Sources of Mechanical Energy

• Potential Energy

E = mgh

• Kinetic Energy

$$E = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

• Spring Energy

$$E = \frac{1}{2}kx^2$$

• Electrical Energy + Motor

$$E = VIt = \tau \omega t$$

Batteries

	Battery Chemistry	Recharge	Energy Density (Whr/kg)	Cell Voltage	Typical Capacity (mAh)	Internal Resistance (ohms)	Comments
 Types of Batteries 	Alkaline	No	130	1.5	AA 1400 C 4500	0.1	Most common primary battery
	Lead-Acid	Ves	40	2.0	D 10000	h (-size () ()()6	Available in a wide variety of
	Ecua / Icia	105	40	2.0	1.2 12070	n e 5120 0.000	sizes
 – NIMH – Lead-Acid 	Lithium	No	300	3.0	A 1800 C 5000 D 14000	0.3	Execellent energy density, high unit cost
– Lithium	Mercury	No	120	1.35	Coin 190	10	
 Battery Properties – Rechargeability 	NiCd	Yes	38	1.2	AA 500 C 1800 D 4000	0.009	Low internal resistance, available from many sources
 Energy Density 	NiMH	Yes	57	1.3	AA 1100 4/3A 2300		Better energy density than NiCd, expensive
 Capacity 	Silver	No	130	1.6	Coin 180	10	
 Voltage Internal Resistance 	Zinc-Air	No	310	1.4			High energy density but not widly available, limited range of sizes
 Discharge Rate 	Carbon-Zinc	No	75	1.5	D 6000		Inexpensive but obsolete

– Shelf Life

All numbers listed here are approximate. Precise values depend on the details of the particular battery. Some values depend on the battery's state of charge, temperature, and discharge history.

Figure 8.1: Comparison of characteristics for selected batteries and sizes.

Battery Discharge Curves

- The graph is normalized with respect to a lithium battery
- The dashed lines show output voltage versus battery capacity consumed
- The solid lines show voltage versus time

DC Motor Model

Physical Principles

- Current through a wire produces a magnetic field
- A wire moving through a magnetic field induces a current
- For multiple windings we find that

$$\tau = K_t i$$

Motor electrical model

$$L_a \frac{di_a}{dt} + R_m i + K_e \omega = V_a$$

Substituting in for *i* and solving for τ gives

$$\tau = \frac{K_t}{R_m} V_a - \frac{K_t K_e}{R_m} \omega$$

Torque-Speed Curves

DC Motor Equation

A transmission changes the slope of the torque-speed curve (line) to provide more desirable no load speed and output torque characteristics.

Motor Power

When does a motor operate at maximum power?

$$P = \tau \omega = (\tau_{stall} - \frac{\tau_{stall}}{\omega_{noload}}\omega)\omega$$

To find the maximum operating point, take the derivative and set it equal to zero.

$$\frac{\partial P}{\partial \omega} = \tau_{stall} - \frac{2\tau_{stall}}{\omega_{noload}}\omega = 0$$

Solve for ω^* and corresponding τ^*

$$\omega^* = \frac{\omega_{noload}}{2}$$

$$\tau^* = \tau_{stall} - \frac{\tau_{stall}}{\omega_{noload}} \frac{\omega_{noload}}{2} = \frac{\tau_{stall}}{2}$$

Power and Efficiency

 $I_{stall} = \frac{V_{in}}{R_m}$

Efficiency:
$$\eta_{max} = \left(1 - \sqrt{\frac{I_{noload}}{I_{stall}}}\right)$$