CHAPTER 6

TORSIONAL VIBRATIONS OF ROTORS-I:
THE DIRECT AND TRANSFER MATRIX METHODS

In previous chapters, mainly we studied transverse vibrations of simple rotor-bearing systems. It was
pointed out that transverse vibrations are very common in rotor systems due residual unbalances,
which is the most inherent fault in a rotor. We studied behaviour of rotor due to speed-independent
bearing dynamic parameters. Effect of gyroscopic couples on natural whirl frequencies jéﬁﬂso
investigated in details. In the present chapter, we will extend the analysis of simple rotors ‘tg%sional
vibrations. We will start with the analysis of torsional vibrations of the single discz@;)r, two disc
rotor, and three disc rotor systems with the conversional Newton’s second law, tion or energy
methods. The analysis is extended to the stepped shafts, geared systems, and branched systems. For
the multi-DOF system a general procedure of the transfer matrix method@M) is discussed for both
undamped and damped cases. Advantages and disadvantages ‘ogx,he TMM are outlined. In
reciprocating engines large variations of torque take placejgg&er, periodically. This leads to
torsional resonances, and to analyse free and forced VibIﬁl{/& f these system a procedure is outline
to convert them to an equivalent multi-DOF rotor system, which is relatively easier to analyse. The

present chapter will pave the road for the TMM to%&ended for the transverse vibrations of multi-
DOF rotor systems in subsequent chapters. Q&

The study of torsional vibration of m@g i‘g very important especially in applications where high
power transmission and high spepi/g present. Torsional vibrations are predominant whenever there
are large discs on relatively thin shafts (e.g., the flywheel of a punch press). Torsional vibrations may
original from the followi g@ cings (i) inertia forces of reciprocating mechanisms (e.g., due to pistons
in IC engines), (ii) in@ll ive loads occurring during a normal machine cycle (e.g., during operations
of a punch pre%@() shock loads applied to electrical machinery (such as a generator line fault
followed by @ moval and automatic closure), (iv) torques related to gear mesh frequencies, the
turbine bﬁéﬁ and compressor fan passing frequencies, etc.; and (v) a rotor rubs with the stator. For
ma @ aving massive rotors and flexible shafts (where system natural frequencies of torsional
vibrations may be close to, or within, the source frequency range during normal operation) torsional
vibrations constitute a potential design problem area. In such cases designers should ensure the
accurate prediction of machine torsional frequencies, and frequencies of any torsional load
fluctuations should not coincide with torsional natural frequencies. Hence, determination of torsional
natural frequencies of the rotor system is very important and in the present chapter we shall deal with

it in great detail.
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6.1 A Simple Rotor System with a Single Disc Mass

Consider a rotor system as shown Figure 6.1(a). The shaft is considered as mass-less and it provides
torsional stiffness. The disc is considered as rigid and has no flexibility. If an initial disturbance is
given to the disc in the torsional mode (about its longitudinal or polar axis) and allow it to oscillate its
own, it will execute free vibrations. Figure 6.2 shows that rotor is spinning with a nominal speed of @

and executing torsional vibrations, ¢.(¢), due to this it has actual speed of @+ ¢@,(¢). It should be noted

that the spinning speed, @, remains the same, however, the angular velocity due to torsion have
varying direction over a period. In actual practice if we tune a stroboscope (it is a speed/fregﬁﬂcy
measuring instrument, refer Chapter 15) flashing frequency to the nominal speed of a rot@wn free
torsional oscillations could be observed. For the present case and in most of our analysi@ is assumed
that torsional natural frequency does not depend upon the spin speed of rotor. Q’n limiting case
when the spin speed is zero the natural frequency of the non-spinning rotor will be same as at any

other speed. The free oscillation will be simple harmonic motion with @que frequency, which is
S
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called the torsional natural frequency of the rotor system.
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Figure 6.1(a) A single-ma:léantilever rotor system (b) A free body diagram of the disc

x‘b
X»

P. P. P. P.

Figure 6.2 Torsional vibrations of a spinning rotor
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From the theory of torsion of the shaft (Timoshenko and Young, 1968), we have

Gl i =T 6.1)
l 32

N

where £, is the torsional stiffness of shaft, /, is the polar mass moment of inertia of the disc, J is the

polar second moment of area of the shaft cross-section, / is the length of the shaft, d is the diameter of

the shaft, and ¢, is the angular displacement of the disc (the counter clockwise direction is assm&d
as the positive direction). From the free body diagram of the disc as shown in Figure 6.1(b), @Ve

Q{b

ZExtemal torque of disc=1,¢. = —ko.=1,0. C>0 (6.2)

where 2 represents the summation operator. Equation (6.2) is the equati@motion of the disc for
free torsional vibrations. The free (or natural) vibration has a simple harmonic motion (SHM). For

SHM of the disc, we have {\'}

@.(1)=P_sinw, 1 so that &Swjfcbz sinw, 1 =—w, Q. (6.3)

where @ is the amplitude of the torsional Vibratjel, ;nd @, is the torsional natural frequency. On

substituting equation (6.3) into equation (6.2), we get
.= 1,(~a0) %Q\r 0. (,1,-)=0 (64
ol

Since @, #0, it gives 8

ok [er
'»\@7%\/% ©
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which_i ﬁﬂar to the case of single-DOF spring-mass system in where the polar mass moment of

il@ and the torsional stiffness replace the mass and the spring stiffness, respectively.

Example 6.1 Obtain the torsional natural frequency of an overhung rotor system as shown in Fig. 6.3.
The end B, of the shaft has fixed end conditions. The shaft diameter is 10 mm and the length of the
span is 0.2 m. The disc D; is thin, and has mass of 10 kg and the polar mass moment of inertia equal

to 0.02 kg-m’. Neglect the mass of the shaft.
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Figure 6.3 An overhung rotor system
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Answer: For the present problem the torsional stiffness of the shaft can be obtained as &

&
0.8x10" ><3—7[2(0.01)4
= =392.7 Nm/rad é

)
l 0.2

@"i}'}
<5
o, =kl = 3927 =140.12 rad/s =22.3 Hz Answer.
v TNE T 0 ' Q« ‘

Hence, if the rotor has cyclic torque variation ;th a period of 1/22.3 sec then the rotor might undergo

Hence, the torsional frequency is given as

. . 9 . :
to the resonance under torsional VI% ns. To have a comparison with the transverse natural

frequency, the bending stiffness ip-fygn as

PE o0
3EL 321104, 2,00
P \{5\, 0.2°

'\,QO
Hence, thg%‘&gsverse natural frequency is given as

S

k, = =3.87x10* N/m

@y

87x10°
=Jk,/m = % =62.21rad/s=9.9 Hz Answer.
If the same rotor has small amount of unbalance and if rotor is spinning around 9.9 Hz speed, then the
rotor might undergo to the resonance under transverse vibrations. For the present case, the transverse

natural frequency is much lower than the torsional natural frequency.
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6.2 A Two-Disc Torsional Rotor System

A two-disc torsional system is shown in Figure 6.4. In this case the whole of the rotor is free to rotate
as the shaft is mounted on frictionless bearings. Hence, it is a free-free end condition, and the
application of which can be found in an aircraft when it is flying and whole structure has torsional

vibrations due to aerodynamic forces.

_ 2 _ Py
Ql= —| ¢
A__ Frictionless bearings —* 7 S

Figure 6.4 A two-disc torsional system é

N
7

(2, 2., )k (0, — 2, )k
ups 7,
(a) Disc 1 (b) Disc 2

\V
F'rg?/ .5 Free body diagrams of discs
Let ¢, and @ are(% lar displacements of the disc 1 and 2, respectively. For both angular
dlsplacements t Wnter clockwise direction is chosen as positive direction. Let I and I are

polar mass ent of inertia of the disc 1 and 2, respectively. From the free body diagram of discs as
shown iQi re 6.5, we have

C/O
> External torque =/, §, = ((le ?., ) 1,0,

and

> External torque =/, ¢, = ((Dzl —Q, )kt =1,0,
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where k; is the torsional stiffness of the shaft, and let ((/)Z] -9, ) be the relative twist of the shaft ends.

Above expressions give the following equations of motion

Ip ¢Zl +kt¢zl _kt¢zz = O and Ip ¢Zz +kT¢ZZ _k1¢z1 = 0 (6 6)

For free vibrations, we have SHM, so the solution will take the form

¢Zl = _w’?f ¢Zl and (bzz = _a)jf ¢zl &7)
$(S,Q
O

-1, op, + ko —kp =0 and -I, W Q. + ko @(pzl -0 (6.8)

Substituting equation (6.7) into equation (6.6), it gives

Noting equation (6.3), equation (6.8) can be assembled in a matrix foT,Qa)s
&
[D{{®.}={0] (<;\ (6.9)

with | &Q'o
N R R

2
t k= IPz @, ® A
The non-trial solution of equatioﬁ@) is obtained by taking determinant of the matrix [D] equal to
ﬁg& 0

o xS
which gives ‘Q

&

(k P @

D)k —1,@)-k=0 o 1,1, @y —(1,+1,)ka =0 (6.10)
(oo
R of equation (6.10) are given as

Zero, as

a

nfy (6.11)

=0 and @, =

Hence, the system has two torsional natural frequencies and one of them is zero. From equation (6.9)

corresponding to first natural frequency for O, = 0, we get
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d =P (6.12)

D D

>
Figure 6.6 The first mode shape 'Q(bd
&

From equation (6.12), it can be concluded that, the first root of equation (6.1 esents the case
when both discs simply rolls together in phase with each other as shown in Figure 6.6. The
representation of the relative angular displacement of two discs in this fi %s called the mode shape.
The mode shape shown in Fig. 6.6 is called the rigid body mod&which is of a little practical
significance because no stresses develop in the shaft. This mo $ generally occurs whenever the
system has free-free boundary conditions (for example a%@é:eb;uring flying).
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Figure 6.7 (a) The second mode (b) equivalent system 1 (c) equivalent system 2
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Now from first set of equation (6.9), for @, = @, ,we get
k-1 @, |® —k® =0 k —1 —Ip‘+1p2k ® —kP =0
(f_ I’la)’lfz) g MF, T t p t a Ntz T
or PP
which gives relative amplitudes of two discs as ‘

Py L >
(bzz Il’l (6@

The second mode shape from equation (6.13) represents the case when b asses oscillate in anti-
phase with one another (i.e., the direction of rotation of one disc will also"be opposite to the other).
Both discs will reach their extreme angular positions simultaneo s@,\g}nd both will reach the static
equilibrium (untwisted) position also simultaneously. It shoglq;bé noted that both the discs have same
frequency of oscillation (i.e., the time period) but differi&l}gular amplitude. Figure 6.7 shows this
mode shape of the two-rotor system. From two simi%t-r/iangles in Figure 6.7(a), we have

0 o _ o

a_ P, L. _ L (6.14)
L \%a @, I
Q

where [, and [, are node position(f}ﬂm discs 1 and 2, respectively (Fig. 6.7a). Since both the masses

are always vibrating in the @p’(’)site direction, there must be a point on the shaft where torsional
vibration is not taking p% , i.e. where the angular displacement is zero. This point is called a node.
The location of thel@e may be established by treating each end of the real system as a separate
single-disc cantilever system as shown in Figure 6.7(a). The node is treated as the point, where the
shaft is riﬁiggy)\fixed. Hence, basically we will have two single-DOF overhung rotor systems (Fig.
6.7b) instead of one two-DOF free-free rotor system (Fig. 6.7c). Since value of natural frequency is

own (the frequency of oscillation of each of the single-disc overhung system must be same), hence

we write

) kt kt
W, =——=— (6.15)

where @, is defined by equation (6.11), ktl and kt2 are the torsional stiffness of two single-DOF

overhung rotor systems, which can be obtained from equation (6.15), as
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k =1, and k =ay 1

nf, " p,

Lengths /; and /, then can be obtained as

[ == and [, === with [+l =1 (6.16)
Xy
s

which will give the node position. It should be noted that the shear stress would be ma)iglfg%r the

60

Example 6.2 Determine natural frequencies and mode shapes for a rotor as shown in Figure

node point being a fixed end of overhung rotor systems.

6.8. Neglect the mass of the shaft and assume that discs as lumped mass& e shaft is 1 m of length,
0.015m of diameter, and 0.8x10'' N/m of modulus of rigidity. D"@;'have polar mass moment of
inertia as 7, =0.01 kg-m”and 7, =0.015 kg-m’. >
K
Qs
Massless shaft

GJ

bt ] 1

&

Solution: The stif{@‘of the shaft can be obtained as

Figure 6.8 A two-disc rotor system

\' 11
45’(& GJ _08x10"x7(0.015)"/32 _ 100\ \

1.0

O

The natural frequency is given as

w,=0 and @, =257.43 rad/s

nh

J(0.0l+0.015)x397.61
0.01x0.015

The relative displacements would be
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which means disc 1 would have 1.5 times angular displacement amplitude as compared to the disc 2,

however, in opposite direction. The node position can be obtained as

1 0.015 ‘
L7 oo and b+l =1 O
2 41 ’ Q@i
Hence, we get the node location as /, = 0.6 m (i.e., 0.6 m from disc 1 refer to Fig. 6.7(a)). It can be

verified that equivalent two single-mass cantilever rotors will have the same nau@requency, as
0}

_GJ _0.8x10" x7(0.015)*/32

k, = l_ = 06 =662.68 Nm/rad -
1 : &
and ‘$®
N
11 4
K :ﬂ: 0.8x10" x 7(0.015)" /32 — 994,03 Ni/rad
R A 0.4 Q’O
so that Q&
'}
662. 68
;}2) t‘ 43rad/s
Pl 0 010
and
w? = =257.43 rad/s Answer

nfy —

63A ng?sc Rotor System with a Stepped Shaft

F1gure9@a shows a stepped shaft with two large discs at ends with 7, (subscript 1 and 2 represent
right side disc, respectively) is the polar mass moment of inertia. It is assumed that the rotor

has free-free boundary conditions and the polar mass moment of inertia of shaft is negligible as

compared to two discs at either ends of the shaft. In such cases the actual shaft should be replaced by

an unstepped equivalent shaft for the purpose of the analysis as shown in Fig. 6.9(b). The equivalent

shaft diameter may be same as the smallest diameter of the real shaft (or any other diameter). The

equivalent shaft must have the same torsional stiffness as the real shaft.
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Y

Figure 6.9 Two discs with (a) a stepped shaft (b) an equivalent unif({%ﬁhaft
Since torsional stiffness corresponding to different sh ‘@ ments are connected in series, the

equivalent torsional stiffness can be written as

111 4:f§
- = —
k k1 k. k \ Q (6.17)
where k; is the torsional stiffne(s};gbscripts: 1, 2, 3 represent the shaft segment number and the
subscript e represents the eql}'celent. Nothing equation (6.1), equation (6.17) becomes
b b b
Joo 4y
where /i % length of the shaft segment and J is the polar moment inertia of the shaft cross-sectional

r{ﬁove equation can be written as

lL,=1, +I +1,
| 2 e (6.18)

with

L=1d,00s 1 =0LJ, 10 1 =LJ, 1],
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where le] ,le2 ,le3 are equivalent lengths of shaft segments having the equivalent shaft diameter d;, and /.

is the total equivalent length of the unstepped shaft as shown in Figure 6.9(b). Let us assume that the
node position in the equivalent shaft system comes out in the second shaft segment from the previous
section analysis. Noting equations (6.15) and (6.16), the node location in the equivalent shaft from

Figure 6.9(b) can be obtained as

GJ, GJ, .
I, +a,=— I, +b,=— A\
w1, and w1, (6.19}5‘&

N
&L
N AT /(cl;J )+ /(GJ({OO

Q

From equation (6.19), the node position (i.e., a, or b, in Fig‘.,\6,9(b)) can be obtained, the

corresponding node location in the real shaft system can lzf@aned as explained below. From
K
V4 * T
[, =1,~%; Jez—dszéf; J,=—d, (6.20)
32 {2 32

Since equation (6.20) is for the shaft se in which node is assumed to be present, we can write
q g@’d P

equation (6.18), we have

J J
a,=a—-* %nd b,=b—* (6.21)
JZ!Q. J2
where a and b are node %tion in real system (Fig.6.9(a)). Equation (6.21) can be combined as

X9
‘ O a_a, (6.22)
&\,QO b b,

So on or b, is obtained from equation (6.19), the location of the node in the actual shaft can be
o@ed from equation (6.22). The final location of the node on the shaft in the real system is given in

the same proportion as in the shaft of equivalent system in which the node occurs.

Example 6.3 Consider a stepped shaft with two discs as shown in Fig. 6.10. The following shaft
dimensions are to be taken: /; = 0.5m, [, = 0.3m, /5 = 0.2m, d; = 0.015m, d, = 0.012m, d5 = 0.0Im.

Take the modulus of rigidity of the shaft as 0.8x10"' N/m. Discs have polar mass moment of inertia as
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1 ” =0.015 kg—m2 and / p = 0.01 kg-mz. Obtain natural frequencies, mode shapes, and the location of

the node.

0.5m . 0.3m . 0.2m
- '—‘I: :I-‘- >
| |- _footsm [ Fo.0t2m [FooTom| |
v A/
~
0.015 kg-m? 0.01 kg-m? ‘b)‘&
Fig. 6.10 A stepped shaft with two discs (b‘v

L

Solution: Let us represent shaft segments towards the left, middle and right @s as 1, 2 and 3,

respectively. For the present problem the shaft has following data é
4 4 ) #
J = ”;dl _ZX00I5 975107 m¢; J, =2.036x109g§’(;\ J,=0.982x107m*

&>
=795.20 Nm/rad ;, k, =542.93 Nm/rad;  k, =392.80 Nm/rad

S

For the stepped shaft the first step would@ t,g) obtain the equivalent length with respect to a reference

p 2O 0.8x10' x4.97x10
S 0.5

1

shaft 3 that has diameter of 0.01 m, 6\

YV

[ :l—lje +l—zje +lije =£0.982+ 0.3

e

0.982 + 220,082 = 0.0988 +0.1447 + 0.2 = 0.4435m
1000, 0T 497 2.036 0.982

B

Hence, The equi@ stiffness can be calculated as

=177.14 Nm/rad

/ 0.4435

&\
‘@ GJ, 0.8x10"x0.982x10”

Hence, [, =0.0987 m and [, =0.1447 m. The natural frequency of the rotor system can be calculated

as

=171.82 rad/sec

(1, +1,,)k, _\/(0.015+0.01)><177.14

a)nf—
= 0.015x0.01

Py IPz
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Relative displacements of the rotor system would be

D, 1
B /S _& =-0.667
P 1 0.015

2 P

which means disc 1 would have 0.0667 times angular displacement amplitude as compared to the disc
2, however, in opposite direction. It is interesting that relative displacement remains same irrespective
of shaft characteristics (i.e., stepped, uniform, etc.) and its stiffness. However, the node posﬁQn

depends upon the shaft characteristics and its stiffness, and can be obtained as for equivalent shé@as

>
e 1, 001 QA

l
L= o T 0,667, and I+l =0=0
L, 1, 0015 e

Hence, we get the node location as /,, =0.266m (i.e., 0.266 m from di@&’ln the equivalent system
see Fig. 6.11). Hence, we have lm_,l =0.1775 m. This means the nod@iﬂ be in second (middle) shaft
segment. The location in actual rotor system would be . A$

K3
a, _ lnel _lel _0.1775-0.0988 0@8«7
b, L=l 0.266-02 _0.066

Q

O}
Hence, we have the position of the no@l actual system as: b= 0.137m and a = 0.163m (see Fig.

6.9). (-1/0

S(& _ 0.4435m

=1.1924; and a+b=0.1447m

a
b

A
Y

- 2
0.015 kg-m? 0.01 kg-m

10 I\ ],,62 =0.266m
Z1 h—>|

.
L, =0.1775m @,
(b)

Fig. 6.11 (a) Equivalent system and (b) its mode shape and node position
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6.4 A Three-Disc Rotor System
Now the previous section analysis would be extended for the three-disc rotor system having free-free
boundary conditions. Two different approaches are applied for the free vibration analysis to get the

torsional natural frequnecies and corresponding mode shapes.

6.4.1 A direct approach

A three-disc rotor system is shown in Fig. 6.12. It is assumed that there is no friction at supports and
boundary conditions are that of the free-free case. The method using the Newton’s second law)@h
the help of free body diagram (Fig. 6.13), may be applied to analyse the three-mass (or rotor

system. This method is already demonstrated for the two-mass rotor system in the previ )&&(Qctlon

60

P,
— kﬁl — kfz —
C Q
Ly l Ly l, I

Figure 6.12 A th:f@ik torsional system

( P, — P )krl q)zl gozz /T\gl q)zz (023 32 (([)Zz —@.. )17( 4
(pzl ? ¢zl C ( H (C ( CWZB H ¢523
@.,- .,

I
] P1 £

(@) DIS% (b) Disc 2 (b) Disc 3
,g\

<

From free body diagrams of individual discs three equations of motion for free vibrations can be

Figure 6.13 Free body diagrams of discs

obtained, and in the matrix form it has the following form

Ip] 0 ¢Zl k,] _ktl 0 q)wl 0
0 17, g, |k, (k +k) —k |10, =10 (6.23)
. 0

o
~
&;S
o
|
»
~
S
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For free vibrations, which has the SHM, it takes the form

1, 0 o |k Kk O e | (o
—aw| 0 1, 0 |+|—k (k +k ) -k |[{¢, =10 (6.24)
0o 0 I, 0 —k, k. |]le.| (0

where @),

is the torsional natural frequency of the rotor system. For finding natural frequencies’ &0
methods can be adopted (i) by obtaining characteristic (or frequency) equations, %‘&’ by

formulating an eigen value problem. Ql

Characteristic (or frequency) equations: O
On equating the determinant to zero of the matrix in equation (6.24)@get the characteristic

equation of the following form

@

‘\'}

1,+1, I +I Kk, @H +1,
2 {wél _(ktl P2 +k P2 PSJ nf }

@, nf 5}
1,1 1.1 11,1,

nf
P P2 P2 P3

which gives natural frequencies as Q&

and %
2
e L1, I, +1, L L Ip.+lp:+k I, +1, ) k,lk,2(1p1+11,2+1,,3)
o = llg A4l Y T T C A | I 11
P P2 P2 P3 PP P3

\; (6.25)

Mode sha%&m be obtained by substituting natural frequencies obtained, one by one, into the
equatioQ .24) and obtaining relative amplitudes with the help of any two equations (out of three

e@%s), as

(k, —ar1, )0, —k @ =0 S>r=2d TR (6.26)

nf = py

and

_kZI(oZl +{(k +k ) nf pz}q) kr2¢z3 =0 (6.27)
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On substituting equation (6.26) in equation (6.27), we get

k@, +{(k, +&,)- a1, H(k, - @1, ), 1k |-k 0. =0 (6.28)

nf " py

which can be simplified to

&2 (Ip] Ipz )a):f _{(I‘"‘ +Ip2 )ktl +I[71k’2}a)jf +(k’1k’2 ) (§’>§)
41‘89

Q. k k
It should be noted that from equations (6.26) and (6.29) for @, = 0, we have Q] =9, / ?, =1

L

(or ¢, =@ _=¢_ ) that belongs to the rigid body mode. Similarly, for the other two natural

frequencies relative amplitudes of disc can be obtained by substitutingﬁ& natural frequencies one
by one in equations (6.26) and (6.29). &‘\'3

An eigen value problem: .‘\

A more general method of obtaining of natural frequencies and mode shapes is to formulate an eigen
value problem and that can relatively easily be solved:by computer routines. Eigen values of the eigen

value problem of equation (6.24) gives natun@ uencies, and eigen vectors represent mode shapes.
N
(e [M]+[K]){@}={0} (6.30)
with Od
%
0 k —k 0 0.
0

Equation (6.24) can be written as

h h

IPI
[M]= Q&‘% : [K]=| -k, (krl+kr2) —k, | {®}=10,
. % 0 I, 0 —k,, k, ?.,

Ogrjdglying both sides by the inverse of mass matrix in equation (6.30), we get a standard eigen
pr

value problem of the following form

(e [1]+[D]){®} ={0} 6.31)
with

[D]1=[M]"[K]
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The eigen value and eigen vector of the matrix [D] can be obtained conveniently by hand calculations
for the matrix size up to 3x3, however, for the larger size matrix from multi-DOF rotor systems any
standard software (e.g., MATLAB) could be used. The square root of eigen values will give the
natural frequencies and corresponding eigen vectors as mode shapes (i.e., relative amplitudes). These

methods would now be illustrated through an example.

Example 6.4 Obtain torsional natural frequencies of a turbine-coupling-generator rotor system as

shown in Figure 6.14. The rotor is assumed to be supported on frictionless bearings. The polar)@ss

moment of inertia of the turbine, coupling and generator are [, = 25 kg-m®, I 5, = O kg-m 1 =

50 kg-m’, respectively; and these are assumed to be thin discs. Take the modulus oﬁﬂéidity of the
shaft as G = 0.8 x 10"" N/m’. Assume the shaft diameter uniform throughout andisequal to 0.2 m and

the length of shafts between the bearing-turbine-coupling-generator—bearingﬁre 1 m each so that the

total span is 4 m. Consider the shaft as massless. '\(
S
I |
- Coupli -
: ouplin i
Bearing Turbine plng Gomorator Bearing

e
Figure 6.14 rbine-generator set
O}

Solution: It should be noted that f@%e—free end conditions both ends of the shaft segments (i.e.,
between bearing and turbine, and%%erator and bearing) will not have torsional displacements. Hence,
only shaft segments between@e‘ turbine and the coupling (let us take it as shaft 1), and between the
coupling and the genera@ haft 2) will have torsional stiffness effect. Hence, we have the following

data \J%

I ’Q:l:lm, J=J,=0=2a"="02"=15708x10" m",
320 R

0.8x10")(1.5708%x10™*
k, =k, =%=( )(1 )= 1.257x10” N-rad/m>.

Natural frequencies of three-disc rotor system are given as (equation (6.32))

and
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a)nf:_ 1 » t
=2 I 1 Ay I 1 Sy | 11,1

PP Py P3 PP P23 1 P2 D3

2
1 1, +1, I, +1, 1 1,+1, I, +1, kk (1,+1,+1,)
2 (krl P P +k P, P, + k,l Py p. +k ] Ps _

On substituting values of various parameters of the present problem in above equation, it gives

@, = Orad/s; @, = 611.56rad/s; @, = 2325.55 rad/s;

L d

>

The mode shape (relative angular displacements of various discs) can be obtained as su ised in
Table 6.1 (refer equations (6.33) and (6.34)). Fig. 6.15 shows mode shapes with nodesg@ﬁtions, in

drawing T, C and G represent location of the turbine, coupling and generator, respecti

Table 6.1 Relative angular displacements of various@

Relative displacement o, =0radls | @, =611.56rad/s @, =2325.55rad/s
& — ktl B a)jflpl
0. k 1. QR 0.2563 -9.7600

) N

¢-~, (Im II’: )w:f _{(Il’l + II’: )kfl + II’] kf: } wjf + (kfl kfﬂ )

o K, RS 0.5256 0.4754

Qe

Node

1 1 | 1 1 Node Node
0.26 / G N+~ \ 4 0.48
T C G T C 053 T G
(a) For @, (b) For @, (¢) For @2

F&\;@ Three mode shapes corresponding to three torsional natural frequencies
N@@&ions in the second and third modes can be obtained as follows:

Second mode: Only single node (Fig. 6.15b) is present between the coupling and the generator. Hence,

from the node position to the generator a single-DOF rotor system can be assumed with the length of

shaft as l;) (superscript corresponding to single-node mode and subscript gn represent from

generator to node) and polar mass moment of inertia as », » this gives
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: 0.8x10")(1.5708x107"
@y, =, =10 =L ! I . )=O.6723m
S | S ) 50%x611.56

P3 p3onfs

Third mode: Two nodes are present (Fig. 6.15¢), hence the node locations are obtained as

G (0.8x10")(1.5708x107™)

[P =—F= - =0.0930 m .
1, @, 25x2325.55 D
Y
and (SQV
7 (0.8x10")(1.5708x10™) QK
[P =——= - =0.0465 m D
1, @, 50%2325.55 O

&

where the superscript in the length represent two-node mode and subscri@ﬁ represents from turbine

to nearest node. .\'}
e

Now using the eigen value problem procedure, the abové problem will be solved again. This will

demonstrate how powerful this procedure is even for multi-DOF systems. The mass and stiffness
L4

Q°
7, 0 0 25 0@
0 |= 00?\0 kg-m’,

0 0 I 0 50

and k §®Q
K= ﬂ@(v? '
&7

H@Q% eigen value problem stiffness matrix becomes

matrices can be given as

v 01 1257 —1257 0
k) -k, |=|-1257 2514 -1257|x10" N/m’.
t 0 -1257 1257

53

[D]=[M][K]
25 0 0]'[1257 -1.257 0 0.5028 —0.5028 0
=0 5 0 —-1.257 2514 -1.257 [x10" =|-2.5140 5.0280 —2.5140 |x10°
0 0 50 0 -1.257 1.257 0 -0.2514 0.2514

Eigen values and eigen vectors are given as (by the MATLAB of the above matrix)
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5.4082 ~0.1018 -0.8632 0.5774
{2}=10.3740}x10°, and  [X]=| 0.9936 —0.2212 05774
0 —0.0484 0.4537 0.5774

Where the columns of matrix [X] represent the mode shapes. Hence, natural frequencies are obtained

as

®

>

@,, 232555 &\‘b‘
{o,}=1a,, ={Vi}=1611.56 | radis Ql‘b‘

The mode shape can be normalised as (in each column elements is divi@he corresponding first
row element, e.g. 0.9936/(-0.018) = -9.76), -0.0484/(-0.018) = 0.48, -0'\2%?1 /(-0.8632) = 0.26, etc.)

<&

., ., P, 1 51
[X]=| 1., 0, o+ |=|-976 026 1

2

d
p 0 @8 —0.53 1
o) a,, Y ) a,, Yo ) w,y

These mode shapes are exactly same as 1@1@ 6.15.
6.4.2 An indirect approach (1/
From the previous method @s‘ clear that for a particular natural frequency a unique mode shape
exists. In the present me% , the information regarding the possible mode shapes would be utilised to
get the correspondi tural frequencies. In case the shaft has steps then, the first step would be to

reduce the actu aft to an equivalent shaft of uniform diameter as shown in Figure 6.16(a).

.
For th “isc rotor system, three natural frequencies are expected and correspondingly three natural
(@rmal) modes of vibrations. Since the free-free boundary conditions one of the modes would be
the rigid-body mode, in which all the discs have same motion. Apart from the rigid body mode, there
will be two possible natural modes of vibration, in which the rotors all reach their extreme positions at
same instant and all pass through their equilibrium position at the same instant. There will be a

different natural frequency for each of these normal modes.

In one mode there is a single node (a point where there will not be any angular displacement) between

discs 1 and 2 or between discs 2 and 3 (see Figure 6.16(b)). It depends upon the relative polar mass
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moment of inertia of discs, and the stiffness of shaft segments. However, the oscillations of the
outside discs 1 and 3 are opposite in phase. The disc 2 will have same or opposite phase with disc 1
(or disc 3) and it depends upon the node position. It is assumed in Figure 6.16(b) that the node lies

between discs 2 and 3.

While in the other mode there are two nodes, one between discs 1 and 2 and the other between discs 2
and 3 (as shown in Fig. 6.16(c)). Oscillations of outside discs (1 and 3) are now in phase, while the

inside disc will have opposite phase with respect to both discs 1 & 3. )&\

D
O @) 0] Q&‘g‘o

—_—— = —— - — e — - . - (a e@otor system

}Q{

(b) One-node vibration

(c) Two-node vibration

Let 7,,1, and I, be the polar mass moment of inertia of discs 1, 2 and 3, respectively. For two node

(2)
1

vibration, let //* be the distance of one node from disc 1, and /{” the distance of the other node from

disc 3 (see Fig. 6.16b). Then the natural frequency of the single-DOF cantilever system with disc 1 is

given as
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k> o1 1
&) = |——= (6.35)
;
1\,
Similarly, for the single-DOF cantilever system with disc 3 (Figure 6.16c), we have
GJ 1
3 P3 e

For the single-DOF fixed-fixed system with disc 2 (Fig. 6.16¢), we have (SQ’

K = GJ GJ e I +1, _l1(2) —l3(2) &A\o}

R E R (L-12)(1,-1) ‘$®

&L
where k, is the torsional stiffness of a rotor systemzith fixed-fixed end conditions. On substituting
o \/GJ (h+1—4=E) (6.39)

@y, (‘ﬁ/ql l(2>

Since for a particular még@?frequenmes ", @, and @ must be equal (superscript represents

(6.38)

equation (6.38) into equation (6.37), we get

D> Dy,
the two-node mode)@ls leads to two independent equations to be solved for [* and {*. Once we

know these n.o ositions we could be able to get the natural frequency of the two-node (or one-

node) mod%ﬁn equating equations (6.35) and (6.36), we get

Q o1, =191, (6.40)

Similarly on equating equations (6.35) and (6.39), we get

I 1 (ll +1, _11(2) _l3(2))
L )

(6.41)
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Equation (6.40) can be used to eliminate //” from equation (6.41), and it get simplified to

11, I I 11
{ pI P +£+1m}(13(2>)2_{ p;I P2 +1,L+1, (I, +1,) 13(2)"1‘11;21112 =0 (6.42)
Py

12 P

The two roots of [/ from this quadratic give positions of nodes for the one-node and two-node
vibration frequencies. The actual frequencies are obtained by substituting the two values of lii\in
equation (6.36). From equation (6.40) two values of [* could be obtained correspond% two
values of /(. Note that only one of these two values of /> may give the position ‘@ eal node,

while the other gives the point at which the elastic line between discs 1 and 2, C?}produoed, cuts
the axis of the shaft (as shown in Fig 6.16(b) by the dotted line). The abov;:gi d can be extended
u

for other boundary conditions (fixed-free, fixed-fixed, etc.) and for mo;?( er of discs, however,

the complexity of handling higher degree of polynomials will be tremendous. The present method is

now illustrated through an example. (b&
Example 6.5 Solve the Example 6.4 by the indirect methégdgcribed in previous section.

e

Solution: From equation (6.42), we have &

1 r
{ o +1p3 (57) l#ﬂ L+, l+lz):|l3(2)+lbglllz:0
12

On substituting values o)fprﬁal parameters (Fig. 6.17a), we get

X2

R
\
CQ% 12) 1152 +5=0

which gives two values corresponding to two modes (i.e., the one and two -node modes, Figs. 6.17 b

and ¢), as

{?=0.6723 m and 0.04648 m.

Two possible values of /> can be obtained from equation (6.40), as
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12 =5"1,11,

which gives two values corresponding to two modes (i.e., the one and two -node modes),as

¥ =1.3446 m and 0.09297 m.

L d

. >
Hence, we have two solutions (b,
(I, 1) = (0.09297, 0.04648) m and (17, ;) =(1.3446, 0.6723 Ql
It is clear that two nodes are possible at (1, I{¥) = (0.09297, 0.04648 {‘&Fig. 6.17¢c). While the
single node is possible at (4", L") = (1.3446, 0.6723) m out of which lﬁh are feasible (Fig. 6.17b),
0}
since they represent the same point. Hence, corresponding [V = 0(57:9} It should be noted that mode

shapes in Fig. 6.17(band c) are not to the scale; however, qua@e comparison can be made with the

previous example. Quantitatively also it can be observed that they are exactly same.

0O O (@]
o I =1m [,=1m o
]p1 =25 kg-m® ]p2 =5 keg-m* ]p] =50 kg-m*

1" =0.6723 m

—_— ]
]1(3) =0.09297 m (C) ]gz) =0.04648 m

Fig. 6.17 (a) A three-mass rotor system (b) single node mode shape (c) two node mode shape
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Now, the natural frequency corresponding to two-node mode can be obtained as

0.8x10" )x(1.5708x10™
oy = [ L =\/( i )1 232534 rad/s
’ L7, 0.04648 50

T=Za* =02 =1.5708x10~* m".

32 32 &\,

with

The natural frequency corresponding to single-node mode can be obtained as Ql

s
f 0.8x10" 1.5708x10™*
a);;z = %IL =\/( X )0><6(723 X )% =611.42rad/s é
3 P .
Ox'}

It should be noted that these natural frequencies and the node gﬁhbns are exact same as obtained in

®

example 6.4. &\

6.5 Transfer Matrix Methods Q"’

When there are more than three discs in the system or when the mass of the shaft itself may be
significant (i.e., continuous systems, whi%hqs infinite-DOFs) so that more number of lumped masses
to be considered, then the analysis @Mhed in previous sections (i.e., the single, two or three-discs
rotor systems) become complicareb)and inadequate to model such systems. Such rotor systems are
called the multi-DOF systemeglternative methods are the transfer matrix method (TMM), continuous
systems approach, finit@%ent method (FEM), etc. In present chapter, we will consider TMM in
detail and in the nex&&?ipter we will consider the continuous system approach and the FEM.

A typical m Iti ¢ rotor system, supported on frictionless supports, is shown in Figure 6.18. The
longitudi Xis is taken as z-axis, about which discs have angular displacements, ¢,. For the present
a @ scs are considered as rigid and located at a point, and the shaft is treated as flexible and
migzjless. The number of discs is n, the station number is designated from O to (n+1), and hence the
system has total (n+2) stations as shown in Fig. 6.18. The free diagram of a shaft and a disc are shown
in Figure 6.19. At particular station in the system, we have two state variables: the angular twist, @,(),
and the torque, 7(#). Now in subsequent sections we will develop relationship of these state variables
between two neighbouring stations in terms of physical properties of the disc and the shaft, and which

can be used to obtain governing equations of motion of the whole rotor system.
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P P 1 P
0__ Kk k, k, k, k. n+l

—1> ) zcoo:s ) —

P, P, P

Figure 6.18 A multi-disc rotor system )’&\
O
>
Py &
el k, >

72\ : a )

(om D Y

vy >/

LTZ /

(@) b)

Fig. 6.19(a) A free body diagram of shaft section 2 (%‘\free body diagram of rotor section 2

6.5.1 A point matrix: In this subsection we Will%ﬂl’op a relationship between state variables at
either end (i.e., the right and left sides) of a d@&

O}
The equation of motion for the disc @iven by (see Figure 6.19(b))

2

T,— T,=1 ¢ (6.43)
R L‘Q* p2¥z,

/\®

where I, is the polar r%ss moment of inertia, back subscripts: R and L represent the right and the left

of a disc, respectf\@t. For free vibrations, the angular oscillation of the disc is given by
Yo o e 2
% q)zz = q)zz sin w”!ft 80 that ¢22 = _a)nf(b22 sin a)nft = _a)nf ¢z2 (644)

“/Qué ®_ is the amplitude of angular displacement, and @, is the torsional natural frequency. On

substituting equation (6.44) into equation (6.43), we get

=1 = _a)jflpz @, or &l = (_wjflpz ) L@, t b (6.45)

Since angular displacements on the either side of the rotor are equal, hence
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r?., = L9, (6.46)

Equations (6.45) and (6.46) can be combined as

A8y, =[P], {s}, (6.47)
with
1 0 ¢z ‘x
LEE =15 &
Jod
where {S}, is the state vector corresponding to station 2, and [P], is the point matrix 1sc 2. Hence

in general the point matrix relates a state vector, which is left to a disc, to a st@ector right to the
disc. When an external torque, 7,.(¢), is applied to a disc (e.g., the disc as é%ar element or a pulley
driven by a belt) in the direction of the chosen positive angular displace& direction, then equation
(6.47) will be modified as ,g\'?
_ S
83, =[P], {8}, +{73), A

{n};{_?@} O
S

It will be more convenient to wri% tion (6.48) in the following form

R@?EP 1,057, (6.49)
<
>

(6.48)

with

‘ 10 0 :
S a_)%
=mopl, 1 T, {s}=1T1

0 0 1 1

where [PJ and [SJ are called the modified point matrix and the modified state vector,

respectively. It should be noted the third equation of expression (6.49) is an identity equation, and it

helps in including the external torque in the modified point matrix.
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6.5.2 A field matrix: In this subsection we will develop a relationship between state variables at two
ends of a shaft segment. For shaft element 2 as shown in Figure 6.19(a), the angle of twist is related to

its torsional stiffness, k,, and to the torque, 7(¢), which is transmitted through it, as

ol ol (6.50)

LTz, _Rq)zl = or quz2 = RTz +

On combining equations (6.50) and (6.51) in the matrix form, we get Cfo

sy, =[F], {s} é (6.52)

with ,.g\'?
R BT

where [F, is the field matrix for the shaft elemen &::nce, in general, the field matrix relates a state
vector which is one end of a shaft segment 1@ other end of the shaft segment. It should be noted
that equation (6.52) is also valid for a @iqnal spring (e.g., a flexible coupling between two shaft
segments), which has k; as the torsi%%tiffness, however, such spring have negligible axial length as
compared to the shaft length. I@ly such torsional springs can be considered as a point spring
(similar to a point mass). A @‘ble coupling between a motor and a shaft or between a turbine and a
generator could be modeﬁﬁs‘(%y such torsional springs.
XD
Equation (6.52) me modify to take into account an external toque in the rotor system (it assumed

here that tll:g’&;}ernal torque applied at disc locations only), as

C/OQ Asy =[F ] {7} 6.53)

with
L 17k, P
[F'l=[o 1 of {s}=11
0 0 1 1

where [F *] is the modified field matrix.
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On substituting equation (6.52) into equation (6.47), we get

83, =101, 18],

with
1 1/k,
[U]2 :[P]z[F]z = —* 1 1_wrzzflpz

@yl k .\
n A\Q&

where [U], is the transfer matrix, which relates the state vector at right of station 2 to EE& te vector
at right of station 1, when the external toque is absent. On the same lines, we can C@'

S
(5),=[0] 6s), R\
R{S}2 = [U]2 R{S}1 = [U]z [U]l{S}o &\"}
sk =0, () =L L) (s),
; <5
’ (6.54)
5} =[], {5}, -[0) [0, Ul (s},
sk, [0, 5}, -], 0], (U] {8}, =[7]ts),

“}
where {S}, is the state vector at Oth&&)n (i.e., for the present case leftmost station of the rotor
system), R {S }n+1 is the state VCCT?}Qﬁ (n+1)" station (i.e., for the present case rightmost station of

the rotor system), and [7] is ermll system transfer matrix. Hence, it relates the state vector at far
left to the state vector %‘Q} right. When the external toque, T, is also present then simply the
modified point and ﬁ@matrices should be considered, as

1 1/k 0

53

nf = p, nf = p,

0 0
o] =[P L[F ] =|-e1, 1 T ||0 1 0|=|-ayl, (-@jl,/k, +1) -T,
I 0 0 1

where [U], is the modified transfer matrix. It should be noted that the size of the overall system

transfer matrix remains same as that of the field or the point matrix, i.e. (2x2) for free vibrations; and
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when the external torque is also considered then the size becomes (3x3). The overall transformation

coz}
(6.55)
{T 0

The overall transfer matrix elements are a function of the natural frequency, @, , of the system (or

n

for, free vibrations, can be written as

the excitation frequency, @, for the case when the external toque is present). Now differen@ary
conditions will be considered to illustrate the application of boundary conditions %1‘@6 overall
transfer matrix equation for obtaining natural frequencies and mode shapes of the S})@ . In all cases

number of discs is kept equal to n and depending upon the boundary conditions and location of discs

the station numbers may change. é

(1) Free-free boundary conditions: For free-free boundary conditio&'&l“ig. 6.18), at each ends of the
rotor system the torque transmitted through the shaft is zero, hﬂ@

T.=T,=0 & (6.56)

R" n+

On using equation (6.56) into equation (6.55), the,&:cénd set of equation gives

(@) g, =0 (6.57)
0 Q ®

Since , o, * 0 for a general case @ from equation (6.57) we must have

v

21 =0 (6.58)
1 4@%

which is satisfied f&g%}on

5 i=12,---,N, where N is the number of degrees of freedom of the
system (for th&%ent case it will be equal to number of disc, n, in the system) and these are system

natural freg%&icies. Equation (6.58) is called the frequency equation and it has a form of a polynomial

in er@ the natural frequency, @), . For higher degree polynomials these roots, @,., may be
fo by any of root-searching techniques (e.g., Incremental method, Bisection method, Newton-

Raphson method, etc.; refer to Press et al., 1998). Briefly, the root searching method is described here

for the sake of completeness.

Let us define

floy)=t(a,)
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where f( ) is a function of @, . If @, is the initially guessed of the natural frequency, which is not

actual solution. Then, let the next guess value is (a)nf +Aa)nf) by which solution is expected to

improve. Hence, by using the Taylar series expansion, we have

) 19°
oy +aay)= 1 (o,) 52 -aa, v 2 (8, ) ‘

o >
&>

where A@,. is the increment in initial guessed value of @, . On neglecting higher@er terms, it

gives 60
S
o, +80,)-1(,) R
" o (@, )00, {\'3
v

&

A flow chart of the overall solution algorithm is shownﬁﬁéi\g. 6.20. In the flow chart £ is a small

nf

parameter, to be chosen depending upon the function value to be minimised, and the accuracy up to
which the solution is desired. It should be noteant using such a numerical analysis for finding the
natural frequencies, there is no need to multi arious point and field matrices in the variable form
to get the overall transfer matrix, ins&@ ‘has to be done in the numerical form and that is much
easier to handle. Q

Choose initial
value of @, .

'
< | >  Evaluate f (mnf)
Qﬂ

Update |No J (mnf)’ Yes | Solution
(x)nf+Am”f B "| obtained

Fig. 6.20 A flow chart of an algorithm for finding roots of a function
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Relative angular twists can be determined for each value of @, . From the first set of equation (6.55),

we have

rP.., =l (a)nf,. ) &P, (6.59)

Since mode shape is nothing but relative angular displacement between various discs. On taking
@. =1 as areference value for obtaining the mode shape, we get
R Tz

>
\Q, .60)
D
&L

Equation (6.60) gives @, " for a particular value of the natural frequency @, J@using equation

R¢Zn+l = tll (w"fi )

(6.54) relative displacements of all other stations can be obtained. The mode shape can be plotted with
the station number as the abscissa and the angular displacement as the,@ te. The similar process
can be repeated to obtain mode shapes corresponding to other va@e;’s of natural frequencies. In
general, for each natural frequency there will be a corresponding d{rﬁictive mode shape.

(i1) Fixed-free boundary conditions: For fixed-free bounc(a%conditions (Fig. 6.21), at fixed end (let at
0™ station) the angular displacement is zero and at%.ﬁr'ee end (i.e., at n™ station) the torque is zero,

hence &
Q

., =0 and’) * I =0 (6.61)

q/Q

7

é
7

Y/

7/
é\c%o 0 1 2 - (n-1) n

Q Fig. 6.21 A multi-DOF rotor system with fixed-free boundary conditions

O@ing equation (6.61) into equation (6.55), the second set of equation gives

25 (wf] &l =0 (6.62)

ty(@,)=0 (6.63)
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It should be noted that for the case when the free end is at 0™ station (i.e., at the extreme left) and the
fixed end is at n™ station (i.e., at the extreme right), the frequency equation would be (it is assumed
that the free-end and intermediate stations have a disc)

t,(o,)=0 (6.64)

nf

(iii) Fixed-fixed boundary conditions: For fixed-fixed boundary conditions (Fig. 6.22), at both fixed

ends (at 0" and (n+1)" stations) the angular displacements are zero, hence 0

N
¢, =0 and ¢.,=0 7 (6.65)

Zntl Ql
S
=

A\

+

_ AN
NN\

I 2 = (D) n (ntl)
Ay
Fig. 6.22 A rotor system with fixed—ﬁ&}oundary conditions

On using equation (6.65) into equation (6.55), the@cénd set of equation gives

h (wf) flo=0 (9 (6.66)

Q

Since I} # 0 for a general case,%ce from equation (6.66) we have the frequency equation as

r{%@ﬁ: 0 (6.67)

X2

Table 6.2 summi\@s frequency equations and equations for state vector calculation for all the cases
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Table 6.2 Equations for the calculation of natural frequencies and mode shapes.

S.N. Boundary Station Equations to get natural Equations to get mode shapes
conditions numbers frequencies
1 Free-free 0, n+1: Free = _
ends o (w"f ) 0 8., =t (wnf ) @,

2 Cantilever 0: Fixed =0 _
(Fixed-free) end, 2 (a)”f ) #9:, =l (wnf )TZO »Q(b‘

n: free end Ql

0: Fixed t, (a)
end,

n: free end Q’

N >
3 Fixed-fixed 121 )1(1;;1 I;nds t, (a)nf ) =0 . ‘S& RTz,,+1 =1, (a)nfl )TZO

In above cases we have considered intermed‘l@upports as frictionless, and no friction of discs with
the medium in which these discs are os%atjng. In actual practice, we will have supports and discs
with friction, and this will produce frictional (damping) torque on to the shaft or discs. While
rotor is rotating with at a certain%stant spin speed, these supports and discs frictions would give a
constant torque. However, tthfque onto the shaft and discs will be function of the spin speed of the
rotor. Overall effects of %%frictions would be very less on the torsional natural frequencies of rotor
systems, and for iﬂ@ estimates of system dynamic characteristics it can be ignored. Torsional

oscillations of t tor with flexible elements like couplings and torsional dampers will be considered

subsequerbt%(\

A@Q of caution regarding the numbering of stations: for the present formation we stick to the
numbering scheme the 0" station is assigned to the extreme left side of the station, and subsequent
station numbers (i.e., 1, 2, ...) are given to the station encountering towards the right. In the case
numbering to the station is from extreme right and increases towards left, then the following point and

field matrices should be used (which are slightly different as compared to equations (6.68) and (6.69))



306
_ 1 0 -~ 1 -1/k
[”Hm J ot [7]; 7] 670

where [}3} and [ﬁ ] are the point and field matrices when the transformation of state vector is

performed from the right to the left. For example equations (6.47) and (6.52) can be written as

A8y =[P, 451, and {8}, =[F], {8}, )
with féav

[PL=lPL and [F],=[7], GOQA

It should be noted that these point and field matrices are in fact invers cﬁh& previous matrices. To
avoid this confusion in the present text the station number is consistet&l};}assigned from the left end to
the right end, and the transformation of the state vector is also fol d the same sequence (i.e., from

the left to the right). To illustrate the TMM now several s;n{k erical problems will be taken up.

Example 6.6 Obtain torsional natural frequencies or system as shown in Figure 6.23 by using
the transfer matrix method. Assume the shaft ﬁassless. Check the result obtained with the closed
form solution available. Take G = 0.8x10"" N@

O

l-‘- 0.6m =I

¢
1 2
A ?
\;% 0.Im¢
‘ Q}‘f 0.06 kem’ 0.02 kgm®
N

%& Figure 6.23

Solution: We have following properties of the rotor system
V4
G=0.8x10" N/m*. [ =0.6m; J =§(0.1)4 =9.82%x10°m*
The torsional stiffness of the shaft is given as

_GJ _0.8x10"x9.82x10"
to 0.6

k =1.31x10° Nm/rad
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Analytical method: Natural frequencies in the closed form are given as

|, Lk, _\/(0.06+0.02)1.31><106

o, =0, and @, = =9345.23 rad/sec
: 2 i 0.06x0.02
1 72
Mode shapes (relative amplitudes) are given as
&\

for @, =0, q)zZ =1; "Q'
Zy @
&L
f [} 9345.23 rad/ q)zz Ip‘ 3 60
or = . T S, =——=-3;

Transfer matrix method: Let the station number be 1 and 2 as show&&gﬁg 6.24. State vectors can be

and

related between stations 1 and 2, as ‘b‘

&‘N
&1Sh =[P {S}

and Q’
(S} =[PLIF], ({8}, =[P] [F]A@‘(S}l

The overall transformation of state @fs between 1 & 2 is given as

[ Nﬁf A 1 & I I

. X\ 7 pl/k Ik,
o S i

OQbstituting values of various rotor parameters, it gives

(a)

{%} _ (1-4.58x10" ], ) 7.64x107 {%}
R 2 ( 1

T —0.08’, +9.16x10™°@’ ) (1-1.53x10%@}, )|, | T

Since ends of the rotor are free-free type, hence, the following boundary conditions will apply
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g =41 =0 (b)
On application of boundary conditions (b) in equation (a), we get the following condition
_ 2 -10 4 _
ty (@, )=(-0.08a +9.16x10 @} ) {@.}, =0

which gives for the non-trial solution, the following frequency equation

L d

>
o

&
It gives natural frequencies as 0

@, =0 and @, =9345.23 rad/sec 6

@, [9.16x10™"" @}, —0.08] =0

which are exactly the same as obtained by the closed form solution.*l%)%le shapes can be obtained by
substituting these natural frequencies, one at a time, into the fésg (or the second) expression of

equation (a), as &‘\
CDZ‘Z—I 4.58x10° @ =1 & igi
——( —4.58% a)nf) =1, & rigid body mode

¢Z
0 @y =0 ;j
® oAD"
q)_ZZ = (1 —4.58%10" a)%{ =-3, anti-phase mode

20
which are also exactly the (Qne as obtained by closed form solutions.
X2

Example 6.7. torsional natural frequency for a cantilever shaft carrying a disc and a spring at

and

gy =9345.23

free end aii'ﬁpwn in Figure 6.24. The disc has the polar mass moment of inertia of 0.02 kg-m®. The

shaft 6@

1 -m/rad. Take G = 0.8x10"" N/m? for the shaft.

4 m of the length and 0.015m of the diameter. The spring has torsional stiffness of kt2 =
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k\\?

0

Figure 6.24 A cantilever rotor with a spring at the free end

Solution: Let the fixed end has the station number as 0, the shaft free end has the station number
and spring other end fixed to the fixed support has the station number 2 (Fig. %@‘The

transformation of the state vector from station O to station 1 can be written as

)
A8h=[PLIF] s}, [ y ﬂl G/ {"}} {SF @
Gyl 0 1 0 _

The spring at free end can be thought as an equivalent shaft s@ment with same stiffness that of the

spring. The overall transfer matrix for such an idealisatio ween stations 0 and 2 would be
w, 1 w1
T ?. ?.
St =|F||P||F| 1S}, = k, o= g :
GGG R 4] {7l

0 1 |- Q 1- b a)nflpll
Oln =76, ~ayl, 1-—

q/ (b)

Boundary conditions for the @em case would be
0, = co%@ ©)
On applyig%ﬁoundary conditions to equation (b), from first equation, we get

o
{L.,.i[] wnflﬂ.lJ}To =0 (d)
GJ k, GJ

Since torque 7, can not be zero, hence we get the natural frequency from equation (d) as

k, +(GJ /1)
®,= |—— rad/s (e)

P
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with
z 4 9 4 » GJ
J :50.015 =4.97x10" m", Ip. =0.02 kg-m”, 7:994.02Nm/rad, /’ct2 =100 Nm/rad

Hence, we have natural frequency as

@, =233.88 rad/s answer

From equation (e), it can be observed that the effect of the spring at the free end is to incre Xe
effective stiffness of the system (i.e., springs connected in parallel with the equivalent sﬁ@hess of
k,2 +(GJ /1), where GJ/I is the stiffness of the shaft). Ql

Alternatively, the spring can be included as a boundary condition as follows. In this case the

transformation equation (a) is valid. The equilibrium equation at the free@would be
S
o, +k, @, =0 Q&‘b

N
where ;T is the reaction toque at the right of disc. Hsgce,’ the boundary conditions would be

9, =0 and Q&T ——k 0, )
Q )

On application of boundary conditi@} in equation (a), we get

. [
A N
R _kt:¢z 2 a)jflpll T 0
K& _w"flﬁl 1- GJ

'\,QO
Equation 'San be split as follows
O w11
O W2, =T, and k.9, =[l——”f - JTO (i)

GJ

which gives an eigen value problem of the following form
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—l

G/ o] _[o .
w1, {To}_{o} v

k, 1-—ro
: GJ

For the non-trial solution, on taking determinant of the above matrix, it gives the natural frequency

exactly same as in equation (e).

x>

Example 6.8 Obtain the torsional frequency response at the disc and the support torque a,&&@’med

T, =10Nm is applied with a single frequency, @. Identify the torsional critical sp

end of the shaft of a rotor system shown in Fig. 6.25. An external sinusoidal torque f@'mplitude
@é the system

from the response so obtained. The disc has polar mass moment of inertii{ kg-m”. The shaft
has 0.4 m of length and 0.015 m of diameter. Take G = 0.8x10"" N/m”. )\S
O}

A

- | —

NNNNN\N

1

) E
Fig 6.25 A sha&w‘i’}Mantilevered end conditions

Solution: Let the station number ?ﬁ/%flxed end is O and that of the free end is 1. The transformation

of state vector can be written as

&

e 1 1/k, 0
% 0 O 4 o, 2 ?.
S i G ) N R i
® 1 0 O 1 1 i 1

,g\ 0 0 0 0 0 1

(a)

W@Oa) is the external excitation frequency and Ty is the external torque amplitude. Boundary
conditions of the present problem are

@, =0 and =0 (b)

On application of boundary conditions (b) in equation (a), we get
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1 17k, 0
0
¢ , a)zlpl
0} =-a1, 1- p T, AT (©)
L1 0 orl 1 o

o'l R
r P, == and 0:(1_ = JTO -1 &V)
From above, the frequency response at station 1 would take the following form o‘é
é (e)

For the present problem TE] =10Nm, J =4.97x107 m* 1 ” 0.02 kg—mz, krl = % =994.02 Nm/rad,

and hence @,, =222.94 rad/s. & %
Hence from equations (e) and (d), we ha'@ f

),
)

10x994.02
a)Z
Ty
{ 4.97x10 j
XD

Equation (f) gar{?‘%sed to plot the amplitudes of the frequency response at the disc and the reactive

rP, = and T, = ®

support with respect to the excitation frequency, @. However, it can be seen from

toque at thil‘ﬁ;;
the den@i tor that the resonance takes place when it becomes zero, i.e., 0=0a, =222.94 rad/s,

W@H is the condition of critical speed, @= @, =222.94 rad/s.
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Example 6.9 Find torsional natural frequencies and mode shapes of a rotor system shown in Figure
6.26. B is a fixed end, and D, and D, are rigid discs. The shaft is made of steel with the modulus of
rigidity G = 0.8 (10)'' N/m” and a uniform diameter d = 10 mm. Shaft lengths are: BD; = 50 mm, and

D;D, = 75 mm. Polar mass moment of inertia of discs are: [ b= 0.08 kg—m2 and [ = 0.2 kg—mz.

Consider the shaft as massless and apply (i) the analytical method, and (ii) the transfer matrix method.

L d

7 : S
7 P
7/ D, D, Q'Ql
b Figure 6.26 A & O

x

Solution: The torsional free vibration would be done by classical an‘aQtj)cal method and the TMM to

e

Analytical method: From free body diagrams of discs as shown in Figure 6.27, equations of motion

A

have comparion of results.

for free vibrations can be written as Q«'
I/’l (bzl + kl¢zl + kz(qozl B (012 ) = O Q and I[’z (sz + k2(¢zz B (ozl ) = 0 (a)
Q-

Equations of motion are homogenecond order differential equations. In free vibrations, discs

will execute simple harmonic mo@ds.

Ko

kngZl k2 (§022 B ¢Z1) k2 ((022 - ‘le)

<
COQ&X ?, .,

@ b (b) b

Figure 6.27 Free body diagrams of discs

2

For the simple harmonic motion, @, = —a)ffﬂ)z = —a)ffsz sin @,.1, hence equations of motion take

the form
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ky+ky-1, @, —k, @1 [0 o
—k, k=1, @, || P, 0

On taking determinant of the above matrix, it gives the frequency equation as

1,1, 0, —,ky+1, k+1, k)@, +kk,=0 (©
which can be solved for a)nf , \,N
2 Ql‘b

o Lkl kL k(1 + 1k k) =4k, T,

0, = U (@)
21P1 Il’z & O
For the present problem following properties are given Q’
A%
_ /4 4 _ T 4 _ 4 4 _ &
J1—§d —5(001) =9.82x10™" m —J2 (bd

GI G,
k,=——=1570.79N/m and &k, = =1047.19 N/m

[ Q_{elz
1, =0.08 kgm* and I @S kgm’

From equation (d), natural frequencies @btamed as

@, =54.17r /s and @, =187.15 rad/s
The relative amplitude ra r%v can be obtained from the first expression of equation (b), as

\J%
&\Q% k, +k, Ia)

=04394 for @, ;

and -5.689 for @, (e)

A@l@%ly, the relative amplitude ratio can be obtained from the second expression of equation (b),

CI)Z kz -1 a)r?f
L B W —0.4394 for @, ;
CI) k2 U1

2

and -5.689 for @, )

As expected it should give the same result as in equation (e). Mode shapes are shown in Figure 6.28.

In which the first one is in-phase mode and second is the anti-phase mode. Practically, the anti-phase
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mode is difficult to excite (more resistive torque) as compared to the in-phase mode, and because of

this the natural frequency of the former mode is more than the latter.

0 A

1 -5.68

®

0.4394

&\/
0

(a) For w, (b) For @, $(§

Figure 6.28 Mode shapes ‘ 4
Transfer matrix method )\S

W}

1 2
Figure 6.29 Two-discs ro@lem with numbering of stations

SENNNNNNN

For Figure 6.29, state vectors between’ﬂ&d 2™ stations can be related as

15}, —[é‘[gf[f’] [F], {8}, (2

State vectors at nelgh Xlg stations (i.e., 1 and 2, and O and 1) can be related as

k2 1 l/k1
nf > - % py
OQ nfp p+1RT1 RTI -y 1 p+1RTO

(h)
Wthh can be combined to give

N {TV } v
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Boundary conditions are: at station 0, ¢, =0 and at right of station 2, .7, =0. On application of

boundary conditions in equation (i), the second equation gives the frequency equation as

2 2
-1 w1
_ 2 2 Py W py —
tzz(a)nf)——k -ao,l, —a,l, (—k +1j — +1=0
1 2 2

which can be simplified as )&‘\

S
>

1,1, 0, =,k +1, k+I, k)@ +kk, =0 &
It should be noted that it is same as obtained by the analytical method in equati ). Hence, natural
frequencies by TMM will be also given by equation (d). For obtaining r@shapes from equations
(h) and (i), we have )\«
T, NI T, .
R, =t,1y; r?., = v, +54 & r?., = g)
k2 kl
From equation (j), we have &'\

S S ®)
D, kt, ktk —
RTz, R =z 112 1 2 Q

which is again same as equation (e §\§e mode shapes are relative angular displacements of various

discs in the rotor system, on ass one of the angular displacement as unity (i.e., ¢, =1), we can

get torque acting at various é@ons of the shaft from equation (j), as
k
T, = J& 2 : )
N kd, +ho0, —1,1, @)
and &\%

=\ AN i
OOQ} APRESUAE k2(1 kl] kz{l ok (ko1 +h 1, ~1,1, ) "

It should be noted that these torques would be produced for a unit angular displacement at disc 2 (i.e.,

Q. =1).
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Example 6.10 Find torsional natural frequencies and mode shapes of the rotor system shown in
Figure 6.30. B, and B, are frictionless bearings, which provide free-free end condition; and D;, D,, D;
and Dy are rigid discs. The shaft is made of the steel with the modulus of rigidity G = 0.8 (10)"' N/m*
and a uniform diameter d = 20 mm. Various shaft lengths are as follows: B;D; = 150 mm, D,D, = 50
mm, D,D; = 50 mm, D;D4 = 50 mm and D4B, = 150 mm. The mass of discs are: m; = 4 kg, m, =5 kg,
m3 = 6 kg and my = 7 kg. Consider the shaft as mass-less. Consider discs as thin and take diameter of

discs as d,=8cm, d, =10cm, d; =12cm, and d, =14 cm.

L d

A\

] >
. X
-
L 3

D,
Y
Figure 6.30 A multi-disc rotor system x
0}
4@&
N

m; =4 kg, m, =5 kg, m3:6kg,%m4:7kg

=]
Sl

Solution: The discs have the following data .

d,=0.08 m, d,=0.1m, dsz@Zm, d,=0.14m,
Q>

P 2

I = mr’ = %x 4><O.042(T/Q)032 kg-m’, I, = %><5><0.052 =0.00625 kg-m’,

Py

I, =1x6x 0.06%—-‘@‘%08 kg-m?’, I, ='x7x0.07* =0.01715 kg-m’,
XD

The shaft has,Gd%%56.64 N-m” and following dimensions according to station numbers (1, 2, 3 and

4 are give @on numbers at disc locations; shaft segments at ends will not contribute in the free

VibratioQ)r the present case)

C/O

[, =50 mm, I, =50 mm, I3 =50 mm

Now the overall transformation of the state vector can be written as

A8}, =[T],{s}, (a)

with
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[T]=[PL[F].[PLIF],[PLIF] [P] (b)

R A A A T

From Table 6.2, for free-free boundary conditions the frequency equation is
>
f(wnf):tu(wnf)zo (bw(bd (d

On solving the roots of above function by the root searching method, it gives @Q’lowing natural

é

=77 =177 =7
?? rad/s, 0] 7 ra%,,} @, =77 rad/s,

frequencies

@, = 0 rad’s, @,

From Table 6.2, the eigen vector can be obtain from the fo owi g equation

P, =l (wnf,. )(ozl §Q’ (e)

Now on choosing @, =1 as reference value and let us obtain the state vectors corresponding to the

“}
second mode, i.e. @), = @, ). From eﬁ&ons (e) and noting the boundary condition, we get the state

1 .

&
A8 = ,% a

vector at 1*' and 4™ station as %
0 \;

o nefibol)
2

At other sj@%ﬁﬁs also the state vectors can be obtained as

? ?
R{S}IZ[P]l L{S}l:{r)}; L{S}2:[F]1R{S}1:{r)}

&

and

? ?
R{S}ZZ[P]Q L{S}ZZ{Q}; L{S}3=[F]2 R{S}ZZ{Q}



?
#1Sh Z[PL {8} :{q};
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?
ASh =[F]3 #1S) :{9}

Hence, the mode shape (the relative angular displacement) can be drawn as shown in Fig. 8.31 for the

second modes? On the same lines other state vectors corresponding to remaining natural frequencies

can be obtained to get the related mode shapes as shown in Fig.8.317.

®

>
Q>
ng??
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6.6 Geared Systems

In actual practice, it is rare that the rotor system has a single shaft (with either uniform or stepped
cross sections) with multiple discs as we analysed in previous sections. In some machine the shaft
may not be continuous from one end of the machine to the other, but may have a gearbox installed at
one or more locations. Hence, shafts will be having different angular velocities as shown in Figure
6.30(a). For the purpose of analysis the geared system must be reduced to system with a continuous
shaft so that they may be analysed for torsional vibrations by methods as described in precefiing

sections. &\

:_Einion | | Angle of twist :
Shaft1 wwx | I | v.=0, | |
I - |

7771 Angle of twist, ¢, : _ | Equivalent|
%P T\Hn=9. /¢ | Disc 1 | disc 2 |
Disc 1 | OP-.T, | I Equivalent I
I \l\‘\I Shaft 2 | \I\I\] I shaft 2 |
77 | 777 |
I 2 I O P, T ¢ I

I L] P2 | [Pl [Pe
(Gear _ __ _ Disc2 | e |

(@) (b)

| | ! |

I I Equival

X . quivalent
| Fixed disc 2 : | dise 2 :
I . |
|t | | R snan2 |
o I T I
(01/(/)./7/"1 l ke : {’71/(/’/% I I :
Bl A o I P.

o I — e I

@

Fig. 6.30 (a) Actual gearé system (b) An equivalent system without geared system (c) The equivalent
syste ith disc 2 as fixed and (d) The equivalent system with shaft 2 as rigid

-

Itis assum%fthat gears and shafts have negligible polar mass moment of inertia as compared to discs

in theﬁe

0 shaft between gear 2 and disc 2, and [ », is the polar mass moment of inertia of disc 2. Let the

rotor system. In the actual system as shown in Figure 6.30(a), k, is the torsional stiffness

equivalent system as shown in Fig. 6.30(b) has the shaft torsional stiffness k. and the disc mass

moment of inertia I, . The strain and kinetic energy values must be the same in both the real and

dynamically equivalent systems for the theoretical model to be valid.

Equivalent stiffness: Let the disc with the polar mass moment of inertia, [ Py is imagined to be held

rigidly in both the real and equivalent (Fig. 6.30c) systems, while the pinion shaft 1 is rotated through
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an angle of @, at the input to gearbox (i.e., at the pinion). Shaft 2 is rotated through an angle

0. =0, / n at the gear 2, where n is the gear ratio. It is the ratio of the angular speed of the driving

gear (pinion) to that of the driven gear, i.e.

o ¢, () N

n=—-m~= [

n

RS
&
—_

~
~
-

where @ 1is the spin speed of the gear and N is the number of teeth of the gear. The speed h@é,b;rain
value, and kinematic coefficient are other terms used for gear ratio, however, these arﬁfx rse of the
gear ratio, i.e. the ratio of the angular speed of the driven gear to that of the dri@@ar. Hence, the

strain energy stored in shaft 2 of the actual system, for a twist of @, at the &u the gear box, can

be written as »\S
.)\'}
>

2
¢z]
U, =k =1k, (—J ) Q& (6.72)
where U, is the strain energy in the real system. W. pplying the same input at the gear box to the

equivalent system (Fig. 6.30c) results in the sjiienergy stored in the equivalent shaft, and can be

#
U, = 91 k@’ (6.73)
e ?i/@zg — 2 Nvety .

where U, is the strain ene&?ﬁ the equivalent system, and since we have ¢, = o, . On equating
equations (6.72) and (6.73),'it g

S
“Q& k, = k—i (6.74)
&

expressed as

ives the equivalent stiffness as

®

n

Equivalenﬁ%'}ar mass moment of inertia: Now we consider the shaft 2 as a rigid shaft in both the real
and.equivalent systems (Fig. 6.30d), so that angular motion of gear 2 and disc 2 is same. That means
w&béver motion at pinion is given to: (i) the real system disc 2 gets same motion as the gear 2, (ii) for
the equivalent system disc 2 gets same motion as the pinion itself. Kinetic energies of both the real

and equivalent systems must also be equated

T,=11,a and T =1 & (6.75)
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where T, and 7, is the kinetic energies in the real and equivalent system, respectively; @, and @, are
angular frequencies of disc 2 of the real (, ) and equivalent (/, ) systems, respectively. Equations

(6.75) can be equated and is written as
. 2 . 2
s (049, ) =11, (3+9,) (6.76)

where ¢, and ¢, are the angle of twist of shaft 2 in the actual and equivalent systems, respectN&y
It can be seen from Figure 6.30(d) that ¢, = ¢, and @ and @, are angular frequencies of %@ﬁft 1

and 2, respectively. We have the following basic relations Ql

T, nT O
p,=lp wa g =Tzl 677
k, ‘ ok K 6

where T} and T, are torques at gears 1 and gear 2, respectively, 1n-act al system. Noting equation

(6.77), equation (6.76) can be written as &

1 [0} d
-1 i —+— o +—|— 6.78
2 ‘"l{n dt ﬁ (6.78)

where T} is the torque input to the pinion (sh@) On substituting equation (6.74) in equation (6.78),

we get )
2 I 5 2 5 2
YR LTt 3 N Iy A T
dr\ K n? de\ k, dt\ k,
which simplifies to &c,)

&\% I, (6.79)

whereannd I, are, respectively, the equivalent shaft stiffness and the equivalent polar mass

moment of inertia of the geared system referred to the ‘reference shaft’ speed, i.e. shaft 1. The general
rule, for forming the equivalent system for the purpose of analysis, is to divide all shaft stiffness and
rotor polar mass moment of inertia of the geared system by n® (where n is the gear ratio). When
analysis is completed, it should be remembered that the elastic line of the mode shape of the
equivalent system (i.e., the line abc in Fig 6.31) is modified for the real system by dividing the
displacement amplitudes of the equivalent shaft by the gear ratio n as shown in Figure 6.31 by the line

abde. 1t should be noted that angular displacements shown in Fig. 6.31 are now that of discs land 2.
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Gear box
location P,

c >
Figure 6.31 The elastic line in the equivalent and original systems Ql
Example 6.11 For a geared system as shown in Figure 6.32, find tors@amral frequencies and
mode shapes. Find also the location of the node point on the shaft (i.e., the location of the point where
0}
the angular twist during torsional vibrations is zero). The shaft Q the diameter of 5 cm and the
length of 0.75 m, and the shaft ‘B’ has the diameter of 4 @and the length of 1.0 m. Take the
modulus of rigidity of the shaft G = 0.8 x 10" N/m?, th’&o}ar mass moment of inertia of discs are
— 2 - 2 1 1 oe
1 p, =24 Nm”and 1 »p = 10 Nm™. Neglect the 1nert1ars.

_
S
o
=

<

Py

Gear pair
I

Py

>

> 20 cm ¢
'\,QO

OQ Figure 6.32 A two-disc geared system
Solution: On taking shaft B as the input shaft (or the reference shaft) as shown in Figure 6.33, the gear

ratio can be defined as

Gearratio= n = B—-_A-_""2=9)

where D is the nominal diameter of the gear.
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B
d=4cm
<— Input
[, =1m

f f I,,=10

: : >
Output <— d=>cm : o

: [,=075m || %Q

A

Figure 6.33 A geared system é

The polar moment of inertia of the shaft cross-section and the to(gf&al stiffness of the shaft can be

&N
JA:3—’;dj:6.136><10*7 m*; JB:L&:Q'SIXIO m*;

obtained as

and
11 -7
k, =Gla 08210 x6.136x10 §45x10“ Nm/rad;  k, =2.011x10* Nm/rad ;
l, 0.75
On treating as a reference shaft t aft B and replacing an equivalent shaft system of shaft A (i.e.,

the same diameter as that of reference shaft B), the system will become as shown in Figure 6.34. The
equivalent system of th @t system A has the following torsional stiffness and polar mass moment

of inertia properties %

Q_»% 6. 545><104 I, 2

“% =1.6362x10* Nm/rad  and I, = :?:6 Nm?

\&QM gives the equivalent length of shaft A as (note that now its diameter is that of the reference shat

11 -7
L _GJ, _08x10 ><2.5134><10 —1.220m .
ok 1.6362x10

A
e

Hence, the equivalent full shaft length is given as [, =/, +1, =1.229+1=2.229 m.
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Gear pair
’. I, =1229m § /,=Im - ’.
- »! [
Iy, I, =2229m s
Figure 6.34 An equivalent single-shaft geared system .
>
The equivalent stiffness of the full shaft is given as (Fig. 6.34) ‘éfg'or

Lol L 08sx10” e
k, k, Kk, 2011x10" 1.6362x10

| <>

which gives K, =9021.2 Nm/rad . The flexible natural frequenci)gf.;he equivalent two-disc rotor

system as shown in Figure 6.34 is given as ‘$®
N
(1, +1,)k, 6+10)x9021,2/9.81
@y, = bt ( ) 3 =153.62 rad/sec
: I, 1,) (6><10)/%8‘ﬁ
I S
Gear location
l,, =1.2288 4 {
-« > @, =1.0
(I)Z?—1667i /: , =1m >
\/
Node point
'
2, 1, =1393 1, =08358m | |-

N
%& 1 P4, Ipp
OOQ Figure 6.35 Mode shape and nodal point location in the equivalent system

The node location can be obtained from Figure 6.35 as

which can be written by noting equation (6.13), as
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L~ ®. 1
I N I NP
I @ I

ny Zp Py,

The negative sign indicates that both discs are at either end of the node location. The absolute location
of the node position is given as

1 =1.6671,
1 2

L d

>
Also from Figure 6.35, we have \Q{b
>

I, +1, =2.2288 which gives [, =0.8358 m QQ

n

Hence, the node is on shaft B at 0.8356 m from disc B. Alternatively, fr;){sczar triangle of the
mode shape (Figure 6.35), we have Q

.\"}
w o L =0.835®$
22288—1, @, 1.667 2

LS

. b
Let <I>ZB =1 rad, then q)er =-1.667 rad ; heﬁ%’ quA Y

=-0.8333 rad

n

The mode shape and the node location ir@e %ctual system are shown in Figure 6.36.

Y

Gear pair

< e |
O@ Node locatio ®, =1
C o

gl g l«—0.8358—

|‘| ||| - Gear pair

SN ’,z" position

&y ¥ .~
l«—0.75m :!: m :!

Figure 6.36 The mode shape and the node location in the actual geared system
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Alternative way to obtain the natural frequency is to consider the equivalent two-disc rotor system

(Figure 6.34) as two single-DOF systems (one such system is shown in Figure 6.37).

- / >
; I

&)

ANNANNNY
G

Figure 6.37 A single DOF system 0
The stiffness and polar mass moment of inertia properties of the system is {\&,as

11 N
GJy _08x10 X2513 _, 435 10*Nm/rad and %&'ﬂkgnﬁ
l 0.8358 o8l

" &L

It gives the natural frequency as &‘\

= 158@@;%0

which is same as obtained earlier. Th @l@ free vibration torsional analysis can be done by taking
the speed of shaft A as the r'gi?nce and converting shaft B by an equivalent system. For

completeness some of the basic steps are given as follows.

k =

l
ny

a)nfz = —_—

ki \/2.435><104 %9.81

Py

<«— [, =0.75m —»4— Iy, =0.6lm—s

~————— / =136m - |1,

Figure 6.38 Actual and equivalent geared systems
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The gear ratio for the present case will be
D
n=-—A=—L=—=05
D, 20

It is assumed that equivalent shaft (i.e., the shaft B) has the diameter same as that of the reference

shaft (i.e., the shaft A). The equivalent polar mass moment of inertia and the torsional stiffness can be

written as X
>
1 k, 2.011x10" &&d
I, =2 =40Nm® and k, =-2="""""""=8.044x10* Nm/rad.
Boop ¢ n (0.5)

which gives the equivalent length as &C}

A 10
k, = G4 —8.044x10'Nm/rad = l, = 08x10 X/B%?XIO =0.610m

ey e &Mlxlo
v

®

The total equivalent length and the equivalent torsional sti ness would be

[, =1+, =0.75+0.61=1.36 m Q/'

and Q§
11 ~7
k, = la L 08X10 X6.A36X10 " _ 5 61010+ Nrad
L 1.360 Q\

Alternatively, the effective stiffne@,éan be obtained as

1_1, 1 i o Kaks, _ 6.545%10" x8.044x10°
ke ki ki, © k,+k, 6.545x10" +8.044x10*
\J e

A

Natural freq@% of two mass rotor system are given as

=3.61x10* Nm/rad

5 Up +1,)
@)g =0 and @, = AL/ W e g =\/9.81><w><3.61><104 =153.62 rad/s
( I 2 i 24x40

X
Py~ Py,

A factor 9.81 is used since /, isin Nm’ and we need in kgm”.
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Gear location
]P 4 ] P
B,
1,=0.75m l, =0.6lm
A
I =0.8m [ =0.51lm
. - b-|< .
- 1.36m -
Node location
Figure 6.39 Equivalent two mass rotor geared system \S

“{,\%
44@
&
A 1.667  and lnl+lnz—lA+lB/\/' m
&

(1.6671,)+1, =136 = [, =0.85m and 4@‘ 5lm
A

The node location can be obtained as

which gives

The stiffness of shaft length equal to ln2 will be (equivalent stiffness corresponding to shaft A speed)
by l
B
The shaft stiffness corresponding to 6%5; speed can be defined in two ways i.e.

V

ky =5 Cana kg =nk, =n’ Gl

2 1%® ) ln:

On equating above tions the location of the node in the actual system from disc B can be obtained
" 2
A
’% L=nl 22-0384
N e

which is same as by previous method.
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6.7 TMM for Branched Systems

For rolling mills, textile machineries, the marine vessel power transmission shafts, and machine tool
drives; there may be many rotor inertias in the system and gear box may be a branch point where
more than two shafts are attached. In such cases where there are more than two shafts attached as
shown in Fig. 6.40 to the gearbox, the system is said to be branched. It has three braches A, B and C;
and each branch has multiple discs, e.g. p, g, and r number of discs (including gears) in branches A, B
and C, respectively. Such system can not be converted to a single shaft system as we could do t? the
two-shaft geared system as discussed in previous section. Since now the system contain several)@es
hence, it is a multi-DOF system and hence the analysis of the branched system would now e by

more general procedure, i.e. the TMM. &f&

; o

T 1 2 aA
T
|
0 1 2 v p == Branch B
I N
| | | Branch C
Branch A - | |
Lrr—1T
O 1 2 7
b

Fig. 6.40 @)&ed multi-DOF rotor system

Q

For the branched system as s@vn in Figure 6.40, state vectors for different branches can be written as
x‘b
R%@%[A]{S}OA; 53, =[BISY, s W 1S)e=[Clis),, (6.80)

where [A] @nd [C] are overall transfer matrices for branches A, B, and C; respectively.

B(angQA: For branch A, taking ¢_ =1 as the reference value for the angular displacement and since

the left hand end of branch A is free end, hence for free vibrations we have Tys = 0. Equation for

branch A takes the form

?. | Gn Gy 1
T, la a0 (6.81)
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which can be expanded as

I, =a, and ¢ =a, (6.82)

ZpA

Branch B: At branch point, between shafts A and B, we have

g, == (6.83)

n n

AB AB

A
where nup is the gear ratio between shafts A and B. For branch B, T, = 0, since the right handféq&d of

the branch is free. For branch B from equation (6.80), and noting condition described bb, quation

(6.83), we have 0
P - b, by, all/ nyp O
{ 0 }qB {bﬂ an T }OB é (6.84)

NN
Equation (6.84) can be expanded as ‘b‘&

0. =b, - +h,T, &\ (6.85)

- AB
and Q.,‘
a b a
0 = b21¢+b22]})3 Tys = _[A][#J
Np b,,

0’}
Branch C and junction point. At bra@’N, we have the following condition (noting equation (6.82))

V
¢ :%é& (6.87)
Zox c nyc

where nyc is the atio between shafts A and C. Another condition at the branch to be satisfied

(6.86)

Nyp

regarding wd&%ﬂe by the torque transmitted at various branches (assuming negligible friction

during tran%&ssions), 1.e.
N

T T T T

1 | | 0B oc 08, toc

1 =T +1lT =T, = =T =—"+

2 pA?Z"A 2708 ¢ZOB 2 0C¢ZOC PA ¢ZPA /¢zog ¢ZPA /¢zoc‘ " Map Mac (688)

On substituting equation (6.86) into the third expression of equation (6.88), it can be written as
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T b, a
— 0B _ 21 11

Ty _nAC|:TpA_ :|_nAC TnA+b 2
AB nAB

22

On substituting equation (6.82), we get

Ty =nyc {am +ﬁa_;1} (6.89)
2 Mg (b,\'\
Substituting equations (6.87) and (6.89) into equation (6.80), we get Q{b

&
ay /n,e

{%} _ |:C11 C12:| - bQIaIInAC 6 (6.90)
C C - 5
e 21 Cx act bzznig ,\(

@

NN
where T,.= 0 is the boundary condition describing the free riglﬁé@gend of branch C.

®

The frequency equation: From equation (6.90), the second eéquation will give the frequency equation
as <
2 g;) 2 2 _
Ay 1DyyCo 1y + Gy Dy oy M + Ay by Cop 1y = 0 (6.91)
Q-
where a’s, b’s and ¢’s are function '}e natural frequency, @, The roots of the above equation are

system natural frequencies. Angular displacements at the beginning and end of various branches can

L 2
be summarised as (50

(02%? Q. =a,; (6.92)

S = Lb“ Dby Jﬂ; (6.93)

by, )ny
a C,,C a
_ a9 . _ 1261 | G
Q.. =" Q.. —(C“ ——j—. (6.94)
Nye Cn )Ny

On substituting one of the value of torsional natural frequencies obtained from equation (6.91) into
equations (6.92)-(6.94), angular displacements at the beginning and end of various branches can be

obtained. Then these may be substituted back into transfer matrices for each braches considered (i.e.,
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equation (6.80)), where upon the state vector at each station may be evaluated. The plot of angular
displacements against shaft positions then indicates the system mode shapes corresponding to the

chosen natural frequency. For other natural frequencies also similar steps have to be performed.

Using this method, there will not be any change in the elastic line (mode shape) due to the gear ratio,
since these have now already been allowed for in the analysis. Moreover, for the present case we have
not gone for the equivalent system at all. For the case when the system can be converted to an
equivalent single shaft, the equivalent system approach has the advantage. It should be noted ths?@or
the present case the DOF of the rotor system would be (p + g + r - 2). The total numb discs
(including gears) is (p + g + r), however, at junction the DOF of two gears (e.g., a ﬁbétation of
braches B and C) is related with the third (at p‘h station of branch A), hence, we ave two DOF

less as compared to the number of discs in the system. Now, through ({ ical examples the

procedure will be illustrated. )\S

O}
Example 6.12 For a geared system as shown in Figure 6.41, fin gr\sional natural frequencies. The
shaft ‘A’ has 5 cm diameter and 0.75 m length, and the shaft ]ﬁ&‘nas 4 cm diameter and 1.0 m length.
Take the modulus of rigidity of the shaft G equals to @fg;\ 10" N/m’, the polar mass moment of

inertia of discs and gears are [, =24 Nm’, 7, =1 2 I, =5 Nm’, I, =3 Nm’.
10 cm ¢
— [},gs .

—
-E ~
g 3

I, § -

‘ © I

Pz

o>

AN L,
X

20 cm ¢

Q Figure 6.41 Two-discs with a geared system
Solution: Now this problem will be solved using the TMM for illustration of the method to geared
system. The pinion and gear have appreciable polar mass moment of inertia. Let us denote the station

number of the disc on branch A as 0, the gear as 1 and the station number of the disc on branch B as

2, the gear as 3 (Fig. 6.41).



The state transformation equation for the branch A can be written as

53 =[A], 183,

with
1 1/k 1
A=V, il {a,:f,m
2 kA |
i @1
1_ nf " pa
= 2
it ot f -
A

334

where k,4 is the stiffness of shaft A. Similarly, the state transformatio,gqguation for the branch B can

be written as

53, =[B] {5},

with

[B]=[PLIFL[P], =

&‘\

where kg is the st1ffne §shaft B. At the gear pair, the following conditions hold

and

@}‘
2
Qﬁ

nT

@, is the angular displacement. Equation (e) can be combined as

Lo aLir
; T X 0 n R T

S}, =[n] 15},

}

or

(©

(d)

(e

)

€3]
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with the gear ratio transformation matrix is given as

(] = {1/;@ 0} ®)

Noting equation (g), equation (c) can be written as
A5}, =[Blln] 15}, M)
Noting equation (a), equation (i) can be expressed as A\Q'@
&
A8), =[BlnllA] {8}, =[], {5, 0
with the overall transformation matrix is given as \(/g

‘.a

[T]=[B][»][A] = [21 bJ[li)n 0}[% alz}: %T%Jf”am%&\—"%+nanbn

njla, day au LI b a,by,
(Q 22

The overall transformation matrix can also be Writte%f

(9]

+na,,b,,

[7]=[B][n][A]=[PLLF], Eaz[nl[PL[F L2, M
Sk
Boundary conditions of the pro Qare T, =T, =0 since both ends are free. Equation (j) can be

written in expended form as

t t
q’x (‘o or {q)x} =|: 11 12:| {¢x} (m)
22 L R 0 3 t21 t22 L 0 0
which gi %ﬁequeney equation as

S hta-

(n)

From equation (k), frequency equation comes out to be

a, b, + r126121b22 =0 (0)

Noting equations (b) and (d), in the expanded form equation (0) can be written



336

2 2 2 2
[1 _ a)n]/;ij \J{(_wjflpﬂ )+ (_a)jflpgﬂ )[1 _ a)n]/;:pg \J} + I’lz {(_wjflpm )+ (_a)fprA )(1 B a)n;{ipg,‘ J}[l _ a)n]j;:mq \J =0

(p)
For the numerical values of the present problem, equation (p) reduces to
o} { @ —(1.665x10* )@, +(3.006x107)} =0 (@

>
o
&°
=0, ®,, =45.46, @, =119.56 rad/s, Cﬁ'

From frequency equation (q), the following natural frequencies are obtained

a)nfl

It should be noted that for the present problem even four discs (polar (sgnoment of inertia) are
present, however only three natural frequencies is obtained. This is due to the fact that gear pair is
treated as a single polar mass moment of inertia, so effectively %‘Q}ig present problem only three
generalized coordinates are sufficient to describe the motion. ‘$

A

For comparison with Example 6.11, let us put polar@.s/s.moment of inertia of the pinion and the gear

Q°
o {1, 1, Wk, +ky )@ —(n*L, 41,7 Kk, } =0

Pa Pr

Which gives %

@, =0 S@Q

i (@?/nz)(#@@) _(IPA+Ip8ﬂ){n2kAkB/(n2kA+kB)}

nf, .

to zero in equation (p), then we get

and

1, /n? )}(nzkA +ky) (IPA I, )

Secon& ﬁal frequency can be simplified as

Iy, +IPBE )k,
(I)nf2 = m (q)

k,, =n’kky I (n’k, +k,); I =1 _/n’

Pg, Pp

with
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It should be noted that equation (q) is exactly the same as in previous example (i.e., for equivalent two

mass rotor system).

Example 6.13 Obtain torsional natural frequencies and mode shapes of a branched system as shown

in Figure 6.42. The polar mass moment of inertia of rotors are: I, =0.01 kg-m’, [ », = 0.005 kg-m’,
IpF =0.006 kg—mz, and IPB = Ipc = IpD =0. Gear ratios are: ngc = 3 and ngp = 4. Shaft lengths are: I,

= Ilcg = Ipr = 0.25 m, and diameters are dsz = 0.03 m, dcr = 0.02 m and dpr = 0.02 m. Také,&he
modulus of rigidity of the shaft as G = 0.8 x 10" N/m”. ‘b‘

C =\
— e

=
Figure 6.42 A branched ﬁ@em

Solution: The branched system has the following &rﬁcal data

Q

1, =0.01 kg-m?; I, =0 5'}kg—m2; 1, =0.006 kg-m’
Iy =d =3—”20.034 =795%10" m?*, Jop=J,, =%0.024 =1.57x10" m*

AB — 32 B
&

k, . GJAB ’&?55><104 N/m, k. =k, =0.50x10* N/m
@%

For bra@ state vectors at stations are related as

C (S}, =[A1(S),,

with

1 3.93x10° 1 0| |1-3.93x107 @ 3.93x107
[A]:[F]AB[P]A = 2 = 2
0 1 —0.0le, 1 -0.01a;, 1

For branch CE, state vectors at stations are related as
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18}, =[CHSY,,

with

1 01 2.0x10™ 1 2.0x10™
i, o |

—0.0050;, 1|0 1 —0.0050;, 1-1.0x10"w;,

®

Similarly, for branch DF, we have \,N

>
NS
({8}, =[DI{S}),, &

with 0

1 O|[1 2.0x10™ 1 Cj2.0><10*‘
[D]_[P]F[F]DF{—O-OOWQ 1}{0 1 }[—0.0g@ 1—1.2x10‘6a)jf}

S
From equation (6.81), the frequency equation can be written asq&(b‘

®

2 2 2 a
a,,Cypdy e + a6y dyy g, + azlczzézngcntm =0

On substitution, we get Q&
(1-3.93x107 @, )(1—1.Ox106\%)‘(§—0.006wjf )x9+
(1-3.93x107 @, ;‘(lﬁ.oomjf )(1-12x10"° @, )x16+
8(@ (-0.01@;, )(1-1.0x10° @}, ) (1-1.2x107° @}, ) x9%x16 =0
&

X
which can be‘sil% 1ed to

6
00@1.768&(10‘2 @) —3.3532x10" @}, +1.5740) =0

Natural frequencies are given as

@, =0; @,, =924.4 rad/s and @, =1020.6rad/s.

It can be seen that the rigid body mode exists since ends of the gear train is free. Mode shapes for

each of these natural frequencies can be obtained as follows.
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For @, = 0 with @, ., =1 as areference value, angular displacements at various disc locations can

be written as

¢ZL)AB -
a
—
¢20CE - n
BC
a
11
¢ZL)DF - n

1

L

-—-0.33;

0.25;

O S
22
S

Figure 6.43 shows the mode shape. Similarly, for other natural fl;eql;f}éies displacements can be

obtained to get mode shapes as in Figures 6.44 and 6.45.

Relative angular displacements

15
1A §
0.5/ 1
0
D F
E
05 I \ \ \
0 -~ 04 0.2 0.3 0.4 0.5

Position on discs and gears

Figure 6.43 Mode shape of the branched system for @,, =0
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12

10+

Relative angular displacements

0 0.1 0.2 0.3 0.4 %’&S
Position on discs and gears O

Figure 6.44 Mode shape of the branched system for @, ;@ rad/s

N
P

6

8 or
=

Q

5 4
Q

k=

=

5 3
k=

5 2
g
ERRTE
=

¥ O

| | |

-1 \
% 0.1 0.2 0.3 0.4 0.5
'\% Position on discs and gears
@ Figure 6.45 Mode shape of the branched system for @,, =1020.6 rad/s
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6.8 TMM for Damped Torsional Vibrations

In any real rotor systems damping is always present. Torsional damping may come from several
sources, e.g. the shaft material, bearings, couplings, torsional vibration dampers, aerodynamic
damping at discs, rubbing of the rotor with the stator, loose components mounted on shaft, etc. The
shaft material or hysteretic damping comes due to intermolecular interaction in the shaft material,
which results in increase in the temperature of the shaft material. The torsional vibration damper is a
device which may be used to join together two-shaft section as shown in Fig. 6.46. It develops a
damping torque, which is dependent upon of the angular velocity on one shaft relative to the N;I}\r
These types of damping can be considered proportional to the relative angular velocity cs to
which the shaft is connected and it is represented as c,. The disc aerodynamic (or rubﬁig%amping,
¢4, comes due to interaction of the disc with the working fluid (like steam, gas, air .); lubricant, and
coolant; which results in dissipation of the energy in the form of heat.(%s(;?of damping is
proportional to the angular velocity of the disc itself. )\'

x

Fed

NN\

1

‘[P

1

Y

]P

2

¥
Figure 6.46 A sch%a&f a torsional vibration damper
“}

Torsional dampers can be used Qeans of attenuating (decreasing) system vibrations and to tune
system resonant frequencies to suit particular operating conditions. The damping in the system

introduces phase lag bet;geé@ e system displacement and torque.

XD
Ppy

AN BVAN A
& -

I__I €y I——I Ca, I——I Cd,,
V/// V/// V///

Figure 6.47 General arrangement of multi-DOF rotor system with damping.
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Pz,

72\

LT;D ) RT;I

C]fq)lﬂ

®

>

Figure 6.48 A free body diagram of " rotor. Q{b
Figure 6.47 shows a general arrangement of torsional multi-DOF rotor sys@ with the disc and the
shaft damping. From the free body diagram of n” rotor (Figure 6.4& e following governing

equations can be written as é‘\'}

_ LR
O, =0, (6.95)
and ' ' &‘\

)b =1, —c, @, =1,,0, Q« (6.96)

For free vibration, torques 7, and ;T,, may b@tten in the form

"}
T =T ' N 6.97
n=1,€ q/Q (6.97)

where T is the complex anq@ude of the torque at n” disc, and w,y is the torsional natural frequency

n

of the system. The angu%@splacement takes the form

X2
) D (6.98)
&

where @s the complex amplitude of angular displacement at n” disc. Differentiating equations

(6.97) and (6.98) with respect to time and substituting in equations (6.95) and (6.96) leads to

R f n _a)jflp-i-jw’!fcd 1 n L T n .

which can be simplified as
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83, =[P, 18, (6.100)
with
1 0 1))
[P]n: P . ; L{S}n: _
a)nflpﬂa)nfcd 1 ) . T )
where [P], is a point matrix and [S], is a state vector. .

) - ), &

g)-"u ]( go-"n—l

o

Figure 6.49 A free body diagram of n" shaft segment

K>
The characteristics of the shaft element at stati Fig. 6.49) are represented in the equation

describing the torque applied to the shaft at the 5@@ion of rotor n, as

'}
T,=k (.0, ﬁ@ J+e, (L2, 2 9..) (6.101)
Q

While the torque transmitted thrqugh the shaft is the same at both ends, i.e.,

%> L (6.102)
X
Substituting @s (6.97) and (6.98), in equations (6.101) and (6.102), we get

@, J+joc (P, — @, ) (6.103)

Zn

(6.104)

Combining equations (6.103) and (6.104), we get

k+joge, 0] [@ |k+joc, 1 @ (6.105)
0 1Lfn_ 0 ln—lR]_lefl |
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which can be written as

[L]n L{S}n = [M]n R{S}n—l

which can be simplified as

ASY, =[LL M, (S}, =[F], (S}, (6.106)
with [F] =[LI[M], =| k+]jo,c, { Jg’"fcs J =l k+jmec, (SQ
0 1 0 0 QL

where [F], is a field matrix at station n. From equations (6.100) and (6.106)&ge;

A
181, =[P, {8}, =[PLIF], {S},. =[U], ({5}, (6.107)

with ‘$(b$y'}
. (<,~,, -

1 O 1 R k+ja)nfcx
[U]n: ) : k+]a)n.fcs < 9 .
o, l,+jo,.c, 1 5 . o, 1,+jo,.c,
"1 0 ~w, I ,+jo,.c, 1+——"———

OQ'{,_ ! k+joge, |

where [U], is a transfer matrix betwee@@tions n and (n-1). Once we have the point and field
matrices, remaining analysis will re@%ﬁhe same for obtaining natural frequencies, mode shapes, and
forced responses. Only differencg?ould be that now we need to handle the complex numbers. Such
analysis with damped multi-@lj could be performed relatively simpler way with FEM and it will be

discussed subsequently.
X2
6.9 Modellir%é?@eciprocating Machine Systems

Till no %considered various machines that have components with pure rotary motions. Advantage
S Qa ing machineries are that they do not have as such variable polar moment inertias. Another
class of machineries that have possibility of torsional vibrations is reciprocating machines. A multi-
cylinder reciprocating machine contains many reciprocating and rotating parts such as pistons,
connecting rods, crankshafts, flywheels, dampers, and couplings. The system is so complicated that it
is difficult, if not impossible, to undertake an exact analysis of its torsional vibration characteristics.
The actual system is characterised by the presence of unpredictable effects like variable inertia,
internal dampings, fluid-film bearing forces, misalignments in the transmission units, uneven firing

order, etc. (Wilson, 1956, 1963 and 1965; Rao, 1996)
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The analysis can be best carried out, by lumping the inertias of rotating and reciprocating parts at
discrete points on the main shaft. The problem then reduces to the forced torsional vibration study of
an multi-DOF rotor system subjected to varying torques at different cylinder points. The crankshaft
and the other drive or driven shafts are generally flexible in torsion, but have low polar moments of
inertia, unlike in the case of some large turbines or compressors. On the other hand, parts mounted on
the shafting, like the damper, flywheel, generator etc. are rigid and will have very high polar mon}ents
of inertia. The system containing the crankshaft, coupling, generator, auxiliary drive shaft, )@er
driven shaft like pumps, and mounted parts can then be reduced to a simple system with es of
rigid rotor (representing the inertias) connected by the massless flexible shafts as sh %n Figure
6.50. Now simple procedures will be described to reduce reciprocating inertias t e@valent rotating

inertias, the uneven crack shaft geometry to an equivalent uniform shaft syst(qu the conversion of

periodic torque variation to its components. Q
Iy L, Iy,
® ¢ [
IPz IPz Ipa IPs IP?

- k, k, k, e, k, k, k, -
Bearing ’ ' Bearing

Coupling

® Four-cylinder engine ® ®
Damper Flywheel Generator

4
Figure 6.50 A roton@pdel with N-disc of a typical reciprocating engine installation

6.9.1 An equiva olar mass moment of inertia

Determinit?% a polar mass moment of inertia is a straightforward matter for rotating parts,
howev is not quite so simple in the case of reciprocating parts. Consider the piston shown in two
different positions in Figure 6.51 and let us imagine the crankshaft with a polar mass moment of
inertia, M, >, where M., 18 the total revolving mass at the crack radius r (it is also called crack

through). It includes all the revolving part of the crankm_, and the only the revolving part of the

cr?

rev
cn

connecting rod m. " (when its two mass equivalent dynamic system is considered). Let us assume that

the crack is not revolving, however, it is executing small torsional oscillations about the mean position

shown in diagrams.
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In first case (Fig. 6.51a) there is no motion for the piston, with small oscillations of the crank and
hence the equivalent polar mass moment of inertia of the piston is zero. Whereas in second case (Fig.
6.51(b)), the piston has practically the same acceleration as that of the crank pin and the equivalent

polar moment inertia is 1., r*, where m,,, is the mass of the reciprocating parts. It includes all the
mass of the piston m,, and only the reciprocating part of the connecting rod m.° when it is converted

to a two-mass equivalent dynamic system. Hence, the total polar mass moment of inertia varies from

M,y 7 to (Myer P+ Myoe rz), when the crankshaft is rotating.

>
The inertia of connecting rod can be obtained by considering a two-mass equivalent dynazpystem

with mass one at piston, m_ ", and other mass at crank pin, m/, . With some approxim@n (for more

cn

accuracy refer to Bevan, 1984) the mass of the connecting rod m_ can be co@red as two mass
system one at the piston of magnitude m " =m_a/l, and another at the{(&k radius of magnitude

m!"" =m,c/l, where [ is the length of the connecting rod, c is the distance from the piston pin to the
0}
center of gravity of the connecting rod, and a is the distance from rack pin to the center of gravity

of the connecting rod (i.e., [ = a + ¢). It will contribute to-be&mm and m,.. by small amount. We

consider as an approximation in the system to have an average inertia given by
Q«'
— 2 2
I,=m,r"+0.5m.,.r & (6.108)

with

m, =m,_ +m." QNQ | m,. =m,+m;° (6.109)
V
where 7 is crank radius. N
&
RS
&
£
o
(@) (b)

Figure 6.51 An equivalent mass moment of inertia of the piston and the connecting rod
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6.9.2 Equivalent torsional stiffness of crack shafts

In determining the torsional stiffness of shafts connecting rotors, the main difficulty arises from the
crank webs. Considering a crank shaft into an equivalent ordinary shaft having the same flexibility as
the original one, as shown in Figure 6.52. Through this idealisation is physically possible, but the
calculations involved are extremely difficult. This is because the crank webs are subjected to bending
and the crank pin to twisting, when the main shaft is subjected to twisting. Moreover, the beam
formulae, if used will not very accurate, because of short stubs involved rather than long beams
usually considered. Further torques applied at the free end also give rise to sidewise displacemeﬁ.@e.
coupled beading-torsion exists; which is prevented in the machine. For high-speed eight
engines, the crank webs are no more rectangular blocks and application of the t ?becomes
extremely difficult. Because of this uncertainties in analytical calculation to esti the torsional

stiffness of crank throws, several experiments have been carried out on a ‘I/lg of crank shafts of

length, if the diameter of main shaft is equal to the crank pin diameter.
,{/\

N

I

large slow speed engines, which have shown that the equivalent length @l rly equal to the actual
O}

N
) , {
/
7
:
e >
7 7
M |
\Q)S‘ Figure 6.52 Equivalent length of a crank

In general:%)?rocedure that is applied to reduce the reciprocating machine system to a mathematical
model, i se a basic diameter, which corresponding to the journal diameter of the crankshaft. The
t@nal stiffness is all calculated based on the basic diameter, irrespective of their actual diameter.
For the end rotors (i.e., the generator rotor) compute the stiffness of the shaft from the coupling up to
the point of rigidity. In case where one part of the system is connected to the other part through gears,
or other transmission units, it is convenient to reduce all the inertias and stiffness to one reference
speed. Finite element methods can be used to obtain equivalent stiffness of the crackshafts. Once the

mathematical model is developed, it can be used in illustrating the critical speed calculations, and

forced vibration responses.
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6.9.3 Torque variations in a reciprocating machinery

Torsional oscillation in the crankshaft and in the shafting of driven machinery is vibration
phenomenon of practical importance in the design of reciprocating engines. The average torque
delivered by a cylinder in a reciprocating machine, is a small fraction of the maximum torque, which
occurs during the firing period. Even though the torque is periodic the fact that it fluctuates so
violently within the period, constitutes one of the inherent disadvantages of a reciprocating machine,
from the dynamics point of view, as compared with a turbine where the torque is practically uniform.
It is possible to express the torque by a reciprocating engine into its harmonic components of @é@ral
orders of the engine speed, and these harmonic components can excite the engine driven %%@Iations
into forced torsional vibrations. The engine and the driven unit such as generator pump are
normally connected by a flexible coupling and thus the total installation h irly low natural
frequencies falling in the speed range of the engine and the harmonics of different order. It is a
commonly known fact that failures can occur in reciprocating machine i@ations, when the running
speed of the engine is at or near a dominant torsional critical spe‘é&of the system. High dynamic
stresses can occur in the main shafting of such engine installatio d to avoid these conditions, it is
essential that the torsional vibration characteristics of th ‘a@e installation be analysed before the
unit is put into operation. Any analysis of torsiona ration characteristics of reciprocating
machinery should finally predict the maximum dy@c. stresses or torque developed in the shafting
and couplings of the system, as accuratel}@’sossible, so that they can be compared with the

permissible values, to check the safety of installation.
O}

Example 6.14 A marine recipro @gme, flywheel and propeller are approximately equivalent to
the following three-rotor systempfi{le engine has a crack 50 cm long and a connecting rod 250 cm
long. The engine revolvi g@% are equivalent to 50 kg at crank radius, and the piston and pin masses
are 41 kg. The connq@otin rod mass is 52 kg and its center of gravity is 26 cm from the crankpin
center. The mass@‘e flywheel is 200 kg with the radius of gyration of 25 cm. The propeller has the
polar mass m of inertia of 6 kg-m”. The equivalent shaft between the engine masses and the
flywheel i %cm diameter and 5.3 m long and that between the flywheel and the propeller is 36 cm

di@@@nd 1.5 m long. Find the natural frequencies of the torsional vibrations of the system.

Solution: The main aim of the present solution procedure would be to first find the equivalent rotating
mass of the reciprocating engine, once it has been done then the problem will reduce to obtaining the
natural frequencies of a three-rotor system as shown in Figure 6.53. The three revolving masses are

corresponding to the reciprocating engine, flywheel, and propeller.



349

Engine Flywheel Propeller
' { '

@ 0.38m @ 0.36m
1 (€9) e

I< 5.3m >I< l.5m—>I

A
>

Figure 6.53 A three-disc model of the engine, flywheel and propeller (SQ'

L

The equivalent rotating part of the engine can be obtained as follows. We have ﬁ,@lowing engine

data: &

Crank radius, r = 0.5 m, Mass of crank revolving parts, n%‘: 50 kg at the crank radius
NN

Length of connecting rod / = 2.5 m, Mass of the connecting rqé,gnm =52 kg,

Distance of center of gravity of the connecting rod from t c pin, a = 0.26 m

Distance of center of gravity of the connecting rod fr@'the piston pin, ¢ =2.24 m

Piston and pin masses, m, = 41 kg ;&

Hence, the equivalent (approximate) reci@c&t'ng and revolving masses of the connecting rod would

be \
m =m,all=52x0.26 %.;=5.41 kg; m =m_c/l=52x224/2.5=46.59 kg

cn
Q'

The equivalent revolvingS% reciprocating masses are given as

S

m, = n@% =50+46.59=96.59 kg

S\' rec
m,% m,+m =41+5.41=46.41kg

and

H Sj% equivalent polar mass moment of inertia of the engine is obtained as

1, =(m,, +0.5m,.)r*=(96.59+0.5x46.41)x0.5" = 29.95kg-m’

rev

Now, the polar mass moment of inertia of the flywheel 1, = mr; =200x (0.25)2 =12.5 kg-m’

. . . _ 2
For the propeller, the polar mass moment of inertia is given as / b, = 6 kg-m”.
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The torsional stiffness of shaft segments (1) and (2) are given as

GJ, 78.9x10°x7x0.38*

=3x10" N-m/rad

tl ll
and

G,J, 78.9x10° x7x0.36"

32x5.3

=8.67x10" N-m/rad

t I
2

32x1.5

n’ p

Natural frequencies of three-disc rotor system (with I, =1,, 1 =1, and I, =1, ) are g%,\és

(equation (6.110))

and

D
c&‘fl
&

I +1 I +1
+k; P2 P}]i l[kt 4l P2 +k; N
1,1 4 II’[ II’z @‘ P2 1173

I 11

P2 P3 PP P3

1o+, JZ ) [ kk (1, +1, +1, )}

K
it

@,, =1.58x @, =4.72x10°rad/s

0’}
Finding of mode shapes and the pos&oﬁsognodes is left to the reader as a practice problem.

V
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Concluding remarks
To summarise, now we have clear idea about torsional natural frequencies and mode shapes for
simple rotor systems. We have obtained torsional natural frequencies and mode shapes using
Newton’s second law of motion, and using the systematic transfer matrix method (TMM). The TMM
is found to be quite versatile and easy in application especially for the multi-DOF rotor systems. The
TMM is also developed for rotor system with damping in the disc due to aerodynamic forces and in
the shaft due to material damping (both the damping models are taken as viscous damping). Apart
form these simple rotor systems, we considered the geared and branched systems for obta;@ng
torsional natural frequencies. For the multi-DOF geared and branched systems, the TMM"is applied
because of its simplicity in the application. At the end the procedure of obtaining the e '@ient rotor
system from multi-cylinder reciprocating engines is briefly discussed and for detai e@analysis a brief
literature review is given.
$

o
D
5
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Exercise Problems

Exercise 6.1 Find torsional natural frequencies and mode shapes of the two-disc rotor system shown
in Figure E6.1 by using the transfer matrix method. B; and B, are frictionless bearings, and D, and D,
are rigid discs. The shaft is made of steel with the modulus of rigidity G = 0.8(10)'' N/m’, and a
uniform diameter d = 10 mm. Various shaft lengths are as follows: B;D; = 50 mm, DD, = 75 mm,

and D,B, = 50 mm. The polar mass moment of inertia of discs is: I, = 0.0008 kg-m2 and 7, = 0.002

kg-m”. Consider the shaft as massless. [Answer: @, =0, @, =1354rad/s] (5&\

B, D, B

0“

Exercise 6.2 Obtain the torsional natural frequency of an o-ve@ng rotor system as shown in Figure

()

tjl

Figure E6.1

E6.2. The end B, of the shaft has a fixed end condition. The.shaft diameter is 10 mm, and total length
of the shaft is 0.2 m. The polar mass moment of m@qual to 0.02 kg-m”. Neglect the mass of the
shaft. Use the transfer matrix method. : &

7

/{b
\,% B "

Figure E6.2

Exercise %Flnd the torsional natural frequencies and mode shapes of a rotor system as shown in
Flgur y using the transfer matrix method. B, and B, are fixed supports, and D, and D, are rigid
he shaft is made of steel with the modulus of rigidity of G = 0.8 (10)"" N/m? and has uniform
diameter of d = 10 mm. Different shaft lengths are as follows: BiD; = 50 mm, DD, = 75 mm, and

D,B; = 50 mm. The polar mass moment of inertia of discs is: / o= 0.08 kg—m2 and / p = 0.2 kg-mz.
Consider the shaft as massless. [Answer: @, =100.29 rad/s, { @}, = {1 1. 731" =189.05 rad/s,

{@.)a=1{1 1/4.33}7]
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Figure E6.3

Exercise 6.4 Find all torsional natural frequencies and draw corresponding mode shapes of the rotor
system shown in Figure E6.4. B, is fixed supported (with zero angular displacement about shaft a&is)
and B, and Bj; are simply supported (with non-zero angular displacements). The shaft is made 6@8 eel
with G = 0.8x10"" N/m’, and uniform diameter d = 10mm. The various shaft lengths ar @ ollows:
B D, =50mm; DB,=50mm; B,D,=25mm; D,B,=25mm; B,D,=30mm. polar mass
moment of inertia of discs is: 7, =0.002 kg-m*; [ », =0.001 kg-m’ and [ o kg-m*; Use the

transfer matrix method. Give all detailed steps involved in obtaining th@ystem of equation and

application of boundary conditions. Consider the shaft as mass-less and discs are lumped masses.

[Answer: @, =518.1Hz, @, =1184.6Hz, @, =1977Hz ‘55

¢20 0 ¢20 0 (g‘x ¢20 0

@, )1 o, _ | 1.000 @, _J1.000

o, 1984 o, |-r791] " e, ]-295

5], 2.344 (78 —0.835 5], 2.49
nfi nf2 nf3

—
_ _
X X
I X
B, | | B,
B, | D,
D, D

X
‘Q Figure E6.4 A multi-support multi-disc rotor system
2

Exercisl@% Obtain torsional natural frequencies of a turbine-coupling-generator rotor system as

S Qn Figure E6.5 by the transfer matrix method. The rotor is assumed to be supported on

frictionless bearings. The polar mass moment of inertia of the turbine, coupling and generator is [ =
2 _ 2 _ 2 . . e
25 kg-m”, 1 e = Skg-m”and [ o = 50 kg-m~, respectively. Take the modulus of rigidity of the shaft as

G = 0.8 x 10" N/m*. Assume the shaft diameter throughout equal to 0.2 m, and lengths of shafts
between the bearing-turbine-coupling-generator-bearing are 1 m each so that the total span is 4 m. The
coupling also gives a point flexibility (inverse of stiffness) equivalent to 5 times that of a shaft with 1

m of length and 0.2m of diameter. Consider the shaft as massless.
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I |
- Coupli -
: ouplin i
Bearing Turbine plng Gomorator Bearing
Figure E6.5 A turbine-generator set )‘\;)\

>
NS
Exercise 6.6 Obtain the torsional natural frequency of an overhung rotor system a@(ﬁn Figure
E6.6 Take the polar mass moment of inertia of the disc as, [, = 0.04 kg-mz. The massless shaft has
following properties: lengths are @ = 0.3 m, b = 0.7 m, the uniform dia(@er is 10 mm, and the
modulus of rigidity G = 0.8 x 10" N/m’. Bearing ‘A’ is flexible and @'rdes a torsional restoring
toque with its torsional stiffness equal to 5 percent of the torsional.stiffness of the shaft segment
having length a. Consider bearing B is a fixed bearing. Use %[ the direct and transfer matrix
methods. [Hint: We need to find the effective torsional sti(ﬁ@ of the rotor system].

A -

—C
B

A
s

7

L—a =|< b >|
O

Figure E6.6 An overhung rotor system with an intermediate support
i

Exercise 6.7 . Il electric motor drives another through a long coil spring (n turns, wire diameter

d, coil '%ter D). The two motor rotors have inertias [/ " and [ Py - Calculate torsional natural

fr@lﬁies of the set-up. Assuming the ends of the spring to be “built-in” to the shafts. [Hint:

Consider the system as a two-mass rotor system and the stiffness of a spring is given as

Gd* kI, +1
k,=———, Answer: @, =0 and @, = —( i p2) .
8D'n d

P I[’z
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Exercise 6.8 For a rotor system with a stepped circular shaft as shown in Figure E6.8 obtain the
torsional natural frequencies, mode shapes, and nodal positions. Consider the free-free end conditions.
Neglect the polar mass moment of inertia of the shaft and take G = 0.8 x 10" N/m” Use the direct
method, the indirect method (based on the node location information of mode shapes), and the transfer

matrix method.

0.03kgm* 0.02kgm* 0.04kgm*

®

N
i ¥ ¥ &\‘2;&
o
4c+m ¢ f 1‘ Ql
10cm ¢ 10cmé¢ OO

_|<—0.6m—>|<—().4m—>_l<—0.4m—>| \
QY

‘N
>

Exercise 6.9 A marine reciprocating engine, flywheel, and pnﬁ%ﬂer are approximately equivalent to

Figure E6.8

the following three-rotor system. The engine has a cra cm long and a connecting rod 250 cm
long. The engine revolving parts are equivalent to %g,at crank radius and the piston and pin masses
are 41 kg. The connecting rod mass is 52 %ﬂ@ its center of gravity is 26 cm from the crankpin
center. The mass of the flywheel is 200 kg wi e radius of gyration of 25 cm. The propeller has the
polar mass moment of inertia of 6 k -n@i‘he equivalent shaft between the engine masses and the
flywheel is 38 cm diameter and 5.3@1 ng, and that between the flywheel and the propeller is 36 cm

diameter and 11.5 m long. Find &ional natural frequencies of the rotor system and the position of

the nodes. 8@0

Exercise 6.10 F ?red system as shown in Figure E6.10 find the torsional natural frequencies and
mode shapes: also the location of nodal point on the shaft (if any). The shaft ‘A’ has 1.5 cm
diameter ‘%.3 m length and the shaft ‘B’ has 1 cm diameter and 0.4 m length. Take modulus of
rigidi@@the shaft G equals to 0.8 x 10" N/m’ the polar mass moment of inertia of discs and gears
a : :O.INmZ, 1 oy =0.08 Nmz, 1 P =0.003 Nmz, 1 pes =0.002Nm>. Use (i) equivalent system

P

approach and (ii) transfer matrix method.
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10 cm¢

Gear pair
|

>

20 cm ¢ .
N
>

Figure E6.10 A geared rotor system (b«w

&

Exercise 6.11 Obtain torsional natural frequencies and mode shapes of an epi-cyclic gear train as
shown in Figure E6.11. Find also the location of nodal point on the shaft.. The gear mounted on shaft
‘B’ is a planetary gear and the gear on shaft ‘A’ is a sun gear. Considés}ne polar mass moment of
inertia of the shaft, the arm and gears as negligible. Shaft ‘A’ hasé\ﬁl of diameter and 0.75 m of
length and shaft ‘B’ has 4 cm of diameter and 1.0 m of lengfh@fglar speeds of shaft A and the arm
are 300 rpm and 100 rpm, respectively. Take the modul,&}rigidity of the shaft G equals to 0.8 x

10" N/m?, the polar mass moment of inertia of disQarc 1, =24 Nm’® and I b, = 10 Nm’. State the
assumptions made in the analysis. [n4p =1, @, i@, {fu};={11 -l}T; @, =53.34 rad/s, {u}, = {1

0.04 3.37}"; node location from left hand side ; =0.72 m].
O}

IS

10 cm¢

NS
'\,QO |
& 20 cm¢

B

Gear pai

S

Figure E6.11 An epi-cyclic geared system

Exercise 6.12 For a gear train as shown in Figure E6.12, obtain torsional natural frequencies and the
location of the node. Dimensions of shafts are as follows (i) motor shaft: 0.20 m length and 0.015 m
diameter, (ii) flywheel shaft: 0.2 m of length and 0.01 m of diameter, and (iii) intermediate shaft: 0.4

m of length and 0.012 m of diameter. The polar mass moment of inertia of the motor and flywheel are
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_ 2 _ 2 . . . .
I, =0.0lkg-m”and /, =0.04kg-m", respectively. Gear ratio of the first and second gear pairs are 3

and 4, respectively. Neglect inertias of gears and mass of shafts. Assume the free-free end conditions

and all shafts are mounted on frictionless bearings. Take G = 0.8x10'" N/m’”. Use the TMM.

Flywheel
Figure E6.12

Motor - (y

Exercise 6.13 A stepped-shaft consists of three segments with s of 40 cm, 30 cm and 40 cm;
and corresponding diameters as, d cm, 13 cm and d cm, d is an unknown. The shaft has two

flywheels (1, =11kg-m* and I, =11kg-m’, with radius of gyration of both flywheel equals to 0.5

L4

m) at the ends, and the shaft is supported on two fri%ﬁless rolling bearings at 20 cm away from the
either ends. The operating speed of the sh 500 rpm and due to rotation of the shaft it has
external torque impulses such that it h qgiod corresponding to the quarter of the shaft rotation.
Obtain the diameter, d, such that tl@%;sional critical speed may be 20% above the external torque
frequency (fundamental harmorﬁ‘c}) Obtain the transverse natural frequency of rotor system, so
designed based on the dynal:{'qys- of the rotor in torsion. Neglect the mass of the shaft, and take G =
0.8x10'' N/m’, and E = z%‘;a'o“ N/m’.
XD

Exercise 6.14! @)r has rotating masses of the polar mass moment of inertia of 58 kg-m>, which is
connected t &re end of a shaft of 6 cm diameter and 2.30 m long. At the other end a flywheel and
pinion étched, with the effective polar mass moment of inertia of 220 kg-m’. The pinion is
conhn ?‘[0 a gear with a gear ratio of 4 and of the polar mass moment of inertia of 70 kg-m” which
drives a pump. The measured torsional vibration frequency of the rotor system is 60 Hz. Find the
effective polar mass moment of inertia of the pump impeller and entrained water. Take G = 0.8x10"'

N/m”.

Exercise 6.15 A cantilever shaft of 1 m length (/), and 30 mm diameter (d) has a thin disc of 5 kg
mass (m) attached at its free end, with the disc radius of 5 cm. The shaft has a through hole parallel to

the shaft axis of diameter 3 mm (d;), which is vertically below the shaft center, with the distance
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between the centres of the shaft and the hole as 6 mm (e). Consider no warping of the plane; and
obtain the torsional natural frequencies of the shaft system. Consider the shaft as massless and

modulus of rigidity G = 0.8x 10'" N/m’. [Hint: Find the equivalent stiffness of the shaft and then

G ™

obtain natural frequencies: @, = [k, /1, k J=1+1, =§(d4 —d} —8(1,.262):7.926><10’8

g " TP Ty

m'; @, =1007.23 rad/s]

Exercise 6.16 Find torsional natural frequencies and mode shapes of the rotor system shown in re
E6.16. B is a fixed bearing, which provide fixed support end condition; and D,, D,, D; m4 are
rigid discs. The shaft is made of the steel with the modulus of rigidity G = 0.8 (1O)f1dﬁ/m2 and the
uniform diameter d = 20 mm. Various shaft lengths are as follows: DD, = 50 ,QzDg = 50 mm,
D;D4 =50 mm and D4B, = 150 mm. The mass of discs are: m; = 4 kg, m, = S5.kg, m; =6 kg and my =7
kg. Consider the shaft as mass-less. Consider discs as thin and take dia,@;r of discs as d, =12cm,

-
®

d,=6cm, and d; =12cm, d, =14 cm.

X
Py
B

Dy 5: ]

3

D,
Figur@% A multi-disc overhung rotor

Exercise 6.17 Find torsion ‘@ﬁral frequencies and mode shapes of the rotor system shown in Figure
E6.17. B is a fixed bearing, which provide fixed support end condition; and Dy, D,, D3, D, and Ds are
rigid discs. The is made of the steel with the modulus of rigidity G = 0.8 (10)'' N/m” and the
uniform diameté%: 20 mm. Various shaft lengths are as follows: D;D, = 50 mm, D,D; = 50 mm,
D;D, =50 'f)r, D4Ds = 50 mm, and DsB, = 50 mm. The mass of discs are: m; = 4 kg, m, =5 kg, mz =
6 kg, ﬂ% kg, and my = 8 kg. Consider the shaft as massless. Tow cases to be considered (i)
C@der the disc as point masses, i.e., neglect the diametral and polar mass moment of inertia of all

discs; (ii) consider discs as thin and take diameter of discs as d, =12cm, d, =6cm, and d; =12 cm,

d, =14 cm, and d, =16, however, neglect the gyroscopic effects.
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2 D | |
Dy

D,

Figure E6.17 A multi-disc overhung rotor
x>
Exercise 6.18 Find torsional natural frequencies and mode shapes of the rotor system show&@tgure
E6.18. B, and B, are bearings, which provide free-free end condition and D,, D,, D3$%d Ds are
rigid discs. The shaft is made of the steel with the modulus of rigidity G = 0. (@) N/m’* and a
uniform diameter d = 20 mm. Various shaft lengths are as follows: B;D; = 1 Oég, DD, = 50 mm,
D,D; = 50 mm, D;D,; = 50 mm, D,Ds = 50 mm, and DsB, = 150 mm. T ($SS of discs are: m; = 4
%ssless. Consider discs as

kg, my, =5 kg, my = 6 kg, my =7 kg, and ms = 8 kg. Consider the shaft as
0}
thin and take diameter of discs as d, =8 cm, d, =10cm, d, =12 5;8;)4 =14 cm, and d; =16.

Ve

Bl e L] B2
1 -
)

p, U
D,
Figure E6.18 A multﬁa}ac rotor system with simply supported end conditions

Exercise 6.19 Find toré@% natural frequencies of an overhung rotor system as shown in Figure

E6.19. Consider thex{fﬁft as massless and is made of steel with the modulus of rigidity of 0.8(10)"

N/m’. A disc is \thed at the free end of the shaft with the polar mass moment of inertia 0.01 kg-m”.
In the diagr }ll dimensions are in cm. Use the TMM.

O o>

@1

A

Y

i

e 0——sb——a0—l |

Figure E6.19
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Exercise 6.20 Obtain torsional natural frequencies of a geared rotor system shown in Fig. E6.20.
Consider the left hand side of shaft A and the right hand side of shaft B have rigid supports. Assume
gears as thin discs with mass of 3 kg and 2 kg for gears of diameters 20 cm and 10 cm, respectively.
The shaft A and B are respectively 2 cm and 1.5 cm diameters, respectively; with a length of 40 cm
each. Neglect the inertia of shafts. The gear tooth-pair provides an effective torsional stiffness of 1

kN-m/rad between gears. Take G = 0.8x10"" N/m*. Use TMM.

H
o
c
=

-

N
Gear pair

20 cm ¢ /\Sg

Figure E6.20 “\'}
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