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CHAPTER 2  
 

TORSIONAL VIBRATIONS 
 
 

Torsional vibrations is predominant whenever there is large discs on relatively thin shafts (e.g. 

flywheel of a punch press). Torsional vibrations may original from the following forcings (i) inertia 

forces of reciprocating mechanisms (such as pistons in IC engines) (ii) impulsive loads occurring 

during a normal machine cycle (e.g. during operations of a punch press) (iii) shock loads applied to 

electrical machinery (such as a generator line fault followed by fault removal and automatic closure) 

(iv) torques related to gear mesh frequencies, turbine blade passing frequencies, etc. For machines 

having massive rotors and flexible shafts (where the system natural frequencies of torsional vibrations 

may be close to, or within, the source frequency range during normal operation) torsional vibrations 

constitute a potential design problem area. In such cases designers should ensure the accurate 

prediction of machine torsional frequencies and frequencies of any torsional load fluctuations should 

not coincide with the torsional natural frequencies. Hence, the determination of torsional natural 

frequencies of the system is very important. 

 

2.1 Simple System with Single Rotor Mass 

 Consider a rotor system as shown Figure 2.1(a). The shaft is considered as massless and it provides 

torsional stiffness only. The disc is considered as rigid and has no flexibility. If an initial disturbance 

is given to the disc in the torsional mode and allow it to oscillate its own, it will execute the free 

vibrations as shown in Figure 2.2. It shows that rotor is spinning with a nominal speed of ω and 

excuting torsional vibrations, θ(t), due to this it has actual speed of (ω + θ(t)). It should be noted that 

the spinning speed remains same however angular velocity due to torsion have varying direction over 

a period. The oscillation will be simple harmonic motion with a unique frequency, which is called the 

torsional natural frequency of the rotor system. 
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Figure 2.1a A single-mass cantilever rotor system         Figure 2.1(b) Free body diagram of disc 
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Figure 2.2 Torsional vibrations of a rotor 

 

 

From the theory of torsion of shaft, we have 

 

   
t

T GJ
K

lθ
= =         (1) 

 

where, Kt is the torsional stiffness of shaft, Ip is the rotor polar moment of inertia, kg-m
2
, J is the shaft 

polar second moment of area, l is the length of the shaft and θ  is the angular displacement of the 

rotor. From the free body diagram of the disc as shown in Figure 2.1(b) 

 

 External torque of disc    p t pI K Iθ θ θ= ⇒ − =∑ �� ��       (2) 

 

Equation (2) is the equation of motion of the disc due to free torsional vibrations. The free (or natural) 

vibration has the simple harmonic motion (SHM). For SHM of the disc, we have  

 

ˆ( ) sin nfθ t θ ω t=   so that  
2 2ˆ sinnf nf nfθ ω θ ω t ω θ= − = −��              (3, 4) 

       

where θ̂  is the amplitude of the torsional vibration and nfω  is the torsional natural frequency. On 

substituting Eqs. (3) and (4) into Eq. (2), we get 

 

 ( )2

t p nfK Iθ ω θ− = −    or     /nf t pK Iω =    (5) 

   

2.2 A Two-Disc Torsional System  
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Figure 2.3 A two-disc torsional system 
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A two-disc torsional system is shown in Figure 2.3. In this case whole of the rotor is free to rotate as 

the shaft being mounted on frictionless bearings. 
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                        (a) Disc 1                                                               (b) Disc 2 
   

        Figure 2.4 Free body diagram of discs 

 

From the free body diagram in Figure 2.4(a) 

 

1 21 2External torque   and  External torquep pI Iθ θ= =∑ ∑�� ��

 

 

or 
( ) ( )

1 21 2 1 2 1 2andt p t pθ θ K I K Iθ θ θ θ− − = − − =�� ��

  

 

or 1
1 1 2 0p t tI K Kθ θ θ+ − =��

 and  2 2 2 1 0p t tI K Kθ θ θ+ − =��

   (2) 

 

For free vibration, we have SHM, so the solution will take the form 

 

2

1 1nfθ ω θ= −��   and   
2

2 1nfθ ω θ= −��      (3) 

 

Substituting equation (3) into equations (1) & (2), it gives 

 

 
1

2

1 1 2 0p t tI K Kω θ θ θ− + − =  and  
2

2

2 2 1 0p nf t tI K Kω θ θ θ− + − =  

 

which can be assembled in a matrix form as 

 

1

2

2

1

2
2

0

0

t p nf t

t t p nf

K I K

K K I

ω θ
θω

 − −    
=     

− −      
 or [ ]{ } { }0K θ =             (4, 5) 

 

The non-trial solution of equation (5) is obtained by taking determinant of the matrix [K] as 

 

   0K =  

which gives 
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( )( )
1 2

2 2 2
0t p n t p n tK I K I Kω ω− − − =  or ( )

1 21 2

4 2
0p p nf p p t nfI I I I Kω ω− + =    (6) 

 

The roots of equation (6) are given as 

 

  ( ) ( )
1 2 1 2 1 2

0.5

0 andnf nf p p t p pI I K I Iω ω  = = +      (7) 

 

From equation (4) corresponding to first natural frequency for 
1nf

ω = 0, we get  

 

θ1 = θ2         (8) 

  
 

 

 

  θ1        θ2 

 

 

 

                                       Figure  2.5  First mode shape 

 

 

From Eq. (8) it can be concluded that, the first root of equation (6) represents the case when both discs 

simply rolls together in phase with each other as shown in Figure 2.5. It is the rigid body mode, which 

is of a little practical significance. This mode it generally occurs whenever the system has free-free 

end conditions (for example aeroplane during flying). From equation (4), for 
2nf nfω ω= , we get 

 

( )
1 2

2

1 2
ˆ ˆ 0t p nf tK I Kω θ θ− − =

 or 
( )( )

1 1 2 1 2 1 2
ˆ ˆ 0t p p p p p t tK I I I I I K Kθ θ − + − =

   

 

which gives relative amplitudes of two discs as 

 

 2 11 2
ˆ ˆ

p pI Iθ θ = −
         (9) 

 

The second mode shape (Eq. 9) represents the case when both masses vibrate in anti-phase with one 

another. Figure 2.6 shows mode shape of two-rotor system, showing two discs vibrating in opposite 

directions. 
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Figure 2.6 Second mode shape 

 
From mode shapes, we have 

 

 1 2 1 1

1 2 2 2

  
l

l l l

θ θ θ
θ

= ⇒ =         (10) 

 

Since both the masses are always vibrating in opposite direction, there must be a point on the shaft 

where torsional vibration is not taking place i.e. a torsional node. The location of the node may be 

established by treating each end of the real system as a separate single-disc cantilever system as 

shown in Figure 2.6. The node being treated as the point where the shaft is rigidly fixed. Since value 

of natural frequency is known (the frequency of oscillation of each of the single-disc system must be 

same), hence we write 

 

  
2 1 1 2 2

2

nf t p t pK I K Iω = =        (11) 

 

where 
2nf

ω  is defined by equation (7), 
1t

K and 
2t

K are torsional stiffness of two (equivalent) single-

rotor system, which can be obtained from equation (11), as 

 

 
1 2 1 2 2 2

2 2   and  t nf p t nf pK I K Iω ω= =  

 

The length l1 and l2 then can be obtained by (from equation 1)  

  

1 21 2andt tl GJ K l GJ K= =  with 1 2l l l+ =     (12) 

 

 

 

 

 

 

 

 

 



Dr R Tiwari, Associate Professor, Dept. of Mechanical Engg., IIT Guwahati, (rtiwari@iitg.ernet.in) 

 76

2.3 System with a Stepped Shaft 
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Figure 2.7(a) Two discs with stepped shaft  (b) Equivalent uniform shaft 

 

Figure 2.7(a) shows a two-disc steped shaft. In such cases the actual shaft should be replaced by an 

unstepped equivalent shaft for the purpose of the analysis as shown in Fig. 2.7(b). The equivalent 

shaft diameter may be same as the smallest diameter of the real shaft. The equivalent shaft must have 

the same torsional stiffness as the real shaft, since the torsional springs are connected in series. The 

equivalent torsional spring can be written as 

 

1 2 3

1 1 1 1

et t t t
K K K K

= + +
           

 

Nothing equation (1), we have 

 

1 1 2 2 3 3e el J l J l J l J= + +
 

 

which gives 

 

1 2 31 2 3 31 2 e e e ee e el l J J l J J l J J l l l= + + = + +
       (13) 

 

with   1 1 11 2 2 3 31
/ , / , /e e e e e el l J J l l J J l l J J= = =
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where 
1 2 3
, ,

e e e
l l l are equivalent lengths of shaft segments having equivalent shaft diameter d3 and le is 

the total equivalent length of unstepped shaft having diameter d3 as shown in Figure 2.7(b). From 

Figure 2.7(b) and noting equations (11) and (12), in equivalent shaft the node location can be obtained 

as 

 

( )
1 2 1

2

e e nf pl a GJ Iω+ =
    and  

( )
3 2 2

2

e e n pl b GJ Iω+ =
   (14) 

 

where 

( )
2

1/2

1 2

1 1 2 2 3 3
1 2

1
and

p p t
e

n t
e

p p

I I K
K

I I l GJ l GJ l GJ
ω

 +
  =

=   + +
  

 

 

From above equations the node position a & b can be obtained in the equivalent shaft length. Now the 

node location in real shaft system can be obtained as follows:  

 

From equation (13), we have 

 

   
4 4

2 3 2 2
2

2

, ,
64 4

e
e e

J
l l J d J d

J

π π
= = =  

 

Since above equation is for shaft segment in which node is assumed to be present, we can write 

 

   2 2ande ea a J J b b J J′ ′= =  

 

above equations can be combined as 

   

a a

b b

′
=

′
         (15) 

 

So once a & b are obtained from equation (14) the location of node in actual shaft can be obtained 

equation (15) i.e. the final location of node on the shaft in real system is given in the same proportion 

along the length of shaft in equivalent system in which the node occurs. 

 

2.4 MODF Systems 
 

When there are several number of discs in the rotor system it becomes is multi-DOF system. When 

the mass of the shaft itself may be significant then the analysis described in previous sections (i.e. 

single or two-discs rotor systems) is inadequate to model such system, however, they could be 

extended to allow for more number of lumped masses (i.e. rigid discs) but resulting mathematics 
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becomes cumbersome. Alternative methods are: (i) transfer matrix methods (ii) methods of 

mechanical impedance and (iii) finite element methods. 

 

2.4.1 Transfer matrix method: A multi-disc rotor system, supported on frictionless supports, is 

shown in Fig. 7. Fig. 8 shows the free diagram of a shaft and a disc, separately. At particular station in 

the system, we have two state variables: the angular twist θ and Torque T.  Now in subsequent 

sections we will develop relationship of these state variables between two neighbouring stations and 

which can be used to obtain governing equations of motion of the whole system. 

 

1.Point matrix: 
 I1                                           I2                                             I3 
  

 

 0 k1                                     k2                                  k3 4 

 

 

 

 θ1                                          θ 2                                           θ3 

 
       Figure 2.8 A multi-disc rotor system 

 Ip2 

       RT1  

 k2  

 LT2 RT2 

 

 LT2 

 

                                                                                                          θ2 

 
     Fig. 2.9(a) Free body diameter of shaft section 2               (b) Free body diagram of rotor section 2 

 

The equation of motion for the disc 2 is given by (see Figure 2.9(b)) 

 

2 22 2 pR LT T I θ− = ��                 (16) 

 

For free vibrations, angular oscillations of the disc is given by 

 

2
ˆsin tθ θ ω=   so that  

2 2

2 2
ˆ sinnf nftθ ω θ ω ω θ= − = −��    (17) 

  

Substituting back into equation (16), we get  

 

 
2

2

22 2 nf pR LT T Iω θ− = −                  (18) 

 

Angular displacements on the either side of the rotor are equal, hence 
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 2 2R Lθ θ=                (19) 

 

Equations (18) and (19) can be combined as 

 

2

2 2

1 0

1nf pR L
IT T

θ θ
ω

    
=    −    

  or  { } [ ] { }
R 2 22
S

L
P S=         (20, 21) 

  

where {S}2 is the state vector at station 2 and [P]2 is the point matrix for station 2. 

 

2. Field matrix: 

 

For shaft element 2 as shown in Figure 2.9(a), the angle of twist is related to its torsional stiffness and 

to the torque, which is transmitted through it, as 

 

   2 1

2

T

K
θ θ− =         (22) 

 

Since the torque transmitted is same at either end of the shaft, hence 

 

   2 1L RT T=         (23) 

 

Combining (22) and (23), we get 

 

22 2

1 1

0 1
RL

k

T T

θ θ     
=    

     
      (24) 

 

which can be written as  

 

{ } [ ] { }
2 2 1L R

S F S=         (25) 

 

where [F]2  is the field matrix for the shaft element 2. Now we have 

 

   { } [ ] { } [ ][ ] { } [ ] { }22 2 1 12 2 2R RR
S P S P F S U S= = ==  

 

where [U]2  is the transfer matrix, which relates the state vector at right of station 2  to the state vector 

at right of station 1. On the same lines, we can write 

  

 

 

 

 
 

 

 (26) 

{ } [ ] { }
{ } [ ] { } [ ] [ ] { }
{ } [ ] { } [ ] [ ] [ ] { }

{ } [ ] { } [ ] [ ] [ ] { } [ ]{ }
1 1 0

1 01

2 1 2 1 02

3 2 3 2 1 03

1 0n n n n n

RR

R R

R R

R R

S U S

S U S U U S

S U S U U U S

S U S U U U S T S=
− −

=

= =

= =

= =

�

�
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where [T] is the overall system transfer matrix. The overall transfermation can be written as   

 

  
11 12

21 22 0nR R

t t

t tT T

θ θ    
=    

    
       (27) 

 

For free-free boundary conditions, the each end of the machine torque transmitted through the shaft is 

zero, hence 

 

  0 0R n RT T= =          (28) 

 

On using equation (28) into equation(27), the second set of equation gives  
 

  
21 0 0Rt θ =  which gives ( )21 0nft ω =  since 

0 0Rθ ≠     (29) 

 

which is satisfied for some values of ωnf, which are system natural frequencies. These roots ωn may be 

found by any root-searching technique. Angular twists can be determined for each value of ωnf from 

first set of equation of equation (27), as 

 

 
11 0R n Rt Tθ =  

 

On taking 0 1Rθ = , we get 

 

 ( )110 0
1 we get

nfR R
tθ θ ω= =      (30) 

 

In Eq. (30), t11 contains ωn so for each value of ωn different value of Rθ4 is obtained and using Eq. (27) 

relative displacements of all other stations can be obtained, by which mode shapes can be plotted. 

 

Example 2.1. Obtain the torsional natural frequency of the system shown in Figure 2.10 using the 

transfer matrix method. Check results with closed form solution available. Take G = 0.8×1011 N/m2
.    

 

     
 0.6m 

 

 

 1 2 

 

 0.1 m 
                                 22.6 kgm2                                                                               

5.66 kgm
2
 

               
 

Figure 2.10 Example 2.1 

 

Solution: We have following properties of the rotor 
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4

;
11 2 4

     
-60.8 10 N/m     0.6 m;     (0.1) 9.82 10 m

32
G l J

π
= × = = = ×  

 

The torsional stiffness is given as 

 

 
-6

11
6
  

0.8 10
9.82 10 1.31 10 Nm/rad

0.6
t

GJ
k

l

×
= = × = ×  

 

Analytical method: The natural frequencies in the closed form are given as 

 

( )
1 2

2 2

1 2

6( ) 22.6 5.66 1.31 10
0;    and   537.97 rad/sec

22.6 5.66

p p t

n n

p p

I I k

I I
ω ω

+ + ×
= = = =

×
 

 

Mode shapes are given as 

 

For  
1

0nω =    { } { }
2 0

Rθ θ=  

and  
2

537.77 rad/snω =   { } { } { }1

2

2 0 0
4.0

R p

p

I

I
θ θ θ= − = −  

 

Transfer matrix method:  State vectors can be related between stations 0 & 1 and 1 & 2, as 

 

 

1 1 0

2 2 2 1 2 2 1 0

{ } [ ] { }

{ } [ ] [ ] { } [ ] [ ] [ ] { }

R

R R

S P S

S P F S P F P S

=

= =

 

 

The overall transformation of state vectors between 2 & 0 is given as 

 

( )

( ) ( )

2 1 12 2

1

2 1 2 2

2 2 22 2

2 0 0

2

2 2 2 2

0

1 11 0 1 0 1 01 1
  

1 1 110 1

1 1

1 1

R
tt

n p n p n pn p n p t

n p t t

n p n p p t n p t

kk

I I II I kT T T

I k k

TI I I k I k

θ θ θ
ω ω ωω ω

ω θ

ω ω ω ω

             
= =             − − −− −              

 −   =  
 − − − −   

 

 

On substituting values of various rotor parameters, it gives 

 

 
( )

( )

5 2 7

2 5 4 2 7 2
2 0

1 1.73 10 7.64 10

5.66 9.77 10 22.6 9.77 10 1

R
n

n n n n
T T

ωθ θ

ω ω ω ω

− −

− −

 − × ×    =   
 − + × − × +    

  (A) 

 

Since ends of the rotor are free, the following boundary conditions will apply 
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 0 2 0RT T= =  

 

On application of boundary conditions, we get the following condition  

   

 
2 5 4

21 0[ 28.26 9.77 10 ]{ } 0n nt ω ω θ−= − + × =  

 

Since { }
0

0θ ≠ , we have 

 

 
2 5 2[9.77 10 28.26] 0n nω ω−× − =  

 

which gives the natural frequency as 

 

 
1 2

0  and  537.77 rad/secn nω ω= =  

 

which are exactly the same as obtained by the closed form solution. Mode shapes can be obtained by 

substituting these natural frequencies one at a time into equation (A), as 

 

For  
1

0nω =    { } { }
2 0

Rθ θ=   rigid body mode 

and  
2

537.77 rad/snω =   { } { }
2 0

4.0
R

θ θ= −  anti-phase mode 

 

which are also exactly the same as obtained by closed form solutions. 

 

Example 2.2. Find torsional natural frequencies and mode shapes of the rotor system shown in Figure 

1. B is a fixed end and D1 and D2 are rigid discs. The shaft is made of steel with modulus of rigidity G 

= 0.8 (10)
11
 N/m

2
 and uniform diameter d = 10 mm. The various shaft lengths are as follows: BD1 = 

50 mm, and D1D2 = 75 mm. The polar mass moment of inertia of discs are: Ip1 = 0.08 kg-m
2
 and Ip2 = 

0.2 kg-m
2
. Consider the shaft as massless and use (i) the analytical method and (ii) the transfer matrix 

method.   

   

 

 

 

 

 

 

 

Solution: 

Analytical method: From free body diagrams of discs as shown in Figure 2.12, equations of motion 

can be written as 

 

Figure 2.11 Example 2.2 

B D1 D2 
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1

2

1 1 1 2 1 2

2 2 2 1

( - ) 0

( - ) 0

p

p

I k k

I k

θ θ θ θ

θ θ θ

+ + =

+ =

��

��

 

 

The above equations for free vibrations and they are homogeneous second order differential 

equations. In free vibrations discs will execute simple harmonic motions. 

 

 

                         k1θ1             k2( θ2-θ1)                                 k2( θ2-θ1) 

 

 

                                                      θ1                                                                                          θ2 

 

 

                          (a)     D1                                                         (b)       D2 

 
       Figure 2.12 Free body diagram of discs 

 

For the simple harmonic motion
2

nθ ω θ= −�� , hence equations of motion take the form 

 

  1

2

2

1 2 2 1

2
22 2

- 0

0

p n

p n

k k I k

k k I

ω θ
θω

 + −    
=     

− −      
 

 

On taking determinant of the above matrix, it gives the frequency equation as 

 

 
1 2 1 2 2

4 2

2 1 2 1 2( ) 0p p n p p p nI I I k I k I k k kω ω− + + + =  

 

which can be solved for 
2

nω , as 

 

( )
1 2 2 1 2 2 1 2

1 2

2

2 1 2 2 1 2 1 22
4

2

p p p p p p p p

n

p p

I k I k I k I k I k I k k k I I

I I
ω

+ + ± + + −
=  

 

For the present problem the following properties are gives 

 

1 2

1 2
1 2

1 2

2 2

1878N/m and 523.598N/m

0.08  kgm and 0.2  kgmp p

GJ GJ
k k

l l

I I

= = = =

= =

 

 
Natural frequencies are obtained as 
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1 2

44.792 rad/s and 175.02 rad/sn nω ω= =  

 
The relative amplitude ratio can be obtained as (Figure 2.13) 

 

2

1 2

2

21

2 2

-
0.2336 for    and   -10.700 for

p n

n n

k I

k

ωθ
ω ω

θ
= =   

 

 

 1 

 

 0 

 1 

                                                                                                                            -10.7 

 0.2336 

0 

 

(a) 
1

For  nω       (b) 
2

For  nω  

Figure 2.13 Mode shapes 
 

Transfer matrix method 
 

 

 

 

 

 k1                                    k2 
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Figure 2.14 Two-discs rotor system with station numbers 

 

For Figure 2.14 state vectors can be related as 

 

{ } [ ] [ ] [ ] [ ] { }
2 2 2 1 1 0

R
P F P Fθ θ=  

 

The above state vector at various stations can be related as 

 

1 2

1 2

1 2

2 2

2 2

1 0 2 1

1 1

1 1/ 1 1/

and
- 1 - 1

n p n p

n p n pR R R R

k k

I I
T T T TI I

k k

θ θ θ θ
ω ω

ω ω

   
          = =− −          + +             

 

 

which can be combined  to give 
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1 1

2

2 2

2 1 2 2

2
2 0

1 2

1 1
1- 1

1
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R n p

I I

k k k k

T TIp
p

k k

ω ω

θ θ

ω

    
− +              

=    
     

− +   
  

     (A) 

 

with  
 

2

2 1

2

2 2

2

1
n p

n p n p

I
p I I

k

ω
ω ω

 −
= − − +  

 
  

 

Boundary conditions are given as  

 

At station 0    ⇒ θ = 0 and T = 1 (assumed)  

 

and at right of station 2  ⇒ T = 0 

 

On application of boundary conditions the second equation of equation (A), we get 

 

 2

2

0

1 2

0 0 1
n p

R

Ip
p T

k k

ω 
= × + − +  

 
 

 

since 0 0RT ≠  and on substituting for p, we get 

 

 2 2

2 1

2 2

2 2

1 2 2

-1
- 1 1 0

n p n p

n p n p

I I
I I

k k k

ω ω
ω ω

  
− + − + =      

 

 

which can be solved to give 

 

 

2 1 2 1 1 2

2 2 1 2 1 1 2
2 21 1

4
2 4

n

p p p p p p

k k k k k k

I I I I I I
ω

   
= + ± + −      

   
 

 

It should be noted that it is same as obtained by the analytical method. 
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Exercise 2.1. Obtain the torsional critical speed of a rotor system as shown in Figure E.2.1 Take the 

polar mass moment of inertia, Ip = 0.04 kg-m
2
. Take shaft length a = 0.3 m and b = 0.7 m; modulus of 

rigidity G = 0.8 × 1011 N/m2
. The diameter of the shaft is 10 mm. Bearing A is flexible and provides a 

torsional spring of stiffness equal to 5 percent of the stiffness of the shaft segment having length a and 

bearing B is a fixed bearing.  Use either the finite element method or the transfer matrix method. 

 

a b

A B

 

Figure E2.1 An overhang rotor system 

 

Exercise 2.2. Find the torsional critical speeds and the mode shapes of the rotor system shown in 

Figure E2.2 by transfer matrix method. B1 and B2 are frictionless bearings and D1 and D2 are rigid 

discs. The shaft is made of steel with modulus of rigidity G = 0.8 (10)
11
 N/m

2
 and uniform diameter d 

= 10 mm. The various shaft lengths are as follows: B1D1 = 50 mm, D1D2 = 75 mm, and D2B2 = 50 

mm. The polar mass moment of inertia of discs are: Jd1 = 0.0008 kg-m2 and Jd2 = 0.002 kg-m
2
. 

Consider shaft as massless. 

           

 

 

 

 

 

 

Exercise 2.3. Obtain the torsional critical speed of an overhang rotor system as shown in Figure E2.3. 

The end B1 of the shaft is having fixed end conditions. The disc is thin and has 0.02 kg-m
2
 of polar 

mass moment of inertia. Neglect the mass of the shaft. Use (i) the finite element and (ii) the transfer 

matrix method.       

 

 

 

 

 

 
 

Exercise 2.4 Find the torsional natural frequencies and the mode shapes of the rotor system a shown 

in Figure E2.4 by ONLY transfer matrix method. B1 and B2 are fixed supports and D1 and D2 are rigid 

discs. The shaft is made of steel with modulus of rigidity G = 0.8 (10)
11
 N/m

2
 and uniform diameter d 

B1 B2 

D1 D2 

Figure E2.2 

B1 

D1 

Figure E2.3 
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= 10 mm. The various shaft lengths are as follows: B1D1 = 50 mm, D1D2 = 75 mm, and D2B2 = 50 

mm. The polar mass moment of inertia of discs are: Jd1 = 0.08 kg-m2 and Jd2 = 0.2 kg-m
2
. Consider 

shaft as massless. 

    

 

Exercise 2.5 Find all the torsional natural frequencies and draw corresponding mode shapes of the 

rotor system shown in Figure E2.5. B and D represent bearing and disc respectively. B1 is fixed 

support (with zero angular displacement about shaft axis) and B2 and B3 are simply supported (with 

non-zero angular displacement about shaft axis). The shaft is made of steel with modulus of rigidity G 

= 0.8 (10)
11
 N/m

2
 and uniform diameter d = 10 mm. The various shaft lengths are as follows: B1D1 = 

50 mm, D1B2 = 50 mm, B2D2 = 25 mm, D2B3 = 25 mm, and B3D3 = 30 mm. The polar mass moment 

of inertia of the discs are: Ip1 = 2 kg-m
2
, Ip2 = 1 kg-m

2
, and Ip3 = 0.8 kg-m

2
.  Use both the transfer 

matrix method and the finite element method so as to verify your results. Give all the detailed steps in 

obtaining the final system equations and application of boundary conditions. Consider the shaft as 

massless and discs as lumped masses. 

 

 

 

 

 

 
 

 

 

 

Exercise 2.6 Obtain the torsional critical speed of turbine-coupling-generator rotor as shown in Figure 

E2.6 by the transfer matrix and finite element methods. The rotor is assumed to be supported on 

frictionless bearings. The polar mass moment of inertias are IpT = 25 kg-m
2
, IpC = 5 kg-m

2
 and IpG = 

50 kg-m
2
. Take modulus of rigidity G = 0.8 × 1011 N/m2

. Assume the shaft diameter throughout is 0.2 

m and lengths of shaft between bearing-turbine-coupling-generator-bearing are 1 m each so that the 

total span is 5 m. Consider shaft as massless. 

 

 

Figure E2.4 

B1  B2 

D1 D2 

B1 B2 B3 

D1 D2 
D3 

Figure E2.5 
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Turbine
Generator

Coupling
Bearing Bearing

 
Figure E2.6 A turbine-generator set 

 

Exercise 2.7 In a laboratory experiment one small electric motor drives another through a long coil 

spring (n turns, wire diameter d, coil diameter D). The two motor rotors have inertias I1 and I2 and are 

distance l apart, (a) Calculate the lowest torsional natural frequency of the set-up (b) Assuming the 

ends of the spring to be “built-in” to the shafts, calculate rotational speed (assume excitation 

frequency will be at the rotational frequency of the shaft) of the assembly at which the coil spring 

bows out at its center, due to whirling. 

 


