

Power Transmission Design Issues

- Power source (motor, engine, etc.)
- Power required (P = torque × velocity)
- Continuous or Intermittent Motion
- Operating conditions (start, load duration)
- Magnitude of speed (input or output)
- Speed modification (output to input, constant or variable, linear or rotary)

Type of Drive Nomenclature rate, etc.		Speed Ratio (one step) m _w	Power (per mesh) P, kW	Max- imum Speed n _{max} , rpm	Peri- pheral Speed v, m/s	Effi- ciency (includ- ing bear- ings) e, %	Shaft Center Distance (a mea- sure of space occupied) C, m	Relative Shaft Position (reducer)	Mass Relative to Power	Initial Cost (spur gear = 100%)	Noise Level	Life (rela- tive)	Damp- ing
Straight Spiral	Bevel gear drive	<8 <8 (15+)	4,000	15,000	<25 <50 (200)	99–97 99–97	_	Inter-	Small	150	High	Average	Poor
Crossed gearing	helical	<100	<8	25,000	<50	95–50	0.1-0.4	Non- parallel,	Very large:	100	Low	Mod- erate	Poor
Worm gearing		<60 (100)	<150 (1,000)	30,000	<70	9750	0.05-0.5	Non- inter-	Small	<100	Low	Short	Mod-
Friction wheel drive		6 (10)	20 (150)	10,000	<20	98–95	0.1–0.5	All po- sitions	Average	50	Very low	Short	Moder ate to
Flat		5 (20)	300 (1,600)	18,000	<100	98–96	(0.5-3)x (d_1+d_2)	Arbitrary	Average	65	Low	Average	Moder ate to
V-type	Belt drives	8 (40)	220 (1,100)	10,000	<60	97–95	>1,(2-3)	Parallel	Average	65	Very low	Mod- erate	Good
Synchro- nous		8 (15)	200 (1,200)	5,000	<60	98–95	>1,(2-3)	Parallel	Average	65	Low	Mod- erate	Good
Roller	Chain	<6 (14)	700 (4,000)	5,000	<17	97-95		B	Average	85	High	Mod- erate	Poor
Silent	drives	<8 (12)	(900)		<30	99-97	0.3-3	Parallel	to large	125	Low	Average	Poor

Belt Drives

- Belt drives are used when large distances between shafts make gears impractical or when designated speed is too high for chain drives.
- Belts are used with pulleys or sheaves to transmit power.
- Belts require tensioning, and are prone to slip under high loads.

References

- Hindhede, U., Zimmerman, J., Hopkins, B., et al., *Machine Design Fundamentals: A Practical Approach*, Englewood Cliffs: Prentice Hall, 1983.
- Shigley, J., and Mischke, C., *Mechanical Engineering Design*, 5th Ed., San Francisco: McGraw-Hill Inc., 1989.
- Norton, R., *Machine Design: An Integrated Approach*, Upper Saddle River: Prentice-Hall, 1998.
- Hamrock, B., Jacobson, B., and Schmid, S., *Fundamentals* of *Machine Elements*, San Francisco, WCB McGraw-Hill, 1999.