Coating material	TiAIN	a-C:H:Me (W)		a-C:H	CrN	a-C:H + CrN	TiN	AICrN
Coating type		C1000	C1500					
Typical Microhardness (HK 0.01)*	3,300	1,000	1,500	> 2,000	1,750	> 2,000	2,300	3,200
Typical coating thicknesses (µm)	5 - 35	1 -	4	0.5 - 3	1 - 4	2 - 5	1 - 4	1 - 4
Coeff. of friction against steel (dry)*	0.4	0.1 -	0.2	0.1 - 0.2	0.5	0.1	0.4	0.4
Coating temperature (°C)	< 500	(~160) < 250		< 250	< 250	< 250	< 500	< 500
Resistance to oxidation (°C)	900	~350		~350	700	350	600	1100

* depending on application and test conditions / ** no reliable results available

Competence in the heart of EU aerospace industry.

Aerospace coating specifications						
Customer	Specification	Type of Coating	Group			
ROLLS ROYCE	RPS 673 (259, 367)	Ion Assissted deposition				
	RPS 51000	Degreasing				
AIRBUS	AIPS 0203003	TiN	EADS			
	AIPS 0204007	WC/C	EADS			
AIRCELLE	HPTR 0112	WC/C	Safran			
ARTUS	ST-IG		Pacific Scientific			
AIRBUS HELICOPTER	IFMA 856	WC/C	EADS			
UTAS	212-002	WC/C	UTC			
LATECOERE	DE-03	TiN				
LIEBHERR	MFT-360	WC/C				
	MFT-361	CrN				
MESSIER BUGATTI DOWTY	IFC 40-893-01-2	WC/C	Safran			
NOVINTEC	ITN 380	WC/C				
NTN SNR	DAQ 01968	DLC				
RATIER FIGEAC	FN 144	WC/C	UTC			
SKF AEROSPACE	MQS 13050	TiN-CrN- WC/C				
TECHSPACE	00R7030	WC/C	Safran			
TURBOMECA	CCT-748	WC/C	Safran			
IN-LHC	PG06-002	WC/C	Zodiac			

Thank You.

Close to you – Anywhere in the world

cerlikon balzers

