
 

 

 CHAPTER 6 

 

TORSIONAL VIBRATIONS OF ROTORS-I:  

THE DIRECT AND TRANSFER MATRIX METHODS 

 

 

In previous chapters, mainly we studied transverse vibrations of simple rotor-bearing systems. It was 

pointed out that transverse vibrations are very common in rotor systems due residual unbalances, 

which is the most inherent fault in a rotor. We studied behaviour of rotor due to speed-independent 

bearing dynamic parameters. Effect of gyroscopic couples on natural whirl frequencies is also 

investigated in details. In the present chapter, we will extend the analysis of simple rotors to torsional 

vibrations. We will start with the analysis of torsional vibrations of the single disc rotor, two disc 

rotor, and three disc rotor systems with the conversional Newton’s second law of motion or energy 

methods. The analysis is extended to the stepped shafts, geared systems, and branched systems. For 

the multi-DOF system a general procedure of the transfer matrix method (TMM) is discussed for both 

undamped and damped cases. Advantages and disadvantages of the TMM are outlined. In 

reciprocating engines large variations of torque take place, however, periodically. This leads to 

torsional resonances, and to analyse free and forced vibrations of these system a procedure is outline 

to convert them to an equivalent multi-DOF rotor system, which is relatively easier to analyse. The 

present chapter will pave the road for the TMM to be extended for the transverse vibrations of multi-

DOF rotor systems in subsequent chapters. 

 

The study of torsional vibration of rotors is very important especially in applications where high 

power transmission and high speed are present. Torsional vibrations are predominant whenever there 

are large discs on relatively thin shafts (e.g., the flywheel of a punch press). Torsional vibrations may 

original from the following forcings (i) inertia forces of reciprocating mechanisms (e.g., due to pistons 

in IC engines), (ii) impulsive loads occurring during a normal machine cycle (e.g., during operations 

of a punch press), (iii) shock loads applied to electrical machinery (such as a generator line fault 

followed by fault removal and automatic closure), (iv) torques related to gear mesh frequencies, the 

turbine blade and compressor fan passing frequencies, etc.; and (v) a rotor rubs with the stator. For 

machines having massive rotors and flexible shafts (where system natural frequencies of torsional 

vibrations may be close to, or within, the source frequency range during normal operation) torsional 

vibrations constitute a potential design problem area. In such cases designers should ensure the 

accurate prediction of machine torsional frequencies, and frequencies of any torsional load 

fluctuations should not coincide with torsional natural frequencies. Hence, determination of torsional 

natural frequencies of the rotor system is very important and in the present chapter we shall deal with 

it in great detail. 
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6.1 A Simple Rotor System with a Single Disc Mass 

Consider a rotor system as shown Figure 6.1(a). The shaft is considered as mass-less and it provides 

torsional stiffness. The disc is considered as rigid and has no flexibility. If an initial disturbance is 

given to the disc in the torsional mode (about its longitudinal or polar axis) and allow it to oscillate its 

own, it will execute free vibrations. Figure 6.2 shows that rotor is spinning with a nominal speed of ω 

and executing torsional vibrations, ϕz(t), due to this it has actual speed of ( )
z

tω ϕ+ � . It should be noted 

that the spinning speed, ω, remains the same, however, the angular velocity due to torsion have 

varying direction over a period. In actual practice if we tune a stroboscope (it is a speed/frequency 

measuring instrument, refer Chapter 15) flashing frequency to the nominal speed of a rotor then free 

torsional oscillations could be observed. For the present case and in most of our analysis, it is assumed 

that torsional natural frequency does not depend upon the spin speed of rotor. Hence, in limiting case 

when the spin speed is zero the natural frequency of the non-spinning rotor will be same as at any 

other speed. The free oscillation will be simple harmonic motion with a unique frequency, which is 

called the torsional natural frequency of the rotor system. 

 

 

Figure 6.1(a) A single-mass cantilever rotor system (b) A free body diagram of the disc 

 

 

 

 

 
 

Figure 6.2 Torsional vibrations of a spinning rotor 
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From the theory of torsion of the shaft (Timoshenko and Young, 1968), we have 

 

 
t

z

T GJ
k

lϕ
= =  with 

4

32
J d

π
=        (6.1) 

 

where kt is the torsional stiffness of shaft, Ip is the polar mass moment of inertia of the disc,  J is the 

polar second moment of area of the shaft cross-section, l is the length of the shaft, d is the diameter of 

the shaft, and zϕ  is the angular displacement of the disc (the counter clockwise direction is assumed 

as the positive direction). From the free body diagram of the disc as shown in Figure 6.1(b), we have 

 

  External torque of disc           z t z zp pkI Iϕ ϕ ϕ− == ⇒∑ �� ��    (6.2) 

 

where ∑ represents the summation operator. Equation (6.2) is the equation of motion of the disc for 

free torsional vibrations. The free (or natural) vibration has a simple harmonic motion (SHM). For 

SHM of the disc, we have  

 

( ) sin
z z nf

t ω tϕ = Φ   so that  
2 2sinz nf z nf nf zω ω t ωϕ ϕ= − Φ = −��             (6.3)   

       

where 
z

Φ  is the amplitude of the torsional vibration, and 
nf

ω  is the torsional natural frequency. On 

substituting equation (6.3) into equation (6.2), we get 

 

( )2

t z p nf z
k Iϕ ω ϕ− = −   or ( )2 0

z nf p t
I kϕ ω − =     (6.4) 

 

Since 0
z

ϕ ≠ , it gives  

 

t
nf

p p

k GJ

I lI
ω = =         (6.5) 

 

which is similar to the case of single-DOF spring-mass system in where the polar mass moment of 

inertia and the torsional stiffness replace the mass and the spring stiffness, respectively. 

 

Example 6.1 Obtain the torsional natural frequency of an overhung rotor system as shown in Fig. 6.3. 

The end B1 of the shaft has fixed end conditions. The shaft diameter is 10 mm and the length of the 

span is 0.2 m. The disc D1 is thin, and has mass of 10 kg and the polar mass moment of inertia equal 

to 0.02 kg-m
2
. Neglect the mass of the shaft.   
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Figure 6.3 An overhung rotor system 

 

Answer: For the present problem the torsional stiffness of the shaft can be obtained as 

 

 

11 40.8 10 (0.01)
32 392.7 Nm/rad

0.2
tk

GJ

l

π
× ×

= ==  

 

Hence, the torsional frequency is given as 

 

392.7
140.12 rad/s

0.02
/

nf t p
k Iω = ==  = 22.3 Hz    Answer. 

 

Hence, if the rotor has cyclic torque variation with a period of 1/22.3 sec then the rotor might undergo 

to the resonance under torsional vibrations. To have a comparison with the transverse natural 

frequency, the bending stiffness is given as 

 

 

11 4

4

33

3 2.1 10 (0.01)
64 3.87 10  N/m

0.2

3
b

k
EI

l

π
× × ×

= = ×=  

 

Hence, the transverse natural frequency is given as 

 

 
43.87 10

62.21 rad/s
10

/
nf b

k mω
×

= == = 9.9 Hz     Answer. 

 

If the same rotor has small amount of unbalance and if rotor is spinning around 9.9 Hz speed, then the 

rotor might undergo to the resonance under transverse vibrations. For the present case, the transverse 

natural frequency is much lower than the torsional natural frequency. 
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6.2 A Two-Disc Torsional Rotor System 

A two-disc torsional system is shown in Figure 6.4. In this case the whole of the rotor is free to rotate 

as the shaft is mounted on frictionless bearings.  Hence, it is a free-free end condition, and the 

application of which can be found in an aircraft when it is flying and whole structure has torsional 

vibrations due to aerodynamic forces. 

 

 

Figure 6.4 A two-disc torsional system 

 

 

 

 

Figure 6.5 Free body diagrams of discs 

                                                                                             

                                     

Let 
1z

ϕ  and 
2z

ϕ  are angular displacements of the disc 1 and 2, respectively.  For both angular 

displacements the counter clockwise direction is chosen as positive direction.  Let 
1p

I  and 
2p

I  are 

polar mass moment of inertia of the disc 1 and 2, respectively. From the free body diagram of discs as 

shown in Figure 6.5, we have 

 

  

( )
1 1 1 2 1 1zExternal torque                    

p z z t p z
I k Iϕ ϕ ϕ ϕ= ⇒ − − =∑ �� ��

  

and 

( )
2 2 1 2 2 2zExternal torque                    

p z z t p z
I k Iϕ ϕ ϕ ϕ= ⇒ − =∑ �� ��
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where kt is the torsional stiffness of the shaft, and let ( )
1 2z z

ϕ ϕ−   be the relative twist of the shaft ends. 

Above expressions give the following equations of motion 

 

1 1 2 2 2 12

0           and             0
p z t z t z p z t z t z

I k k I k kϕ ϕ ϕ ϕ ϕ ϕ+ − = + − =�� ��
  (6.6) 

   

For free vibrations, we have SHM, so the solution will take the form 

 

1 1

2

z nf zωϕ ϕ= −��   and   
2 1

2

z nf zωϕ ϕ= −��     (6.7) 

 

Substituting equation (6.7) into equation (6.6), it gives 

 

1 1 21

2 0
p z t z t z

I k kω ϕ ϕ ϕ− + − =  and  
2 2 12

2 0
p nf z t z t z

I k kω ϕ ϕ ϕ− + − =   (6.8) 

 

Noting equation (6.3), equation (6.8) can be assembled in a matrix form as 

 

 

[ ]{ } { }0zD Φ =           (6.9) 

 

with 

 

[ ] 1

2

2

2

t p nf t

t t p nf

k I k
D

k k I

ω

ω

 − −
=  

− −  
;  { } 1

2

z

z

z

Φ  
Φ =  

Φ  
 

 

The non-trial solution of equation (6.9) is obtained by taking determinant of the matrix [D] equal to 

zero, as 

   0D =  

 

which gives 

 

( )( )
1 2

2 2 2 0
t p n t p n t

k I k I kω ω− − − =  or ( )
1 21 2

4 2 0
p p nf p p t nf

I I I I kω ω− + =   (6.10) 

 

Roots of equation (6.10) are given as 

 

  
( )

1 2

1 2

1 2

0 and
p p t

nf nf

p p

I I k

I I
ω ω

+
= =     (6.11) 

 

Hence, the system has two torsional natural frequencies and one of them is zero. From equation (6.9) 

corresponding to first natural frequency for 
1nf

ω = 0, we get  
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z z
Φ = Φ

1 2
        (6.12) 

  

 

 

Figure 6.6 The first mode shape 

 

 

From equation (6.12), it can be concluded that, the first root of equation (6.10) represents the case 

when both discs simply rolls together in phase with each other as shown in Figure 6.6. The 

representation of the relative angular displacement of two discs in this form is called the mode shape. 

The mode shape shown in Fig. 6.6 is called the rigid body mode, which is of a little practical 

significance because no stresses develop in the shaft. This mode it generally occurs whenever the 

system has free-free boundary conditions (for example an aeroplane during flying).                                                                             

                                                 

 
 

Figure 6.7 (a) The second mode (b) equivalent system 1 (c) equivalent system 2 
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Now from first set of equation (6.9), for 
2nf nf

ω ω= , we get 

 

( )
1 2 1 2

2 0
t p nf z t z

k I kω− Φ − Φ =
  or 

1 2

1 1 2

1 2

0
p p

t p t z t z

p p

I I
k I k k

I I

 +
− Φ − Φ = 

    

 

which gives relative amplitudes of two discs as 

 

 

1 2

2 1

z p

z p

I

I

Φ
= −

Φ         (6.13)  

 

The second mode shape from equation (6.13) represents the case when both masses oscillate in anti-

phase with one another (i.e., the direction of rotation of one disc will also be opposite to the other). 

Both discs will reach their extreme angular positions simultaneously, and both will reach the static 

equilibrium (untwisted) position also simultaneously. It should be noted that both the discs have same 

frequency of oscillation (i.e., the time period) but different angular amplitude. Figure 6.7 shows this 

mode shape of the two-rotor system. From two similar triangles in Figure 6.7(a), we have 

 

 1 2 1

2

1

1 2 2

              
z z z

z

l

l l l

Φ Φ Φ
= ⇒ =

Φ
     (6.14) 

 

where l1 and l2 are node position from discs 1 and 2, respectively (Fig. 6.7a).  Since both the masses 

are always vibrating in the opposite direction, there must be a point on the shaft where torsional 

vibration is not taking place, i.e. where the angular displacement is zero. This point is called a node. 

The location of the node may be established by treating each end of the real system as a separate 

single-disc cantilever system as shown in Figure 6.7(a). The node is treated as the point, where the 

shaft is rigidly fixed. Hence, basically we will have two single-DOF overhung rotor systems (Fig. 

6.7b) instead of one two-DOF free-free rotor system (Fig. 6.7c). Since value of natural frequency is 

known (the frequency of oscillation of each of the single-disc overhung system must be same), hence 

we write 

 

  1 2

2

1 2

2 t t

nf

p p

k k

I I
ω = =        (6.15) 

 

where 
2nfω  is defined by equation (6.11), 

1t
k and 

2t
k are the torsional stiffness of two single-DOF 

overhung rotor systems, which can be obtained from equation (6.15), as 



 

 

279

 

 

 
1 2 1 2 2 2

2 2   and  t nf p t nf pk I k Iω ω= =  

 

Lengths l1 and l2 then can be obtained as 

  

 

1 1

1 2and
t t

GJ GJ
l l

k k
= =   with 1 2l l l+ =   (6.16) 

 

 

which will give the node position. It should be noted that the shear stress would be maximum at the 

node point being a fixed end of overhung rotor systems. 

 

Example 6.2 Determine natural frequencies and mode shapes for a rotor system as shown in Figure 

6.8. Neglect the mass of the shaft and assume that discs as lumped masses. The shaft is 1 m of length, 

0.015m of diameter, and 0.8×10
11

 N/m of modulus of rigidity. Discs have polar mass moment of 

inertia as 
1

0.01pI =  kg-m
2
 and 

2
0.015pI =  kg-m

2
.  

 

 

 

Figure 6.8 A two-disc rotor system 

 

Solution: The stiffness of the shaft can be obtained as 

 

 
11 40.8 10 (0.015) / 32

397.61 Nm/rad
1.0

tk
GJ

l

π× ×
= ==  

 

The natural frequency is given as 

 

 
( )

1 2

0.01 0.015 397.61

0.01 0.015
0 and

nf nf
ω ω

+ ×

×
= = = 257.43 rad/s 

 

 

The relative displacements would be 
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 1 2

2 1

0.015
1.5

0.01

z p

z p

I

I

Φ
= − = − = −

Φ
  

 

 

which means disc 1 would have 1.5 times angular displacement amplitude as compared to the disc 2, 

however, in opposite direction. The node position can be obtained as 

 

 2

1

1

2

0.015
1.5

0.01

p

p

Il

l I
= = = ;  and   1 2 1l l+ =  

 

 Hence, we get the node location as 1 0.6l = m (i.e., 0.6 m from disc 1 refer to Fig. 6.7(a)). It can be 

verified that equivalent two single-mass cantilever rotors will have the same natural frequency, as 

 

 
1

11 4

1

0.8 10 (0.015) / 32
662.68 Nm/rad

0.6
tk

GJ

l

π× ×
= ==  

and 

 

 
2

11 4

2

0.8 10 (0.015) / 32
994.03 Nm/rad

0.4
tk

GJ

l

π× ×
= ==  

 

so that 

 

 1

2

1

(1) 662.68
257.43

0.01

t

nf

p

k

I
ω = = = rad/s 

and  

 

 2

2

2

(2) 994.03
257.43

0.015

t

nf

p

k

I
ω = = =  rad/s     Answer 

 

 

6.3 A Two-Disc Rotor System with a Stepped Shaft 

Figure 6.9(a) shows a stepped shaft with two large discs at ends with Ip (subscript 1 and 2 represent 

left and right side disc, respectively) is the polar mass moment of inertia. It is assumed that the rotor 

has free-free boundary conditions and the polar mass moment of inertia of shaft is negligible as 

compared to two discs at either ends of the shaft. In such cases the actual shaft should be replaced by 

an unstepped equivalent shaft for the purpose of the analysis as shown in Fig. 6.9(b). The equivalent 

shaft diameter may be same as the smallest diameter of the real shaft (or any other diameter). The 

equivalent shaft must have the same torsional stiffness as the real shaft.  
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Figure 6.9 Two discs with (a) a stepped shaft  (b) an equivalent uniform shaft 

 

Since torsional stiffness corresponding to different shaft segments are connected in series, the 

equivalent torsional stiffness can be written as 

 

1 2 3

1 1 1 1

et t t t
k k k k

= + +
        (6.17) 

 

where kt is the torsional stiffness, subscripts: 1, 2, 3 represent the shaft segment number and the 

subscript e represents the equivalent. Nothing equation (6.1), equation (6.17) becomes 

 

31 2

1 2 3

e

e

l ll l

J J J J
= + +

 

 

where l is the length of the shaft segment and J is the polar moment inertia of the shaft cross-sectional 

area. Above equation can be written as 

 

1 2 3e e eel l l l= + +
        (6.18) 

with 

          1 2 31 2 2 3 31
/ ; / ; /

e e e e e e
l l J J l l J J l l J J= = =
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where 
1 2 3
, ,e e el l l are equivalent lengths of shaft segments having the equivalent shaft diameter d3, and le 

is the total equivalent length of the unstepped shaft as shown in Figure 6.9(b). Let us assume that the 

node position in the equivalent shaft system comes out in the second shaft segment from the previous 

section analysis. Noting equations (6.15) and (6.16), the node location in the equivalent shaft from 

Figure 6.9(b) can be obtained as 

 

1

2 1

2

e
e e

nf p

GJ
l a

Iω
+ =

   and  3

2 2

2

e
e e

nf p

GJ
l b

Iω
+ =

    (6.19)  

with 

( )
( ) ( ) ( )

1 2

2

1 2

      

1 1 2 2 3 3

1
and

ep p t

nf t
e

p p

I I k
k

I I l GJ l GJ l GJ
ω

+
=

= + +  

 

From equation (6.19), the node position (i.e., ae or be in Fig. 6.9(b)) can be obtained, the 

corresponding node location in the real shaft system can be obtained as explained below. From 

equation (6.18), we have 

 

4 4 4

2 3 2 2
2

2

;           ;             
32 32 32

e
e e e

J
l l J d d J d

J

π π π
= = = =    (6.20) 

 

Since equation (6.20) is for the shaft segment in which node is assumed to be present, we can write 

 

 

2 2

   and   e e
e e

J J
a a b b

J J
= =       (6.21) 

 

where a  and b  are node position in real system (Fig.6.9(a)). Equation (6.21) can be combined as 

   

e

e

aa

b b
=        (6.22)  

 

So once ae or be is obtained from equation (6.19), the location of the node in the actual shaft can be 

obtained from equation (6.22). The final location of the node on the shaft in the real system is given in 

the same proportion as in the shaft of equivalent system in which the node occurs. 

 

Example 6.3 Consider a stepped shaft with two discs as shown in Fig. 6.10. The following shaft 

dimensions are to be taken: l1 = 0.5m, l2 = 0.3m, l3 = 0.2m, d1 = 0.015m, d2 = 0.012m, d3 = 0.01m. 

Take the modulus of rigidity of the shaft as 0.8×10
11

 N/m. Discs have polar mass moment of inertia as 
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1pI = 0.015 kg-m
2
 and 

2
0.01pI =  kg-m

2
. Obtain natural frequencies, mode shapes, and the location of 

the node. 

 

 

Fig. 6.10 A stepped shaft with two discs 

 

Solution: Let us represent shaft segments towards the left, middle and right sides as 1, 2 and 3, 

respectively. For the present problem the shaft has following data 

 

4 4
9 41

1

0.015
4.97 10 m

32 32

d
J

π π −× ×
= = ×= ; 9 4

2 2.036 10 mJ
−×= ;         9 4

3 0.982 10 mJ
−×= ; 

 

1

11 9

1

1

0.8 10 4.97 10
795.20 Nm/rad

0.5
tk

GJ

l

−× × ×
= == ;     

2
542.93 Nm/radtk = ;     

3
392.80 Nm/radtk =  

 

For the stepped shaft the first step would be to obtain the equivalent length with respect to a reference 

shaft 3 that has diameter of 0.01 m, as 

 

31 2

1 2 3

0.5 0.3 0.2
0.982 0.982 0.982 0.0988 0.1447 0.2 0.4435m

4.97 2.036 0.982
e e e e

ll l
l J J J

J J J
= = + + == + + + +

 

Hence, The equivalent stiffness can be calculated as 

 

11 90.8 10 0.982 10
177.14 Nm/rad

0.4435e

e

e

tk
GJ

l

−× × ×
= ==  

 

Hence, 
1

0.0987el = m and 
2

0.1447el = m. The natural frequency of the rotor system can be calculated 

as 

 
( ) ( )1 2

2

1 2

=

0.015 0.01 177.14

0.015 0.01

ep p t

nf

p p

I I k

I I
ω

+ + ×

×=
=171.82 rad/sec 
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Relative displacements of the rotor system would be 

 

 1 2

2 1

0.01
0.667

0.015

z p

z p

I

I

Φ
= − = −

Φ
= −   

 

 

which means disc 1 would have 0.0667 times angular displacement amplitude as compared to the disc 

2, however, in opposite direction. It is interesting that relative displacement remains same irrespective 

of shaft characteristics (i.e., stepped, uniform, etc.) and its stiffness. However, the node position 

depends upon the shaft characteristics and its stiffness, and can be obtained as for equivalent shaft as 

 

 1 2

2 1

0.01
0.667

0.015

ne p

ne p

l I

l I
= == ;  and   

1 2
0.4435ne ne el l l+ = = m 

 

 Hence, we get the node location as 
2

0.266nel = m (i.e., 0.266 m from disc 2 in the equivalent system 

see Fig. 6.11). Hence, we have 
1

0.1775nel = m. This means the node will be in second (middle) shaft 

segment. The location in actual rotor system would be 

 

1 1

2 3

0.1775 0.0988 0.0787
1.1924

0.266 0.2 0.066

ne ee

e ne e

l laa

b b l l

− −
= = = = =

− −
; and  0.1447a b+ = m 

 

Hence, we have the position of the node in actual system as: b = 0.137m and a = 0.163m (see Fig. 

6.9). 

 

 

Fig. 6.11 (a) Equivalent system and (b) its mode shape and node position 
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6.4 A Three-Disc Rotor System 

Now the previous section analysis would be extended for the three-disc rotor system having free-free 

boundary conditions. Two different approaches are applied for the free vibration analysis to get the 

torsional natural frequnecies and corresponding mode shapes. 

 

6.4.1 A direct approach 

A three-disc rotor system is shown in Fig. 6.12. It is assumed that there is no friction at supports and 

boundary conditions are that of the free-free case. The method using the Newton’s second law, with 

the help of free body diagram (Fig. 6.13), may be applied to analyse the three-mass (or more) rotor 

system. This method is already demonstrated for the two-mass rotor system in the previous section. 

 

 

 

Figure 6.12 A three-disc torsional system 

 

 

 
 

Figure 6.13 Free body diagrams of discs 

 

 

From free body diagrams of individual discs three equations of motion for free vibrations can be 

obtained, and in the matrix form it has the following form 

 

( )
1 1

1 1 1

2 2 1 1 2 2 2

3 3 32 2

00 0 0

0 0 0

00 0 0

t tp z z

p z t t t t z

p z zt t

k kI

I k k k k

I k k

ϕ ϕ

ϕ ϕ

ϕ ϕ

−        
           

+ − + − =        
        

−              

��

��

��

   (6.23) 
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For free vibrations, which has the SHM, it takes the form 

 

( )
1 1

1 1

2 1 1 2 2 2

3 32 2

2

00 0 0

0 0 0

00 0 0

t tp z

nf p t t t t z

p zt t

k kI

I k k k k

I k k

ϕ

ω ϕ

ϕ

 −              
 − + − + − =      
        −           

   (6.24) 

 

where nfω  is the torsional natural frequency of the rotor system. For finding natural frequencies two 

methods can be adopted (i) by obtaining characteristic (or frequency) equations, and (ii) by 

formulating an eigen value problem. 

  

Characteristic (or frequency) equations: 

On equating the determinant to zero of the matrix in equation (6.24), we get the characteristic 

equation of the following form 

 

( )
1 2 1 2 32 31 2

1 2

1 2 2 3 1 2 3

2 4 2 0
t t p p pp pp p

nf nf t t nf

p p p p p p p

k k I I II II I
k k

I I I I I I I
ω ω ω

 + + ++ 
− + + =   

   

   

   

which gives natural frequencies as 

  

 
1

0nfω = ;           

and 

( )
1 2 1 2 32 3 2 31 2 1 2

2,3 1 2 1 2

1 2 2 3 1 2 2 3 1 2 3

2

2 1 1

2 4

t t p p pp p p pp p p p

nf t t t t

p p p p p p p p p p p

k k I I II I I II I I I
k k k k

I I I I I I I I I I I
ω

 + +   + ++ +
 = + ± + −   

          

(6.25) 

  

Mode shapes can be obtained by substituting natural frequencies obtained, one by one, into the 

equations (6.24) and obtaining relative amplitudes with the help of any two equations (out of three 

equations), as  

 

( )
1 1 1 1 2

2 0
t nf p z t z

k I kω ϕ ϕ− − =   
( )

1 12

1 1

2

t nf pz

z t

k I

k

ωϕ

ϕ

−
⇒ =    (6.26) 

and 

 ( ){ }
1 1 1 2 2 2 2 3

2 0t z t t nf p z t zk k k I kϕ ω ϕ ϕ− + + − − =      (6.27) 
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On substituting equation (6.26) in equation (6.27), we get 

 

 ( ){ } ( ){ }
1 1 1 2 2 1 1 1 1 2 3

2 2 / 0t z t t nf p t nf p z t t zk k k I k I k kϕ ω ω ϕ ϕ− + + − − − =    (6.28) 

 

which can be simplified to 

 

 
( ) ( ){ } ( )

1 2 1 2 1 1 2 1 23

1 1 2

4 2

p p nf p p t p t nf t tz

z t t

I I I I k I k k k

k k

ω ωϕ

ϕ

− + + +
=     (6.29) 

 

It should be noted that from equations (6.26) and (6.29) for 
1

0nfω = , we have 
2 1 3 1

/ / 1z z z zϕ ϕ ϕ ϕ= =  

(or 
1 2 3z z zϕ ϕ ϕ= = ) that belongs to the rigid body mode. Similarly, for the other two natural 

frequencies relative amplitudes of disc can be obtained by substituting these natural frequencies one 

by one in equations (6.26) and (6.29). 

 

An eigen value problem: 

A more general method of obtaining of natural frequencies and mode shapes is to formulate an eigen 

value problem and that can relatively easily be solved by computer routines. Eigen values of the eigen 

value problem of equation (6.24) gives natural frequencies, and eigen vectors represent mode shapes. 

Equation (6.24) can be written as 

 

[ ] [ ]( ){ } { }2 0
nf

M Kω− + Φ =         (6.30) 

with 

1

2

3

0 0

[ ] 0 0

0 0

p

p

p

I

M I

I

 
 

=  
 
  

;  ( )
1 1

1 1 2 2

2 2

0

[ ]

0

t t

t t t t

t t

k k

K k k k k

k k

− 
 

= − + − 
 

−  

;  { }
1

2

3

z

z

z

ϕ

ϕ

ϕ

 
  

Φ =  
 
  

 

  

On multiplying both sides by the inverse of mass matrix in equation (6.30), we get a standard eigen 

value problem of the following form 

 

[ ] [ ]( ){ } { }2 0
nf

I Dω− + Φ =        (6.31) 

with 

  1[ ] [ ] [ ]D M K
−=  
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The eigen value and eigen vector of the matrix [D] can be obtained conveniently by hand calculations 

for the matrix size up to 3×3, however, for the larger size matrix from multi-DOF rotor systems any 

standard software (e.g., MATLAB) could be used. The square root of eigen values will give the 

natural frequencies and corresponding eigen vectors as mode shapes (i.e., relative amplitudes). These 

methods would now be illustrated through an example. 

 

Example 6.4 Obtain torsional natural frequencies of a turbine-coupling-generator rotor system as 

shown in Figure 6.14. The rotor is assumed to be supported on frictionless bearings. The polar mass 

moment of inertia of the turbine, coupling and generator are 
p

I
1
= 25 kg-m

2
, 

p
I

2
= 5 kg-m

2
 and 

p
I

3
= 

50 kg-m
2
, respectively; and these are assumed to be thin discs. Take the modulus of rigidity of the 

shaft as G = 0.8 × 10
11

 N/m
2
. Assume the shaft diameter uniform throughout and is equal to 0.2 m and 

the length of shafts between the bearing-turbine-coupling-generator-bearing are 1 m each so that the 

total span is 4 m. Consider the shaft as massless. 

 

 

Figure 6.14 A turbine-generator set 

 

Solution: It should be noted that for free-free end conditions both ends of the shaft segments (i.e., 

between bearing and turbine, and generator and bearing) will not have torsional displacements. Hence, 

only shaft segments between the turbine and the coupling (let us take it as shaft 1), and between the 

coupling and the generator (shaft 2) will have torsional stiffness effect. Hence, we have the following 

data 

 

 
1 2

1l l l= = = m,   4 4 4

1 2
0.2 1.5708 10

32 32
J J J d

π π −= = = = = × m
4
, 

and 

 
( ) ( )

1 2

11 4

7
0.8 10 1.5708 10

1.257 10
1

t t

GJ
k k

l

−× ×
= = = = × N-rad/m

2
. 

 

Natural frequencies of three-disc rotor system are given as (equation (6.32)) 

 

1
0nfω =  

and 
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( )
1 2 1 2 32 3 2 31 2 1 2

2,3 1 2 1 2

1 2 2 3 1 2 2 3 1 2 3

2

2 1 1

2 4

t t p p pp p p pp p p p

nf t t t t

p p p p p p p p p p p

k k I I II I I II I I I
k k k k

I I I I I I I I I I I
ω

 + +   + ++ +
 = + ± + −   

          

 

On substituting values of various parameters of the present problem in above equation, it gives 

 

2
0nfω = rad/s;  

2
611.56nfω = rad/s;  

3
2325.55nfω = rad/s; 

 

The mode shape (relative angular displacements of various discs) can be obtained as summarised in 

Table 6.1 (refer equations (6.33) and (6.34)). Fig. 6.15 shows mode shapes with node locations, in 

drawing T, C and G represent location of the turbine, coupling and generator, respectively. 

 

Table 6.1 Relative angular displacements of various discs 

Relative displacement 
2

0nfω = rad/s 
2

611.56nfω = rad/s 
3

2325.55nfω = rad/s 

2 1 1

1 1

2

z t nf p

z t

k I

k

ϕ ω

ϕ

−
=  

 

1 

 

0.2563 

 

-9.7600 

( ) ( ){ } ( )
1 2 1 2 1 1 2 1 23

1 1 2

4 2

p p nf p p t p t nf t tz

z t t

I I I I k I k k k

k k

ω ωϕ

ϕ

− + + +
=  

 

1 

 

-0.5256 

 

0.4754 

 

 

 

Fig. 6.15 Three mode shapes corresponding to three torsional natural frequencies 

 

Node locations in the second and third modes can be obtained as follows: 

 

Second mode: Only single node (Fig. 6.15b) is present between the coupling and the generator. Hence, 

from the node position to the generator a single-DOF rotor system can be assumed with the length of 

shaft as  
(1)

gnl  (superscript corresponding to single-node mode and subscript gn represent from 

generator to node) and polar mass moment of inertia as 
3p

I , this gives 
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2

3

2 gnt

nf

p

k

I
ω = ,  

( ) ( )
3 2

11 4

(1)

2 2

0.8 10 1.5708 10

50 611.56
gn

p nf

GJ
l

I ω

−× ×
⇒ = = =

×
0.6723 m 

 

Third mode: Two nodes are present (Fig. 6.15c), hence the node locations are obtained as 

 

( )( )
1 3

11 4

(2)

2 2

0.8 10 1.5708 10

25 2325.55
tn

p nf

GJ
l

I ω

−× ×
= = =

×
0.0930 m 

and 

( )( )
3 3

11 4

(2)

2 2

0.8 10 1.5708 10

50 2325.55
gn

p nf

GJ
l

I ω

−× ×
= = =

×
0.0465 m 

 

where the superscript in the length represent two-node mode and subscript tn represents from turbine 

to nearest node. 

 

Now using the eigen value problem procedure, the above problem will be solved again. This will 

demonstrate how powerful this procedure is even for multi-DOF systems. The mass and stiffness 

matrices can be given as 

 

1

2

3

0 0 25 0 0

[ ] 0 0 0 5 0

0 0 500 0

p

p

p

I

M I

I

   
   = =   
      

 kg-m
2
,  

and 

( )
1 1

1 1 2 2

2 2

7

0 1.257 1.257 0

[ ] 1.257 2.514 1.257 10

0 1.257 1.2570

t t

t t t t

t t

k k

K k k k k

k k

−  − 
   = − + − = − − ×   
   −−    

 N/ m
2
. 

 

Hence, the eigen value problem stiffness matrix becomes 

 

 

1

1

7 6

[ ] [ ] [ ]

25 0 0 1.257 1.257 0 0.5028 0.5028 0

0 5 0 1.257 2.514 1.257 10 2.5140 5.0280 2.5140 10

0 0 50 0 1.257 1.257 0 0.2514 0.2514

D M K
−

−

=

− −     
     = − − × = − − ×     
     − −     

 

 

Eigen values and eigen vectors are given as (by the MATLAB of the above matrix) 
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{ }
.

.λ

 
 

= × 
 
 

6

5 4082

0 3740 10

0

, and  [ ]
. . .

. . .

. . .

X

− − 
 = − 
 − 

0 1018 0 8632 0 5774

0 9936 0 2212 0 5774

0 0484 0 4537 0 5774

 

 

Where the columns of matrix [X] represent the mode shapes. Hence, natural frequencies are obtained 

as 

 

 { } { }
.

.

nf

nf nf

nf

ω

ω ω λ

ω

   
    

= = =   
   

   

3

2

1

2325 55

611 56

0

 rad/s 

 

The mode shape can be normalised as (in each column elements is divided by the corresponding first 

row element, e.g. 0.9936/(-0.018) = -9.76), -0.0484/(-0.018) = 0.48, -0.2212/(-0.8632) = 0.26, etc.) 

 

 [ ] . .

. .

T T T

C C C

G G G
nf nf nf

x x x

x x x

x x x

X

ω ω ω

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

                      = = −               −              13 2

1 1 1

9 76 0 26 1

0 48 0 53 1

 

 

These mode shapes are exactly same as in Fig. 6.15. 

 

6.4.2 An indirect approach 

From the previous method, it is clear that for a particular natural frequency a unique mode shape 

exists. In the present method, the information regarding the possible mode shapes would be utilised to 

get the corresponding natural frequencies. In case the shaft has steps then, the first step would be to 

reduce the actual shaft to an equivalent shaft of uniform diameter as shown in Figure 6.16(a). 

 

For three-disc rotor system, three natural frequencies are expected and correspondingly three natural 

(or normal) modes of vibrations. Since the free-free boundary conditions one of the modes would be 

the rigid-body mode, in which all the discs have same motion. Apart from the rigid body mode, there 

will be two possible natural modes of vibration, in which the rotors all reach their extreme positions at 

same instant and all pass through their equilibrium position at the same instant. There will be a 

different natural frequency for each of these normal modes. 

 

In one mode there is a single node (a point where there will not be any angular displacement) between 

discs 1 and 2 or between discs 2 and 3 (see Figure 6.16(b)). It depends upon the relative polar mass 
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moment of inertia of discs, and the stiffness of shaft segments. However, the oscillations of the 

outside discs 1 and 3 are opposite in phase. The disc 2 will have same or opposite phase with disc 1 

(or disc 3) and it depends upon the node position. It is assumed in Figure 6.16(b) that the node lies 

between discs 2 and 3.  

 

While in the other mode there are two nodes, one between discs 1 and 2 and the other between discs 2 

and 3 (as shown in Fig. 6.16(c)). Oscillations of outside discs (1 and 3) are now in phase, while the 

inside disc will have opposite phase with respect to both discs 1 & 3. 

 

 

 

Fig. 6.16 A three-disc rotor system with two possible flexible modes 

 

Let 
1 2
,P PI I and 

3PI  be the polar mass moment of inertia of discs 1, 2 and 3, respectively. For two node 

vibration, let (2)

1
l  be the distance of one node from disc 1, and (2)

3
l  the distance of the other node from 

disc 3 (see Fig. 6.16b). Then the natural frequency of the single-DOF cantilever system with disc 1 is 

given as 

 

(a) Three-rotor system 

(b) One-node vibration 

(c) Two-node vibration 
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1

1

1 1

(2)

(2)

(2)

1

1t

nf

p p

k GJ

I Il
ω = =                                                                         (6.35) 

 

Similarly, for the single-DOF cantilever system with disc 3 (Figure 6.16c), we have 

 

3

3

(2)

(2)

3

1
nf

p

GJ

Il
ω =                                                                                        (6.36) 

 

For the single-DOF fixed-fixed system with disc 2 (Fig. 6.16c), we have 

 

2

2

2

(2)

(2) t

nf

p

k

I
ω =                                                                                             (6.37) 

where  

 
( )( )2

(2) (2)

(2) 1 2 1 3

(2) (2) (2) (2)
1 1 2 3 1 1 2 3

t

l l l lGJ GJ
k GJ

l l l l l l l l

+ − −
= + =

− − − −
                                                               (6.38) 

 

where 
bt

k is the torsional stiffness of a rotor system with fixed-fixed end conditions. On substituting 

equation (6.38) into equation (6.37), we get 

 

( )
( )( )2

2

(2) (2)

1 2 1 3(2)

(2) (2)

1 1 2 3

nf

p

l l l lGJ

I l l l l
ω

+ − −
=

− −
                                                                              (6.39) 

 

Since for a particular mode all frequencies 
1 2

(2) (2)
,  nf nfω ω  and 

3

(2)

nfω  must be equal (superscript represents 

the two-node mode). This leads to two independent equations to be solved for (2)

1
l  and (2)

3
l . Once we 

know these node positions we could be able to get the natural frequency of the two-node (or one-

node) mode. On equating equations (6.35) and (6.36), we get 

 

1 3

(2) (2)

1 3p pl I l I=                                                                                                   (6.40) 

 

Similarly on equating equations (6.35) and (6.39), we get 

 

( )
( )( )

21

(2) (2)

1 2 1 3

(2) (2) (2)
1 1 1 2 3

1 1

pp

l l l l

Il I l l l l

+ − −
=

− −
                                                                 (6.41) 
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Equation (6.40) can be used to eliminate (2)

1
l  from equation (6.41), and it get simplified to 

 

 ( ) ( )2 3 3 3 2

3 2 3 2

1 1 1

2
2 2(2) (2)

3 1 1 2 3 1 2
0

p p p p p

p p p p

p p p

I I I I I l
I l I l I l l l I l l

I I I

   
+ + − + + + + =   

     
                              (6.42) 

 

The two roots of (2)

3
l  from this quadratic give positions of nodes for the one-node and two-node 

vibration frequencies. The actual frequencies are obtained by substituting the two values of (2)

3
l  in 

equation (6.36). From equation (6.40) two values of (2)

1
l  could be obtained corresponding to two 

values of (2)

3
l . Note that only one of these two values of (2)

1
l  may give the position of a real node, 

while the other gives the point at which the elastic line between discs 1 and 2, when produced, cuts 

the axis of the shaft (as shown in Fig 6.16(b) by the dotted line). The above method can be extended 

for other boundary conditions (fixed-free, fixed-fixed, etc.) and for more number of discs, however, 

the complexity of handling higher degree of polynomials will be tremendous. The present method is 

now illustrated through an example. 

 

Example 6.5 Solve the Example 6.4 by the indirect method described in previous section. 

 

Solution: From equation (6.42), we have 

 

 ( ) ( )2 3 3 3 2

3 2 3 2

1 1 1

2
2 2(2) (2)

3 1 1 2 3 1 2
0

p p p p p

p p p p

p p p

I I I I I l
I l I l I l l l I l l

I I I

   
+ + − + + + + =   

     
 

 

On substituting values of physical parameters (Fig. 6.17a), we get 

 

( )
2

2
(2) (2)

3 3

5 50 50 5 50 1
50 5 1 50 2 5 1 1 0

25 25 25
l l

 × × × 
+ + − + × + × + × × =   

  
 

or 

 ( )
2

(2) (2)

3 3160 115 5 0l l− + =  

 

which gives two values corresponding to two modes (i.e., the one and two -node modes, Figs. 6.17 b 

and c), as 

 

 (2)

3
l =0.6723 m and 0.04648 m. 

 

Two possible values of (2)

1
l  can be obtained from equation (6.40), as 
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3 1

(2) (2)

1 3 /p pl l I I=  

 

which gives two values corresponding to two modes (i.e., the one and two -node modes),as 

 

 (2)

1
l = 1.3446 m and 0.09297 m. 

 

Hence, we have two solutions 

 

 ( (2)

1
l , (2)

3
l ) = (0.09297, 0.04648) m and  ( (2)

1
l , (2)

3
l ) = (1.3446, 0.6723) 

 

It is clear that two nodes are possible at ( (2)

1
l , (2)

3
l ) = (0.09297, 0.04648) m (Fig. 6.17c). While the 

single node is possible at ( (1)

1
l , (1)

3
l ) = (1.3446, 0.6723) m out of which both are feasible (Fig. 6.17b), 

since they represent the same point. Hence, corresponding (1)

1
l = 0.6723. It should be noted that mode 

shapes in Fig. 6.17(band c) are not to the scale; however, qualitative comparison can be made with the 

previous example. Quantitatively also it can be observed that they are exactly same. 

 

 

 

Fig. 6.17 (a) A three-mass rotor system (b) single node mode shape (c) two node mode shape 
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Now, the natural frequency corresponding to two-node mode can be obtained as 

 

 
( ) ( )

3

3

11 4

(2)

(2)

3

0.8 10 1.5708 101 1
2325.34

0.04648 50
nf

p

GJ

Il
ω

−× × ×
= = = rad/s 

with 

 4 4 40.2 1.5708 10
32 32

J d
π π −= = = × m

4
. 

 

The natural frequency corresponding to single-node mode can be obtained as 

 

 
( ) ( )

2

3

11 4

(1)

(1)

3

0.8 10 1.5708 101 1
611.42

0.6723 50
nf

p

GJ

Il
ω

−× × ×
= = = rad/s 

 

It should be noted that these natural frequencies and the node positions are exact same as obtained in 

example 6.4. 

 

6.5 Transfer Matrix Methods 

 

When there are more than three discs in the rotor system or when the mass of the shaft itself may be 

significant (i.e., continuous systems, which has infinite-DOFs) so that more number of lumped masses 

to be considered, then the analysis described in previous sections (i.e., the single, two or three-discs 

rotor systems) become complicated and inadequate to model such systems. Such rotor systems are 

called the multi-DOF system. Alternative methods are the transfer matrix method (TMM), continuous 

systems approach, finite element method (FEM), etc. In present chapter, we will consider TMM in 

detail and in the next chapter we will consider the continuous system approach and the FEM. 

 

A typical multi-disc rotor system, supported on frictionless supports, is shown in Figure 6.18. The 

longitudinal axis is taken as z-axis, about which discs have angular displacements, ϕz. For the present 

analysis discs are considered as rigid and located at a point, and the shaft is treated as flexible and 

massless. The number of discs is n, the station number is designated from 0 to (n+1), and hence the 

system has total (n+2) stations as shown in Fig. 6.18. The free diagram of a shaft and a disc are shown 

in Figure 6.19. At particular station in the system, we have two state variables: the angular twist, ϕz(t), 

and the torque, T(t). Now in subsequent sections we will develop relationship of these state variables 

between two neighbouring stations in terms of physical properties of the disc and the shaft, and which 

can be used to obtain governing equations of motion of the whole rotor system. 
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Figure 6.18 A multi-disc rotor system 

 

 

 
 

Fig. 6.19(a) A free body diagram of shaft section 2  (b) A free body diagram of rotor section 2 

 

6.5.1 A point matrix: In this subsection we will develop a relationship between state variables at 

either end (i.e., the right and left sides) of a disc. 

 

 

The equation of motion for the disc 2 is given by (see Figure 6.19(b)) 

 

2 22 2 p zR L
T T I ϕ− = ��          (6.43) 

 

where Ip is the polar mass moment of inertia,  back subscripts: R and L represent the right and the left 

of a disc, respectively. For free vibrations, the angular oscillation of the disc is given by 

 

2 2
sin

z z nf
tϕ ω= Φ  so that  

2 2 2

2 2sinz nf z nf nf ztϕ ω ω ω ϕ= − Φ = −��  (6.44) 

  

where 
z

Φ  is the amplitude of angular displacement, and 
nf

ω  is the torsional natural frequency. On 

substituting equation (6.44) into equation (6.43), we get  

 

2 2

2

2 2 nf p zR LT T Iω ϕ− = −       or  ( )
2 2

2

2 2nf p L zR L
T I Tω ϕ= − +     (6.45) 

 

Since angular displacements on the either side of the rotor are equal, hence 
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2 2z zR L

ϕ ϕ=         (6.46) 

 

Equations (6.45) and (6.46) can be combined as 

 

{ } [ ] { }
2 22R L

S P S=         (6.47)  

 

with 

[ ]
2

22

1 0

1
nf p

P
Iω

 
=  − 

 ;  { } z
S

T

ϕ 
=  
 

 

  

where {S}2 is the state vector corresponding to station 2, and [P]2 is the point matrix for disc 2. Hence 

in general the point matrix relates a state vector, which is left to a disc, to a state vector right to the 

disc. When an external torque, ( )
E

T t , is applied to a disc (e.g., the disc as a gear element or a pulley 

driven by a belt) in the direction of the chosen positive angular displacement direction, then equation 

(6.47) will be modified as  

 

 { } [ ] { } { }
22 22 ER L

S P S T= +        (6.48) 

with 

  { }
2

2

0
E

E

T
T

  
=  

−  
 

 

It will be more convenient to write equation (6.48) in the following form 

 

 { } { }* * *

22 2R L
S P S 

 =        (6.49) 

with 

 
2

* 2

2

1 0 0

1

0 0 1

nf p EP I Tω

 
 

  − −  
 
 

= ,  { }*

1

z

S T

ϕ 
 

=  
 
 

 

 

where *
P    and *

S    are called the modified point matrix and the modified state vector, 

respectively. It should be noted the third equation of expression (6.49) is an identity equation, and it 

helps in including the external torque in the modified point matrix. 
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6.5.2 A field matrix: In this subsection we will develop a relationship between state variables at two 

ends of a shaft segment. For shaft element 2 as shown in Figure 6.19(a), the angle of twist is related to 

its torsional stiffness, kt, and to the torque, T(t), which is transmitted through it, as 

 

2 1

2

1R
L z R z

t

T

k
ϕ ϕ− =   or  

2 1

2

1R
L z R z

t

T

k
ϕ ϕ +=    (6.50) 

 

Since the torque is same at either end of the shaft, hence 

 

 2 1L RT T=          (6.51) 

 

On combining equations (6.50) and (6.51) in the matrix form, we get 

 

{ } [ ] { }
2 2 1L R

S F S=         (6.52) 

 

with 

[ ] 2

2

1 1

0 1

tk
F

 
=  
 

;  { } z
S

T

ϕ 
=  
 

 

 

where [F]2  is the field matrix for the shaft element 2. Hence, in general, the field matrix relates a state 

vector which is one end of a shaft segment to the other end of the shaft segment. It should be noted 

that equation (6.52) is also valid for a torsional spring (e.g., a flexible coupling between two shaft 

segments), which has kt as the torsional stiffness, however, such spring have negligible axial length as 

compared to the shaft length. Ideally such torsional springs can be considered as a point spring 

(similar to a point mass). A flexible coupling between a motor and a shaft or between a turbine and a 

generator could be modelled by such torsional springs.  

 

Equation (6.52) can be modify to take into account an external toque in the rotor system (it assumed 

here that the external torque applied at disc locations only), as 

 

 { } { }* * *

22 1L R
S F S 

 =         (6.53) 

with 

 

2

*

2

1 1/ 0

0 1 0

0 0 1

tk

F

 
 

    
 
 

= ;  { }*

1

z

S T

ϕ 
 

=  
 
 

 

 

where *
F    is the modified field matrix. 
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On substituting equation (6.52) into equation (6.47), we get 

 

  { } [ ] { }
12 2 RR

S U S=  

with 

 [ ] [ ] [ ]
2

2

2

2

2

22 22

1 1/

1

t

nf p

nf p

t

k

U P F I
I

k

ω
ω

 
 

= =  
− − 
 

 

 

where [U]2  is the transfer matrix, which relates the state vector at right of station 2  to the state vector 

at right of station 1, when the external toque is absent. On the same lines, we can write 

 

  

 

 

 

 

 

 

(6.54) 

 

 

 

 

where {S}0 is the state vector at  0
th
 station (i.e., for the present case leftmost station of the rotor 

system), { }
1nR

S
+

 is the state vector at  (n+1)
th
 station (i.e., for the present case rightmost station of 

the rotor system), and [T] is the overall system transfer matrix. Hence, it relates the state vector at far 

left to the state vector at far right. When the external toque, TE, is also present then simply the 

modified point and field matrices should be considered, as 

 

 { } { }* * *

122 RR
S U S =    

with 

 

( )
2

2

2 2 2 2

* * * 2 2 2

2 22

1 1/ 01 1/ 01 0 0

1 0 1 0 / 1

0 0 10 0 1 0 0 1

tt

nf p E nf p nf p t E

kk

U P F I T I I k Tω ω ω

   
   

     = = − − = − − + −        
   

      

 

 

where [U]2  is the modified transfer matrix. It should be noted that the size of the overall system 

transfer matrix remains same as that of the field or the point matrix, i.e. (2×2) for free vibrations; and 

{ } [ ] { }

{ } [ ] { } [ ] [ ] { }

{ } [ ] { } [ ] [ ] [ ] { }

{ } [ ] { } [ ] [ ] [ ] { }

{ } [ ] { } [ ] [ ] [ ] { } [ ]{ }
1 1

1 1 1 0

1 01

2 1 2 1 02

3 2 3 2 1 03

1 0

1 0

n n n n n

n n n n n

R

R R

R R

R R

R R

S U S

S U S U U S

S U S U U U S

S U S U U U S

S U S U U U S T S

=
− −

=
+ + +

=

= =

= =

=

= =

�

�

�



 

 

301

 

when the external torque is also considered then the size becomes (3×3). The overall transformation 

for, free vibrations, can be written as   

 

  
( ) ( )

( ) ( )
11 12

1 021 22

nf nfz z

n nf nfR

t t

T Tt t

ω ωϕ ϕ

ω ω+

    
 =   
     

    (6.55) 

 

The overall transfer matrix elements are a function of the natural frequency, 
nf

ω , of the system (or 

the excitation frequency, ω, for the case when the external toque is present). Now different boundary 

conditions will be considered to illustrate the application of boundary conditions in the overall 

transfer matrix equation for obtaining natural frequencies and mode shapes of the system. In all cases 

number of discs is kept equal to n and depending upon the boundary conditions and location of discs 

the station numbers may change. 

 

(i) Free-free boundary conditions: For free-free boundary conditions (Fig. 6.18), at each ends of the 

rotor system the torque transmitted through the shaft is zero, hence 

 

  1 0 0
R n
T T+ = =         (6.56) 

 

On using equation (6.56) into equation (6.55), the second set of equation gives  

 

  ( )21 0nf
oR z

t ω ϕ =        (6.57) 

 

Since 
0

0
R z
ϕ ≠  for a general case, hence from equation (6.57) we must have 

 

  ( )21 0
nf

t ω =         (6.58) 

 

which is satisfied for ;   1, 2, ,
inf

i Nω = � , where N is the number of degrees of freedom of the 

system (for the present case it will be equal to number of disc, n,  in the system) and these are system 

natural frequencies. Equation (6.58) is called the frequency equation and it has a form of a polynomial 

in terms of the natural frequency, 
nf

ω . For higher degree polynomials these roots, 
inf

ω ,  may be 

found by any of root-searching techniques (e.g., Incremental method, Bisection method, Newton-

Raphson method, etc.; refer to Press et al., 1998). Briefly, the root searching method is described here 

for the sake of completeness. 

 

Let us define 

 

 ( ) ( )21nf nf
f tω ω=  
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where f( ) is a function of 
nf

ω . If 
nf

ω  is the initially guessed of the natural frequency, which is not 

actual solution. Then, let the next guess value is ( )nf nf
ω ω+ ∆  by which solution is expected to 

improve. Hence, by using the Taylar series expansion, we have 

 

( ) ( ) ( )
2

2

2

1

2
nf nf nf nf nf

nf nf

f f
f fω ω ω ω ω

ω ω

∂ ∂
+ ∆ = + ∆ + ∆ +

∂ ∂
�  

 

where 
nf

ω∆  is the increment in initial guessed value of 
nf

ω . On neglecting higher order terms, it 

gives 

 

 
( ) ( )

( ) /

nf nf nf

nf

nf nf

f f

f

ω ω ω
ω

ω ω

+ ∆ −
∆ =

∂ ∂
 

 

A flow chart of the overall solution algorithm is shown in Fig. 6.20. In the flow chart ε  is a small 

parameter, to be chosen depending upon the function value to be minimised, and the accuracy up to 

which the solution is desired. It should be noted that using such a numerical analysis for finding the 

natural frequencies, there is no need to multiply various point and field matrices in the variable form 

to get the overall transfer matrix, instead it has to be done in the numerical form and that is much 

easier to handle. 

 

 

 

Fig. 6.20 A flow chart of an algorithm for finding roots of a function 
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Relative angular twists can be determined for each value of 
inf

ω . From the first set of equation (6.55), 

we have 

 

 ( )
1 011n iR z nf R z

tϕ ω ϕ
+

=        (6.59) 

 

Since mode shape is nothing but relative angular displacement between various discs. On taking 

0
1

zR
ϕ =  as a reference value for obtaining the mode shape, we get 

 

 ( )
1 11n iz nfR

tϕ ω
+

=        (6.60) 

 

Equation (6.60) gives 
1nR z

ϕ
+

 for a particular value of the natural frequency 
inf

ω , by using equation  

(6.54) relative displacements of all other stations can be obtained. The mode shape can be plotted with 

the station number as the abscissa and the angular displacement as the ordinate. The similar process 

can be repeated to obtain mode shapes corresponding to other values of natural frequencies. In 

general, for each natural frequency there will be a corresponding distinctive mode shape. 

 

(ii) Fixed-free boundary conditions: For fixed-free boundary conditions (Fig. 6.21), at fixed end (let at 

0
th
 station) the angular displacement is zero and at the free end (i.e., at n

th
 station) the torque is zero, 

hence 

 

  
0

0
R z
ϕ =  and  0

R n
T =     (6.61) 

 

 

 
 

Fig. 6.21 A multi-DOF rotor system with fixed-free boundary conditions 

 

On using equation (6.61) into equation (6.55), the second set of equation gives  

 

  22 0 0
nf R

t Tω 
 
 

=        (6.62) 

 

Since 0 0
R
T ≠  for a general case, hence from equation (6.62) we have the frequency equation as 

 

  ( )22
0

nf
t ω =         (6.63) 
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It should be noted that for the case when the free end is at 0
th
 station (i.e., at the extreme left) and the 

fixed end is at n
th
 station (i.e., at the extreme right), the frequency equation would be (it is assumed 

that the free-end and intermediate stations have a disc) 

 

  ( )11
0

nf
t ω =         (6.64) 

 

(iii) Fixed-fixed boundary conditions: For fixed-fixed boundary conditions (Fig. 6.22), at both fixed 

ends (at 0
th
  and (n+1)

th
 stations) the angular displacements are zero, hence 

 

  
0

0
z

ϕ =  and  
1

0
nz

ϕ
+

=     (6.65) 

  

 

 
 

Fig. 6.22 A rotor system with fixed-fixed boundary conditions 

 

 

On using equation (6.65) into equation (6.55), the second set of equation gives  

 

  
12 0

0
nf R

t Tω 
 
 

=         (6.66) 

  

Since 
0

0
R
T ≠  for a general case, hence from equation (6.66) we have the frequency equation as 

 

  ( )12
0

nf
t ω =         (6.67) 

 

Table 6.2 summarises frequency equations and equations for state vector calculation for all the cases 

discussed above. 
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Table 6.2 Equations for the calculation of natural frequencies and mode shapes. 

S.N. Boundary 

conditions 

Station 

numbers 

Equations to get natural 

frequencies 

 

Equations to get mode shapes 

1 Free-free 0, n+1: Free 

ends 

 

( )21 0
nf

t ω =  ( )
1 011n iz nf zR

tϕ ω ϕ
+

=  

     

2 Cantilever 

(Fixed-free) 

0: Fixed 

end, 

n: free end 

 

0: Fixed 

end, 

n: free end 

( )22
0

nf
t ω =  

 

 

( )11
0

nf
t ω =  

( )
012n iz nf zR

t Tϕ ω=  

 

 

( )
021n iz nf zR

T t ω ϕ=  

     

3 Fixed-fixed 0, n+1: 

Fixed ends 
( )12

0
nf

t ω =  ( )
1 022n iz nf zR

T t Tω
+

=  

  

 

In above cases we have considered intermediate supports as frictionless, and no friction of discs with 

the medium in which these discs are oscillating. In actual practice, we will have supports and discs 

with friction, and this will produce some frictional (damping) torque on to the shaft or discs. While 

rotor is rotating with at a certain constant spin speed, these supports and discs frictions would give a 

constant torque. However, the torque onto the shaft and discs will be function of the spin speed of the 

rotor. Overall effects of these frictions would be very less on the torsional natural frequencies of rotor 

systems, and for initial estimates of system dynamic characteristics it can be ignored. Torsional 

oscillations of the rotor with flexible elements like couplings and torsional dampers will be considered 

subsequently. 

 

A word of caution regarding the numbering of stations: for the present formation we stick to the 

numbering scheme the 0
th
 station is assigned to the extreme left side of the station, and subsequent 

station numbers (i.e., 1, 2, …) are given to the station encountering towards the right. In the case 

numbering to the station is from extreme right and increases towards left, then the following point and 

field matrices should be used (which are slightly different as compared to equations (6.68) and (6.69)) 
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2

1 0

1
nf p

P
Iω

 
  =   

 

�
 and  

1 1

0 1

k
F

− 
  =   

 

�
    (6.70) 

 

where P 
 
�

 and F 
 
�

 are the point and field matrices when the transformation of state vector is 

performed from the right to the left. For example equations (6.47) and (6.52) can be written as 

 

 { } { }
2 22L R

S P S =  
�

  and { } { }
1 22R L

S F S =  
�

    (6.71) 

with 

 [ ]
1

22
P P

−
  = 
�

  and  
1

2 2
F F

−
   =   
� �

 

 

It should be noted that these point and field matrices are in fact inverse of the previous matrices. To 

avoid this confusion in the present text the station number is consistently assigned from the left end to 

the right end, and the transformation of the state vector is also followed the same sequence (i.e., from 

the left to the right). To illustrate the TMM now several simple numerical problems will be taken up. 

 

Example 6.6 Obtain torsional natural frequencies of a rotor system as shown in Figure 6.23 by using 

the transfer matrix method. Assume the shaft as massless. Check the result obtained with the closed 

form solution available. Take G = 0.8×10
11

 N/m
2
.    

 

 
 

Figure 6.23 
                

Solution: We have following properties of the rotor system 

 

 -6 4
;

11 2 4
     9.82 m0.8 10 N/m     0.6 m;     (0.1) 10

32
G l J

π
== × = = ×  

 

The torsional stiffness of the shaft is given as 

 

 

-611
6

  
0.8 10 9.82 10

1.31 10 Nm/rad
0.6

t

GJ
k

l

× × ×
= = = ×  
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Analytical method: Natural frequencies in the closed form are given as 

 

 

( )
1

1 2

2

1 2

6( ) 0.06 0.02 1.31 10
0;    and   9345.23 rad/sec

0.06 0.02

p p t

nf nf

p p

I I k

I I
ω ω

+ + ×
= = = =

×
 

 

 

Mode shapes (relative amplitudes) are given as 

 

for  
1

0
nf

ω = ,   2

0

1
z

z

Φ
=

Φ
; 

and 

for 
2

9345.23 rad/s
nf

ω = ,  2 1

0 2

3
z p

z p

I

I

Φ
= − = −

Φ
; 

 

Transfer matrix method:  Let the station number be 1 and 2 as shown in Fig. 6.24. State vectors can be 

related between stations 1 and 2, as 

 

and 

1 1 1

2 2 2 1 2 2 1 1

{ } [ ] { }

{ } [ ] [ ] { } [ ] [ ] [ ] { }

R L

R R L

S P S

S P F S P F P S

=

= =

 

 

The overall transformation of state vectors between 1 & 2 is given as 

 

( )

( ){ } ( )

2 1 12 2

1

2 1 2 2

2 2 22 2

2 1 1

2

2 2 2 2

1 11 0 1 0 1 01 1
  

1 1 110 1

1 1

1 1

tz t z z

nf p nf p nf pnf p nf p tR L L

nf p t t
z

Lnf p nf p nf p t nf p t

kk

I I II I kT T T

I k k

TI I I k I k

ϕ ϕ ϕ

ω ω ωω ω

ω ϕ

ω ω ω ω

             
= =             − − −− −              

 −   = 
 − − − −   1




 

 

On substituting values of various rotor parameters, it gives 

 

 

( )

( ) ( )

8 2 7

2 10 4 8 2
2 1

1 4.58 10 7.64 10

0.08 9.16 10 1 1.53 10

nfz z

R Lnf nf nf
T T

ωϕ ϕ

ω ω ω

− −

− −

 − × ×   
 =   
 − + × − ×    

    (a) 

 

Since ends of the rotor are free-free type, hence, the following boundary conditions will apply 
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1 2 0

L R
T T= =          (b) 

 

On application of boundary conditions (b) in equation (a), we get the following condition  

   

 ( ) ( )2 10 4

21 10.08 9.16 10 { } 0
nf nf nf L z

t ω ω ω ϕ−= − + × =  

 

which gives for the non-trial solution, the following frequency equation 

 

 
2 10 2[9.16 10 0.08] 0nf nfω ω−× − =  

 

It gives natural frequencies as 

 

 
1 2

0  and  9345.23 rad/sec
nf nf

ω ω= =  

 

which are exactly the same as obtained by the closed form solution. Mode shapes can be obtained by 

substituting these natural frequencies, one at a time, into the first (or the second) expression of 

equation (a), as 

 

 ( )2

0
1

8 2

0

1 4.58 10 1

nf

z

nf

z ω

ω−

=

Φ
= − × =

Φ
,   rigid body mode 

and 

  ( )2

0
2

8 2

9345.23

1 4.58 10 3

nf

z

nf

z ω

ω−

=

Φ
= − × = −

Φ
,  anti-phase mode 

 

which are also exactly the same as obtained by closed form solutions. 

 

Example 6.7 Obtain torsional natural frequency for a cantilever shaft carrying a disc and a spring at 

free end as shown in Figure 6.24. The disc has the polar mass moment of inertia of 0.02 kg-m
2
. The 

shaft has 0.4 m of the length and 0.015m of the diameter. The spring has torsional stiffness of 
2t

k = 

100 N-m/rad. Take G = 0.8×10
11

 N/m
2
 for the shaft. 
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Figure 6.24 A cantilever rotor with a spring at the free end 

 

Solution: Let the fixed end has the station number as 0, the shaft free end has the station number as 1, 

and spring other end fixed to the fixed support has the station number 2 (Fig. 6.24). The 

transformation of the state vector from station 0 to station 1 can be written as 

 

{ } [ ] [ ] { }
1 1

1

2 21 01 1

20 0

1
1 0 1

  
1

0 1 1

z z

R
nf p nf p

nf p

l
l

GJ
S P F S GJ

I I lT T
I

GJ

ϕ ϕ

ω ω
ω

 
           = = =      −       − −   

 

  (a) 

The spring at free end can be thought as an equivalent shaft segment with same stiffness that of the 

spring. The overall transfer matrix for such an idealisation between stations 0 and 2 would be 

 

{ } [ ] [ ] [ ] { }

1 1

2 2

2

1
1

1
1

2 2

22 02 1 1
2

2 0 0
2

1
1 1 11

1

10 1 1

nf p nf p

z zt t
t

nf p
nf p

nf p
nf p

I I lll

k GJ k GJGJ
kS F P F S

I l T TI lI IGJ GJ

ω ω

ϕ ϕ

ω ωω ω

   
− + −               = = =              − −    − −    

        (b) 

Boundary conditions for the present case would be 

 

 
0 2

0z zϕ ϕ= =           (c) 

 

On applying boundary conditions to equation (b), from first equation, we get 

 

 1

2

2

0

1
1 0

nf p

t

I ll
T

GJ k GJ

ω   
+ − =   

   
        (d) 

 

Since torque T0 can not be zero, hence we get the natural frequency from equation (d) as 

 

 2

1

( / )t

nf

p

k GJ l

I
ω

+
= rad/s        (e) 
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with 

 4 90.015 4.97 10
32

J
π −= = × m

4
, 

1
0.02pI = kg-m

2
,  994.02

GJ

l
= Nm/rad,  

2
100tk = Nm/rad 

Hence, we have natural frequency as 

 

 nfω = 233.88 rad/s        answer 

 

From equation (e), it can be observed that the effect of the spring at the free end is to increase the 

effective stiffness of the system (i.e., springs connected in parallel with the equivalent stiffness of 

2
( / )tk GJ l+ , where GJ/l is the stiffness of the shaft). 

 

Alternatively, the spring can be included as a boundary condition as follows. In this case the 

transformation equation (a) is valid. The equilibrium equation at the free end would be 

 

2 11 0R t zT k ϕ+ =           (f) 

 

where RT1 is the reaction toque at the right of disc. Hence, the boundary conditions would be 

 

 
0

0zϕ =    and  
2 11R t zT k ϕ= −      (g) 

 

On application of boundary conditions (g) in equation (a), we get 

 

 
2 1

1

2

2 01

1
0

 

1

z

t z nf pR
nf p

l

GJ

k I l T
I

GJ

ϕ

ϕ ω
ω

 
       =   

−       − − 
 

      (h) 

 

Equation (h) can be split as follows 

 

1 0R z

l
T

GJ
ϕ =   and  1

2 1

2

01
nf p

t R z

I l
k T

GJ

ω
ϕ

 
− = −  

 
    (i) 

 

which gives an eigen value problem of the following form 
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 1

1

2

2

0

1
0

0
1

z

nf p

t

l

GJ

I l T
k

GJ

ϕ

ω

− 
        =   
      − 
 

        (j) 

 

For the non-trial solution, on taking determinant of the above matrix, it gives the natural frequency 

exactly same as in equation (e). 

 

Example 6.8 Obtain the torsional frequency response at the disc and the support torque at the fixed 

end of the shaft of a rotor system shown in Fig. 6.25. An external sinusoidal torque of amplitude 

10
E

T = Nm is applied with a single frequency, ω. Identify the torsional critical speed of the system 

from the response so obtained. The disc has polar mass moment of inertia of 0.02 kg-m
2
. The shaft 

has 0.4 m of length and 0.015 m of diameter. Take G = 0.8×10
11

 N/m
2
. 

 

 

Fig 6.25 A shaft with cantilevered end conditions 

 

Solution: Let the station number of the fixed end is 0 and that of the free end is 1. The transformation 

of state vector can be written as 

 

{ } { }

1

1

1

1 1 1 1

1

2

* * * * 2 2

1 11 0

0 0

1 1/ 0
1 1/ 01 0 0

1 0 1 0 1

0 0 1 1 10 0 1
0 0 1

t

t z z

p

p E p E
R

t

k
k

I
I T T I T T

k
S P F S

ϕ ϕ
ω

ω ω=

 
       
           − − = − − −          

               
 

=

    (a) 

where ω  is the external excitation frequency and TE is the external torque amplitude. Boundary 

conditions of the present problem are 

 

 

0
0zϕ =    and  1 0

R
T =       (b) 

 

On application of boundary conditions (b) in equation (a), we get 
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1

1

1 1

1

2

2

1 0

1 1/ 0
0

0 1

1 1
0 0 1

t

z

p

p E

t

R

k

I
I T T

k

ϕ
ω

ω

 
    
    

= − − −    
        

 

      (c) 

 

which gives following equations 

 

1

1

0

R z

t

T

k
ϕ =  and  1

1

1

2

00 1
p

E

t

I
T T

k

ω 
= − −  
 

     (d) 

 

From above, the frequency response at station 1 would take the following form 

 

 1 1

1

1

1

2 2

2
11

E E

R z

p

nft

T T

I

k

ϕ
ω ω

ω

= =
   

−−     
  

 with /
nf t p

k Iω =      (e) 

 

For the present problem 
1

10ET = Nm, 94.97 10J
−= × m

4
, 

1
0.02pI = kg-m

2
,  

1
994.02

t

GJ
k

l
= = Nm/rad, 

and hence 222.94nfω = rad/s.  

 

Hence from equations (e) and (d), we have 

 

1 2

4

10

1
4.97 10

R zϕ
ω

=
 

− 
× 

rad and 
0 2

4

10 994.02

1
4.97 10

T
ω

×
=
 

− 
× 

   (f) 

 

Equation (f) can be used to plot the amplitudes of the frequency response at the disc and the reactive 

toque at the fixed support with respect to the excitation frequency, ω . However, it can be seen from 

the denominator that the resonance takes place when it becomes zero, i.e., 222.94nfω ω= = rad/s, 

which is the condition of critical speed, 222.94
cr

ω ω= =  rad/s. 
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Example 6.9 Find torsional natural frequencies and mode shapes of a rotor system shown in Figure 

6.26. B is a fixed end, and D1 and D2 are rigid discs. The shaft is made of steel with the modulus of 

rigidity G = 0.8 (10)
11

 N/m
2
 and a uniform diameter d = 10 mm. Shaft lengths are: BD1 = 50 mm, and 

D1D2 = 75 mm. Polar mass moment of inertia of discs are: 
1pI = 0.08 kg-m

2
 and 

2pI = 0.2 kg-m
2
. 

Consider the shaft as massless and apply (i) the analytical method, and (ii) the transfer matrix method.

  

    

 

Figure 6.26 

 

Solution: The torsional free vibration would be done by classical analytical method and the TMM to 

have comparion of results. 

 

Analytical method: From free body diagrams of discs as shown in Figure 6.27, equations of motion 

for free vibrations can be written as 

 

1 1 1 1 21 2 ( - ) 0
p z z z z

I k kϕ ϕ ϕ ϕ+ + =��   and 
2 2 2 12 ( - ) 0

p z z z
I kϕ ϕ ϕ+ =��   (a) 

 

Equations of motion are homogeneous second order differential equations. In free vibrations, discs 

will execute simple harmonic motions. 

 

 
Figure 6.27 Free body diagrams of discs 

 

 

For the simple harmonic motion, 
2 2 sinz nf z nf z nf tϕ ω ϕ ω ω= − = − Φ�� , hence equations of motion take 

the form 
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11

22

2

1 2 2

2

2 2

- 0

0

zp nf

zp nf

k k I k

k k I

ω

ω

Φ + −     
=     

Φ− −       
    (b) 

 

On taking determinant of the above matrix, it gives the frequency equation as 

 

 
1 2 1 2 2

4 2

2 1 2 1 2( ) 0p p nf p p p nfI I I k I k I k k kω ω− + + + =    (c) 

 

which can be solved for 
2

nfω , as 

 

( )
1 2 2 1 2 2 1 2

1 2

2

2 1 2 2 1 2 1 22
4

2

p p p p p p p p

nf

p p

I k I k I k I k I k I k k k I I

I I
ω

+ + ± + + −
=                          (d) 

 

For the present problem following properties are given 

 

 ( ) 4. .  m  J d J
π π −= = = × =

44 4

1 2
0 01 9 82 10

32 32
 

 

 1 2
1 2

1 2

1570.79 N/m and 1047.19 N/m
GJ GJ

k k
l l

= = = =  

  

 
1 2

2 20.08  kgm and 0.2  kgmp pI I= =  

 

From equation (d), natural frequencies are obtained as 

 

 
1 2

54.17 rad/s and 187.15 rad/s
nf nf

ω ω= =  

 

The relative amplitude ratio can be obtained from the first expression of equation (b), as  

 

 1

1 2

2 1

2

2

1 2

0.4394 for ;   and     -5.689 for   
-

z

nf nf

z p nf

k

k k I
ω ω

ω

Φ
= =

Φ +
 (e) 

 

Alternatively, the relative amplitude ratio can be obtained from the second expression of equation (b), 

as  

 1 2

1 2

2

2

2

2

-
0.4394 for ;   and     -5.689 for   

z p nf

nf nf

z

k I

k

ω
ω ω

Φ
= =

Φ
 (f) 

 

As expected it should give the same result as in equation (e). Mode shapes are shown in Figure 6.28. 

In which the first one is in-phase mode and second is the anti-phase mode. Practically, the anti-phase 
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mode is difficult to excite (more resistive torque) as compared to the in-phase mode, and because of 

this the natural frequency of the former mode is more than the latter. 

 

 

  

  

  

                                                                                                                             

  

 

 

 

       

 

 

Figure 6.28 Mode shapes 

 

 

Transfer matrix method 

 

Figure 6.29 Two-discs rotor system with numbering of stations 

 

For Figure 6.29, state vectors between 0
th
 and 2

nd
 stations can be related as 

 

{ } [ ] [ ] [ ] [ ] { }
2 2 2 1 1 0R

S P F P F S=       (g) 

 

State vectors at neighbouring stations (i.e., 1  and 2, and 0 and 1) can be related as 

 

2 1

2 1

2 1

2 2

2 2

2 1 1 0

1 1

1 1/ 1 1/

and
- 1 - 1

z z z z

nf p nf p

nf p nf pR R R R

k k

I I
T T T TI I

k k

ϕ ϕ ϕ ϕ
ω ω

ω ω

   
          

= =− −          + +             

 

           (h) 

which can be combined  to give 

 

 

1 1

2 2

2 1

2 2

2 1 2 2

2 2
2 02 2 21

2 1 2

1 1
1- 1

1 1

nf p nf p

z z

R nf p nf p

nf p nf p

I I

k k k k

T TI It
I I

k k k

ω ω

ϕ ϕ

ω ω
ω ω

    
− +              

=    
   −    

− − + − +       
    

  (i) 

 

1 

-5.68 

0 

(b) 
2

For  
n

ω  

0 

1 

 0.4394 

(a) 
1

For  
n

ω  
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Boundary conditions are: at station 0, zϕ =
0

0 ; and at right of station 2, 
R
T =

2
0 . On application of 

boundary conditions in equation (i), the second equation gives the frequency equation as 

 

 ( ) 2 2

2 1

2 2

2 2

22

1 2 2

1
1 1 0

nf p nf p

nf nf p nf p

I I
t I I

k k k

ω ω
ω ω ω

  −
= − − + − + =      

  

 

which can be simplified as 

 

 
1 2 1 2 2

4 2

2 1 2 1 2( ) 0p p nf p p p nfI I I k I k I k k kω ω− + + + =  

 

It should be noted that it is same as obtained by the analytical method in equation (c). Hence, natural 

frequencies by TMM will be also given by equation (d). For obtaining mode shapes from equations 

(h) and (i), we have 

 
2 12 0R z t Tϕ = ;  

2 1

1

2

R

R z R z

T

k
ϕ ϕ= + ;  

1

0

1

R z

T

k
ϕ =   (j) 

From equation (j), we have 

 

 1 1

2 2 1

2

2

1 12 1 2

1R z R z

R z R z p nf

k

k t k k I

ϕ

ϕ ω

Φ
= = =

Φ + −
      (k) 

 

which is again same as equation (e). Since mode shapes are relative angular displacements of various 

discs in the rotor system, on assuming one of the angular displacement as unity (i.e., zϕ =
2

1), we can 

get torque acting at various sections of the shaft from equation (j), as 

 

 
( )

1 2 1 2

2
0 2 2

12 2 2

1

nf p p p p nf

k
T

t k I k I I Iω ω
= =

+ −
      (l) 

and 

 ( )
( )2 1

1 2 1 2

0 2
1 2 2 2 2 2

1 1 2 2

1 1R R z R z

nf p p p p nf

T k
T k k k

k k k I k I I I
ϕ ϕ

ω ω

    
= − = − = −  

+ −    

  (m) 

 

It should be noted that these torques would be produced for a unit angular displacement at disc 2 (i.e., 

zϕ =
2

1). 
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Example 6.10 Find torsional natural frequencies and mode shapes of the rotor system shown in 

Figure 6.30. B1 and B2 are frictionless bearings, which provide free-free end condition; and D1, D2, D3 

and D4 are rigid discs. The shaft is made of the steel with the modulus of rigidity G = 0.8 (10)
11

 N/m
2
 

and a uniform diameter d = 20 mm. Various shaft lengths are as follows: B1D1 = 150 mm, D1D2 = 50 

mm, D2D3 = 50 mm, D3D4 = 50 mm and D4B2 = 150 mm. The mass of discs are: m1 = 4 kg, m2 = 5 kg, 

m3 = 6 kg and m4 = 7 kg. Consider the shaft as mass-less. Consider discs as thin and take diameter of 

discs as d =
1

8 cm, d =
2

10 cm,
 
d =

3
12 cm, and

 
d =

4
14 cm. 

 

Figure 6.30 A multi-disc rotor system 

 

Solution: The discs have the following data 

 

 m1 = 4 kg,  m2 = 5 kg,  m3 = 6 kg,  m4 = 7 kg 

 

 .d =
1

0 08 m,  .d =
2

0 1m,
  

.d =
3

0 12 m,  .d =
4

0 14 m, 

 

1

1 12 2

1 12 2
4 0.04 0.0032pI m r= = × × = kg-m

2
, 

2

1 2

2
5 0.05 0.00625pI = × × = kg-m

2
, 

 

 
3

1 2

2
6 0.06 0.0108pI = × × = kg-m

2
,  

4

1 2

2
7 0.07 0.01715pI = × × = kg-m

2
, 

 

The shaft has GJ = 1256.64 N-m
2
 and following dimensions according to station numbers (1, 2, 3 and 

4 are given station numbers at disc locations; shaft segments at ends will not contribute in the free 

vibration for the present case) 

 

 l1 = 50 mm,  l2 = 50 mm,  l3 = 50 mm 

 

Now the overall transformation of the state vector can be written as 

 

 { } [ ] { }
4 1R L

S T S=          (a) 

with 
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[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
4 3 3 2 2 1 1

T P F P F P F P=       (b) 

 

[ ] 2

1 0

1
i

i
nf p

P
Iω

 
=  − 

;  [ ]
1 1

0 1

it

i

k
F

 
=  
 

; { } z
S

T

ϕ 
=  
 

          (c) 

 

From Table 6.2, for free-free boundary conditions the frequency equation is 

  

( ) ( )2,1 0
nf nf

f tω ω= =          (d)  

 

On solving the roots of above function by the root searching method, it gives the following natural 

frequencies 

 

1nfω =  0 rad/s,  
2nfω =  ?? rad/s,  

2nfω =  ?? rad/s,  
4nfω =  ?? rad/s,  

  

From Table 6.2, the eigen vector can be obtain from the following equation 

 

( )
4 111 iz nf zR

tϕ ω ϕ=            (e) 

Now on choosing 
1

1
z

ϕ =  as reference value and let us obtain the state vectors corresponding to the 

second mode, i.e. 
2inf nf

ω ω= ). From equations (e) and noting the boundary condition, we get the state 

vector at 1
st
 and 4

th
 station as 

 

1

1
{ }

0
L S

 
=  
 

;  and 
( )

211

4

?
{ }

00

nf

R
S

t ω    
= =   

   
 

 

At other stations also the state vectors can be obtained as 

 

[ ]1 11

?
{ } { }

?
R LS P S

 
= =  

 
;   [ ]2 11

?
{ } { }

?
L RS F S

 
= =  

 
 

and 

[ ]2 22

?
{ } { }

?
R LS P S

 
= =  

 
;   [ ]3 22

?
{ } { }

?
L RS F S

 
= =  

 
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[ ]3 33

?
{ } { }

?
R LS P S

 
= =  

 
;   [ ]4 33

?
{ } { }

?
L RS F S

 
= =  

 
 

 

Hence, the mode shape (the relative angular displacement) can be drawn as shown in Fig. 8.31 for the 

second modes? On the same lines other state vectors corresponding to remaining natural frequencies 

can be obtained to get the related mode shapes as shown in Fig.8.31?. 
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6.6 Geared Systems 

In actual practice, it is rare that the rotor system has a single shaft (with either uniform or stepped 

cross sections) with multiple discs as we analysed in previous sections. In some machine the shaft 

may not be continuous from one end of the machine to the other, but may have a gearbox installed at 

one or more locations. Hence, shafts will be having different angular velocities as shown in Figure 

6.30(a). For the purpose of analysis the geared system must be reduced to system with a continuous 

shaft so that they may be analysed for torsional vibrations by methods as described in preceding 

sections. 

 

 

 

Fig. 6.30 (a) Actual geared system (b) An equivalent system without geared system (c) The equivalent 

system with disc 2 as fixed and (d) The equivalent system with shaft 2 as rigid 

 

It is assumed that gears and shafts have negligible polar mass moment of inertia as compared to discs 

in the geared rotor system. In the actual system as shown in Figure 6.30(a), k2 is the torsional stiffness 

of the shaft between gear 2 and disc 2, and 
2pI  is the polar mass moment of inertia of disc 2. Let the 

equivalent system as shown in Fig. 6.30(b) has the shaft torsional stiffness ke and the disc mass 

moment of inertia 
eP

I . The strain and kinetic energy values must be the same in both the real and 

dynamically equivalent systems for the theoretical model to be valid.  

 

Equivalent stiffness: Let the disc with the polar mass moment of inertia, 
pI

2
,  is imagined to be held 

rigidly in both the real and equivalent (Fig. 6.30c) systems, while the pinion shaft 1 is rotated through 
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an angle of 
z

ϕ
1
 at the input to gearbox (i.e., at the pinion). Shaft 2 is rotated through an angle 

/
z z

nϕ ϕ=
2 1

 at the gear 2, where n is the gear ratio. It is the ratio of the angular speed of the driving 

gear (pinion) to that of the driven gear, i.e. 

 

 
( )
( )

z

z

t N
n

t N

ϕω

ω ϕ
= = =1

2

1 2

2 1

  

 

 where ω is the spin speed of the gear and N is the number of teeth of the gear. The speed ratio, train 

value, and kinematic coefficient are other terms used for gear ratio, however, these are inverse of the 

gear ratio, i.e. the ratio of the angular speed of the driven gear to that of the driving gear. Hence, the 

strain energy stored in shaft 2 of the actual system, for a twist of 
z

ϕ
1
 at the input to the gear box, can 

be written as 

 

   1

2

1 12

2 22 2

2

z

r z
n

U k k
ϕ

ϕ
 

=  
 

=      (6.72)  

 

where Ur is the strain energy in the real system. While applying the same input at the gear box to the 

equivalent system (Fig. 6.30c) results in the stain energy stored in the equivalent shaft, and can be 

expressed as  

 

   
1

1 12 2

2 2ee z ze eU k kϕ ϕ==       (6.73)  

 

where Ue is the strain energy in the equivalent system, and since we have 
ez z

ϕ ϕ=
1
. On equating 

equations (6.72) and (6.73), it gives the equivalent stiffness as 

 

 2

2e
k

n
k =        (6.74)  

 

Equivalent polar mass moment of inertia: Now we consider the shaft 2 as a rigid shaft in both the real 

and equivalent systems (Fig. 6.30d), so that angular motion of gear 2 and disc 2 is same. That means 

whatever motion at pinion is given to: (i) the real system disc 2 gets same motion as the gear 2, (ii) for 

the equivalent system disc 2 gets same motion as the pinion itself. Kinetic energies of both the real 

and equivalent systems must also be equated 

 
1 2

22 2
r p

T I ω=   and  
1 2

2e p e
e

T I ω=    (6.75)  
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where Tr and Te is the kinetic energies in the real and equivalent system, respectively;  
2

ω  and 
e

ω  are 

angular frequencies of disc 2 of the real (
2pI ) and equivalent (

epI ) systems, respectively. Equations 

(6.75) can be equated and is written as 

 

 ( ) ( )
2

1 1

2 12 22

22

ep pz ze
I Iω ϕ ω ϕ+ = +� �      (6.76)  

 

where 
2zϕ  and 

ezϕ  are the angle of twist of shaft 2 in the actual and equivalent systems, respectively. 

It can be seen from Figure 6.30(d) that 
ezϕ = 

1z
ϕ  and ω1 and ω2 are angular frequencies of the shaft 1 

and 2, respectively. We have the following basic relations 

 

 
1 2

1 2 1

2 2

    and     
ez z z

e

T T nT

k k k
ϕϕ ϕ= = = =      (6.77)  

 

where T1 and T2 are torques at gears 1 and gear 2, respectively, in actual system.  Noting equation 

(6.77), equation (6.76) can be written as 

 

 
2

22

11 1 1
12

2

1

2 ep p

e

nT Td d
I I

n dt k dt k

ω
ω
        

+ +     
         

=     (6.78)  

 

where T1 is the torque input to the  pinion (shaft 1). On substituting equation (6.74) in equation (6.78), 

we get 

 

  
2

2

2
1 11 1

12 2
22

2

1
ep p

nTd d n T
I I

kn dt k dt

ω
ω
   

      

   
+ +  

   
=     ⇒     

2 2

2 1 1
1 1

2 2

2 2

2 e

p

p

n T n Td d

dt k dt k

I
I

n
ω ω
         

+ +      
         

=  

 

which simplifies to 

  2

2e

p

p

I

n
I =         (6.79)  

 

where ke and 
epI  are, respectively, the equivalent shaft stiffness and the equivalent polar mass 

moment of inertia of the geared system referred to the ‘reference shaft’ speed, i.e. shaft 1. The general 

rule, for forming the equivalent system for the purpose of analysis, is to divide all shaft stiffness and 

rotor polar mass moment of inertia of the geared system by n
2
 (where n is the gear ratio). When 

analysis is completed, it should be remembered that the elastic line of the mode shape of the 

equivalent system (i.e., the line abc in Fig 6.31) is modified for the real system by dividing the 

displacement amplitudes of the equivalent shaft by the gear ratio n as shown in Figure 6.31 by the line 

abde. It should be noted that angular displacements shown in Fig. 6.31 are now that of discs 1and 2. 
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Figure 6.31 The elastic line in the equivalent and original systems 

 

 

Example 6.11 For a geared system as shown in Figure 6.32, find torsional natural frequencies and 

mode shapes. Find also the location of the node point on the shaft (i.e., the location of the point where 

the angular twist during torsional vibrations is zero). The shaft ‘A’ has the diameter of 5 cm and the 

length of 0.75 m, and the shaft ‘B’ has the diameter of 4 cm and the length of 1.0 m. Take the 

modulus of rigidity of the shaft G = 0.8 × 10
11

 N/m
2
, the polar mass moment of inertia of discs are 

Ap
I = 24 Nm

2
 and 

Bp
I = 10 Nm

2
. Neglect the inertia of gears.  

      

 

Figure 6.32 A two-disc geared system 

 

Solution: On taking shaft B as the input shaft (or the reference shaft) as shown in Figure 6.33, the gear 

ratio can be defined as 

 

Input shaft speed 20
Gear ratio  2

Output shaft speed 10

B A

A B

D
n

D

ω

ω
= = = = = =  

 

where D is the nominal diameter of the gear. 
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Figure 6.33 A geared system 

 

 

 The polar moment of inertia of the shaft cross-section and the torsional stiffness of the shaft can be 

obtained as 

 

4 7 4 4 7 4π π
6.136 10  m ;          2.51 10  m

32 32
A A B B

J d J d
− −= = × = = × ; 

and 
11 -7

4 40.8 10 6.136 10
6.545 10  Nm/rad;       2.011 10  Nm/rad

0.75

A
A B

A

GJ
k k

l

× × ×
= = = × = × ; 

 

On treating as a reference shaft to the shaft B and replacing an equivalent shaft system of shaft A (i.e., 

the same diameter as that of reference shaft B), the system will become as shown in Figure 6.34. The 

equivalent system of the shaft system A has the following torsional stiffness and polar mass moment 

of inertia properties 

 

4
4 2

 
2 2 22

246.545 10
1.6362 10 Nm/rad      and      6 Nm

2 2
A

A

PA

A P
e

k
k

n

I
I

n
=

×
= = = × = =  

 

which gives the equivalent length of shaft A as (note that now its diameter is that of the reference shat 

B) 

 

  

11 7

4
1.229m

0.8 10 2.513 10

1.6362 10e

B
A

A
e

l
k

GJ
−× × ×

= = =
×

.  

 

Hence, the equivalent full shaft length is given as e 1.229 1 2.229 m
A B

e
l l l= + = + = . 
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Figure 6.34 An equivalent single-shaft geared system  

 

  

The equivalent stiffness of the full shaft is given as (Fig. 6.34) 

 

4
   

4 4

1 1
rad/Nm

2.011 10 1.6362 10

1 1 1
1.1085 10

e A B
e

k k k

−= +
× ×

= + = ×  

 

which gives 9021.2 Nm/rad
e

K = .  The flexible natural frequency of the equivalent two-disc rotor 

system as shown in Figure 6.34 is given as 

 

  
( )

( )2 2

( ) 6 10 9021.2/9.81
=153.62 rad/sec

( ) 6 10 /9.81

A Be

A Be

P P e

nf

P P

I I k

I I
ω

+ + ×
= =

×
 

 

 

 
 

Figure 6.35 Mode shape and nodal point location in the equivalent system 

 

The node location can be obtained from Figure 6.35 as 

 

1 2

Ae B
z z

n n
l l

Φ Φ
=  

 

which can be written by noting equation (6.13), as 
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1

2

10
1.667

6

Ae B

B Ae

n z P

n z P

l I

l I

Φ
= = − = − = −

Φ
 

 

The negative sign indicates that both discs are at either end of the node location. The absolute location 

of the node position is given as 

 

1 2
1.667 

n n
l l=  

 

Also from Figure 6.35, we have 

 

1 2
2.2288

n n
l l+ =  which gives  

2
0.8358 m

n
l =  

 

Hence, the node is on shaft B at 0.8356 m from disc B. Alternatively, from similar triangle of the 

mode shape (Figure 6.35), we have 

 

 2

2

2

1
    0.8358 m

2.2288 1.667

B

Ae

n z

n

n z

l
l

l

Φ
= = ⇒ =

− Φ
 

 

 Let  1 rad, then 1.667 rad
B Ae

z zΦ = Φ = − ; hence, 0.8333 rad
Ae

A

z

z
n

Φ
Φ = = −  

 

The mode shape and the node location in the actual system are shown in Figure 6.36. 

  

     

 
                                                                                                          

Figure 6.36 The mode shape and the node location in the actual geared system 
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Alternative way to obtain the natural frequency is to consider the equivalent two-disc rotor system 

(Figure 6.34) as two single-DOF systems (one such system is shown in Figure 6.37). 

 

 

 
 

Figure 6.37 A single DOF system 

 

 

The stiffness and polar mass moment of inertia properties of the system is given as 

 

2

11
4 2

2

0.8 10 2.513 10
2.435 10 Nm/rad   and    kgm

0.8358 9.81Bn

B
l P

n

k I
GJ

l

× ×
= = × ==  

 

It gives the natural frequency as 

 

2

4

2

2.435 10 9.81
 rad/sec

10
153.62

n

B

l

P

nf

k

I
ω

× ×
= ==  

 

which is same as obtained earlier. The whole free vibration torsional analysis can be done by taking 

the speed of shaft A as the reference and converting shaft B by an equivalent system. For 

completeness some of the basic steps are given as follows. 

 

 

 Figure 6.38 Actual and equivalent geared systems 
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The gear ratio for the present case will be 

 

10
0.5

20

A B

B A

D
n

D

ω

ω
= = = =  

 

It is assumed that equivalent shaft (i.e., the shaft B) has the diameter same as that of the reference 

shaft (i.e., the shaft A). The equivalent polar mass moment of inertia and the torsional stiffness can be 

written as 

 
4

2 4
    

2 2 2

2.011 10
40 Nm and   8.044 10 Nm/rad

(0.5)

B

Be

P B
P Be

I k
I k

n n

×
= = = = = ×  

 

which gives the equivalent length as 

 

11 7
4

4

0.8 10 6.136 10
8.044 10 Nm/rad          0.610 m

8.044 10

A
B B

B
e

e

e

GJ
k l

l

−× × ×
= = × ⇒ = =

×
 

 

The total equivalent length and the equivalent torsional stiffness would be 

 

 

eA Be 0.75 0.61 1.36 ml l l= + = + =  

and 
11 7

40.8 10 6.136 10
3.61 10  Nm/rad

1.360

A

e

k
GJ

e
l

−× × ×
= = = ×  

 

Alternatively, the effective stiffness can be obtained as 

 

1 1 1
  

A B
e

k k ke
= + ⇒  

4 4
4

4 4

6.545 10 8.044 10
3.61 10  Nm/rad

6.545 10 8.044 10

A B

A B

e

e

k k
ke

k k

× × ×
= = = ×

+ × + ×
 

 

Natural frequencies of two mass rotor system are given as 

 

1
    0nfω =      and 4

2

( ) (24 40)
9.81 3.61 10

24 40
153.62 rad/s

A Be

A Be

P P

nf e

P P

I I
k

I I
ω

+ +
= × × ×

×
= =  

 

A factor 9.81 is used since 
API  is in Nm

2
 and we need in kgm

2
. 
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Figure 6.39 Equivalent two mass rotor geared system 

 

 

The node location can be obtained as 

 

1

2

10
1.667

6

Be

A

Pn

n P

Il

l I
= − = − = −  and 

1 2
1.36

en n A Bl l l l+ = + = m 

which gives 

 

 
1 2 1 2

(1.667 ) 1.36    0.85 m  and 0.51 m    n n n nl l l l+ = ⇒ = =  

 

The stiffness of shaft length equal to 
2

n
l will be (equivalent stiffness corresponding to shaft A speed) 

 

 
2

2

n

A

l

n

GJ

l
k =  

 

The shaft stiffness corresponding to shaft B speed can be defined in two ways i.e. 

 

 

2
2

B

Bk
GJ

l
=  and 

2

2

2 2

2 n

A
l

n

Bk k
GJ

n n
l

= =  

 

On equating above equations the location of the node in the actual system from disc B can be obtained 

as 

 

2

2

2 0.84B

n

A

J
l n l

J
==  

 

which is same as by previous method.  
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6.7 TMM for Branched Systems 

For rolling mills, textile machineries, the marine vessel power transmission shafts, and machine tool 

drives; there may be many rotor inertias in the system and gear box may be a branch point where 

more than two shafts are attached. In such cases where there are more than two shafts attached as 

shown in Fig. 6.40 to the gearbox, the system is said to be branched. It has three braches A, B and C; 

and each branch has multiple discs, e.g. p, q, and r number of discs (including gears) in branches A, B 

and C, respectively.  Such system can not be converted to a single shaft system as we could do to the 

two-shaft geared system as discussed in previous section. Since now the system contain several discs 

hence, it is a multi-DOF system and hence the analysis of the branched system would now be done by 

more general procedure, i.e. the TMM. 

 

 

Fig. 6.40 A branched multi-DOF rotor system 

 

 

For the branched system as shown in Figure 6.40, state vectors for different branches can be written as 

 

{ } [ ]{ } { } [ ]{ } { } [ ]{ }     
0 0 0

; ;      R R RApA rCqB B C
S A S S B S S C S= = =   (6.80)  

 

where [A], [B], and [C] are overall transfer matrices for branches A, B, and C; respectively.  

 

Branch A: For branch A, taking 
Azϕ =

0
1 as the reference value for the angular displacement and since 

the left hand end of branch A is free end, hence for free vibrations we have T0A = 0. Equation for 

branch A takes the form 

 

11 12

21 22

1

0

z

pA

a a

a aT

ϕ        
    
       

=
       (6.81)  
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which can be expanded as 

 

  21 11
and

pA pAz z
T a aϕ= =       (6.82)  

 

Branch B: At branch point, between shafts A and B, we have  

 

  
0

11pA

B

z

z

AB AB

a

n n

ϕ
ϕ ==        (6.83)  

 

where nAB is the gear ratio between shafts A and B. For branch B, TqB = 0, since the right hand end of 

the branch is free. For branch B from equation (6.80), and noting condition described by equation 

(6.83), we have 

 

11 12 11

21 22 0
0

z AB

qB B

b b a n

b b T

ϕ     
    
    

=      (6.84)  

 

Equation (6.84) can be expanded as 

 

11
11 012qBz B

AB

a

n
b b Tϕ = +       (6.85)  

and 

  11 21 11
           22

22

21 0 00
AB AB

B B

a b a

n b n
b b T T

  
  
  

= + ⇒ = −    (6.86)  

 

Branch C and junction point: At branch C, we have the following condition (noting equation (6.82)) 

 

0

11pA

C

z

z

AC AC

a

n n
ϕ

ϕ
= =        (6.87)  

 

where nAC is the gear ratio between shafts A and C. Another condition at the branch to be satisfied 

regarding work done by the torque transmitted at various branches (assuming negligible friction 

during transmissions), i.e. 

 

0 0

1 1 1

2 2 20 0nA B Cz z zpA B CT T Tϕ ϕ ϕ= +
    

0 0

0 0 0 0   

pA B pA C

B C B C

z z z z AB AC

pA pA

T T T T
T T

n nϕ ϕ ϕ ϕ
⇒ = + ⇒ = +

       (6.88) 

 

On substituting equation (6.86) into the third expression of equation (6.88), it can be written as 
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0 21 11
0 2

22

B

C

AB AB

AC pA AC nA

T b a
T n T n T

n b n

  
 = 
     

= − +
 

 

On substituting equation (6.82), we get 

            

  21 11
0 2

22

21C

AB

AC

b a
T n a

b n

 
 
  

= +       (6.89)  

 

Substituting equations (6.87) and (6.89) into equation (6.80), we get 

 

  

11

11 12

21 11
2121 22 2

22

/

0

AC

z

AC
AC

AB
rc

a n
c c

b a n
n ac c

b n

ϕ
 

    
     +     

 

=     (6.90)  

 

where Trc = 0 is the boundary condition describing the free right hand end of branch C.  

 

The frequency equation: From equation (6.90), the second equation will give the frequency equation 

as 

 

  
2 2 2 2

22 11 21 22 21 22 2211 21 0
AB AC AB AC

a b c n a b c n a b c n n+ + =    (6.91) 

 

where a’s, b’s and c’s are function of the natural frequency, ωnf. The roots of the above equation are 

system natural frequencies. Angular displacements at the beginning and end of various branches can 

be summarised as 

 

0
1

Azϕ = ;  11pAz aϕ = ;       (6.92) 

 

0

11

Bz

AB

a

n
ϕ = ;  12 21 11

11

22
qBz

AB

b b a
b

b n
ϕ

 
= − 
 

;    (6.93) 

 

0

11

Cz

AC

a

n
ϕ = ;  12 21 11

11

22
rCz

AC

c c a
c

c n
ϕ

 
= − 
 

.    (6.94) 

 

On substituting one of the value of torsional natural frequencies obtained from equation (6.91) into 

equations (6.92)-(6.94), angular displacements at the beginning and end of various branches can be 

obtained. Then these may be substituted back into transfer matrices for each braches considered (i.e., 
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equation (6.80)), where upon the state vector at each station may be evaluated. The plot of angular 

displacements against shaft positions then indicates the system mode shapes corresponding to the 

chosen natural frequency. For other natural frequencies also similar steps have to be performed.  

 

Using this method, there will not be any change in the elastic line (mode shape) due to the gear ratio, 

since these have now already been allowed for in the analysis. Moreover, for the present case we have 

not gone for the equivalent system at all. For the case when the system can be converted to an 

equivalent single shaft, the equivalent system approach has the advantage. It should be noted that for 

the present case the DOF of the rotor system would be (p + q + r - 2). The total number of discs 

(including gears) is (p + q + r), however, at junction the DOF of two gears (e.g., at 0
th
 station of 

braches B and C) is related with the third (at p
th
 station of branch A), hence, we would have two DOF 

less as compared to the number of discs in the system. Now, through numerical examples the 

procedure will be illustrated. 

 

Example 6.12 For a geared system as shown in Figure 6.41, find torsional natural frequencies. The 

shaft ‘A’ has 5 cm diameter and 0.75 m length, and the shaft ‘B’ has 4 cm diameter and 1.0 m length. 

Take the modulus of rigidity of the shaft G equals to 0.8 × 10
11

 N/m
2
, the polar mass moment of 

inertia of discs and gears are 24
ApI = Nm

2
, 10

BpI = Nm
2
, 5

gApI = Nm
2
, 3

gBpI = Nm
2
.   

    

 
 

Figure 6.41 Two-discs with a geared system 

 

 

Solution: Now this problem will be solved using the TMM for illustration of the method to geared 

system. The pinion and gear have appreciable polar mass moment of inertia. Let us denote the station 

number of the disc on branch A as 0, the gear as 1 and the station number of the disc on branch B as 

2, the gear as 3 (Fig. 6.41). 
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The state transformation equation for the branch A can be written as 

 

{ } [ ] { }
1 0R L

S A S=          (a) 

with 

[ ] [ ] [ ] [ ] 2

21 1 0 2

0

1

1 1/

1

1 0

1gA

AgA

A

nf p

nf pnf p

A

k

IA P F P
I

k
I

ω
ω ω

 
  

= =   
− −    
 

−
 

   

( ) ( )

2

2 2

2 2

1
1

1 1

A

gA gA

gA A

nf p

A A

nf p nf p

nf p nf p

A A

I

k k

I I
I I

k k

ω

ω ω
ω ω

  
−     

=  
      

   − + − − −            

   (b) 

 

where kA is the stiffness of shaft A. Similarly, the state transformation equation for the branch B can 

be written as 

 

{ } [ ] { }
3 2R L

S B S=          (c) 

with 

[ ] [ ] [ ] [ ]

( ) ( )

2

3 3 2 2 2

2 2

1
1

1 1

gB

B B

B gB

nf p

B B

nf p nf p

nf p nf p

B B

I

k k
B P F P

I I
I I

k k

ω

ω ω
ω ω

  
  −

   
= ==  

      
− + − − −               

  (d) 

 

where kB is the stiffness of shaft B. At the gear pair, the following conditions hold 

 

 1

2

x

x
n

ϕ
ϕ =   and  

2 1
T nT=      (e) 

 

where ϕx is the angular displacement. Equation (e) can be combined as 

 

2 1

1/ 0

0

x x

L R

n

T n T

ϕ ϕ     
=    

     
        (f) 

or  

{ } [ ] { }
2 1L R

S n S=          (g) 
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with the gear ratio transformation matrix is given as 

 

[ ]
1/ 0

0

n
n

n

 
=  
 

          (h) 

 

Noting equation (g), equation (c) can be written as 

 

 { } [ ][ ] { }
3 1R R

S B n S=          (i) 

 

Noting equation (a), equation (i) can be expressed as 

 

 { } [ ][ ][ ] { } [ ] { }
3 0 0R L L

S B n A S T S= =        (j) 

 

with the overall transformation matrix is given as 

 

[ ] [ ][ ][ ]

11 11 12 11
21 12 22 12

11 12 11 12

21 22 21 22 11 21 12 21
21 22 22 22

1/ 0

0

a b a b
na b na b

b b a an n n
T B n A

b b a an a b a b
na b na b

n n

 
+ +     

= = =      
      + +
  

  (k) 

 

The overall transformation matrix can also be written as 

 

 [ ] [ ][ ][ ] [ ] [ ] [ ] [ ][ ] [ ] [ ]
3 3 2 1 1 0

T B n A P F P n P F P= =      (l) 

 

 

Boundary conditions of the problem are 
0 3

0T T= =  since both ends are free. Equation (j) can be 

written in expended form as 

 

11 12

21 223 0

x x

R L

t t

t tT T

ϕ ϕ    
=    

    
 or 

11 12

21 223 0
0 0

x x

R L

t t

t t

ϕ ϕ    
=    

    
   (m) 

 

which gives frequency equation as 

 

( )21 0
nf

t ω =           (n) 

 

From equation (k), frequency equation comes out to be 

 

 2

11 21 21 22 0a b n a b+ =          (o) 

 

Noting equations (b) and (d), in the expanded form equation (o) can be written 
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( ) ( ) ( ) ( )
22 2 2

2 2 2 2 21 1 1 1 0
gAA B B

B gB gA A

nf pnf p nf p nf p

nf p nf p nf p nf p

A B A B

II I I
I I n I I

k k k k

ωω ω ω
ω ω ω ω

           
 − − + − − + − + − − − =                          

(p) 

For the numerical values of the present problem, equation (p) reduces to 

 

( ) ( ){ }2 4 4 2 71.665 10 3.006 10 0nf nf nfω ω ω− × + × =        (q) 

 

From frequency equation (q), the following natural frequencies are obtained 

 

1
0nfω = ,  

2
45.46nfω = ,  

3
119.56nfω =  rad/s,  

 

It should be noted that for the present problem even four discs (polar mass moment of inertia) are 

present, however only three natural frequencies is obtained. This is due to the fact that gear pair is 

treated as a single polar mass moment of inertia, so effectively for the present problem only three 

generalized coordinates are sufficient to describe the motion. 

 

For comparison with Example 6.11, let us put polar mass moment of inertia of the pinion and the gear 

to zero in equation (p), then we get 

 

( ) ( ){ }2 2 2 2 0
A B A Bnf p p A B nf p p A BI I n k k n I I k kω ω+ − + =  

 

Which gives 

  

 
1

0nfω =  

and 

 
( )( )

( ){ }( )
( ) ( ){ }

( )2

2 22 2

2

2 2

//

/

A BeA B

A B A Be

p p A B A Bp p A B

nf

p p A B p p

I I n k k n k kI I n n k k

I I n n k k I I
ω

+ ++
= =

+
 

 

Second natural frequency can be simplified as 

 

 
2

( )

( )

A Be

A Be

P P e

nf

P P

I I k

I I
ω

+
=          (q) 

with 

( )2 2/
eq A B A B

k n k k n k k= + ; 2/
B Be

p p
I I n=  
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It should be noted that equation (q) is exactly the same as in previous example (i.e., for equivalent two 

mass rotor system). 

 

Example 6.13 Obtain torsional natural frequencies and mode shapes of a branched system as shown 

in Figure 6.42. The polar mass moment of inertia of rotors are: 
ApI  = 0.01 kg-m

2
, 

EpI = 0.005 kg-m
2
, 

FpI = 0.006 kg-m
2
, and 0

B C Dp p pI I I= = = . Gear ratios are: nBC = 3 and nBD = 4. Shaft lengths are: lAB 

= lCE = lDF = 0.25 m, and diameters are dAB = 0.03 m, dCE = 0.02 m and dDF = 0.02 m. Take the 

modulus of rigidity of the shaft as G = 0.8 × 10
11

 N/m
2
.  

    

Figure 6.42 A branched rotor system 

 

 

Solution:  The branched system has the following numerical data 

 

0.01
API =  kg-m

2
; 0.005

EP
I =  kg-m

2
; 0.006

FP
I =  kg-m

2
 

 

 4 4 80.03 7.95 10
32 32

AB AB
J d

π π −= = = × m
4
,
  4 80.02 1.57 10

32
CE DF

J J
π −= = = × m

4
 

 

 42.55 10
AB

AB

t

AB

GJ
k

l
= = ×  N/m,   40.50 10

CE DFt tk k= = ×  N/m 

 

For branch AB, state vectors at stations are related as 

 

0{ } [ ]{ }
AB ABR nS A S=  

 

with 

 [ ] [ ] [ ]AB AA F P=

7 2 55

2 2

1 0 1 3.93 10 3.93 101 3.93 10

0.01 1 0.01 10 1

nf

nf nf

ω

ω ω

− −−  − × ×  ×
= =     − −      

 

 

For branch CE, state vectors at stations are related as 
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0{ } [ ]{ }
CE CER n

S C S=  

 

with 

[ ]
44

2 2 6 2

1 0 1 2.0 101 2.0 10
[ ] [ ]

0.005 1 0.005 1 1.0 100 1
E CE

nf nf nf

C P F
ω ω ω

−−

−

 ×   ×
= = =     − − − ×     

 

 

Similarly, for branch DF, we have 

 

0{ } [ ]{ }
DF DFR n

S D S=  

with 

[ ]
44

2 2 6 2

1 0 1 2.0 101 2.0 10
[ ] [ ]

0.006 1 0.006 1 1.2 100 1
F DF

nf nf nf

D P F
ω ω ω

−−

−

 ×   ×
= = =     − − − ×     

 

 

From equation (6.81), the frequency equation can be written as 

 

 
2 2 2 2

22 11 21 22 21 22 2211 21 0
BC BD BC BD

a c d n a c d n a c d n n+ + =    

    

On substitution, we get 

 

( )( )( )7 2 6 2 21 3.93 10 1 1.0 10 0.006 9
nf nf nf

ω ω ω− −− × − × − × +  

 

( )( )( )7 2 2 6 2
1 3.93 10 0.005 1 1.2 10 16

nf nf nf
ω ω ω− −− × − − × × +  

 

( )( )( )2 6 2 6 2
0.01 1 1.0 10 1 1.2 10 9 16 0

nf nf nf
ω ω ω− −− − × − × × × =    

 

which can be simplified to 

 

( )2 12 4 10 21.7685 10 3.3532 10 1.5740 0
nf nf nf

ω ω ω− −× − × + =   

 

Natural frequencies are given as 

 

1
0nfω = ;     

2
924.4

nf
ω =  rad/s        and   

3
1020.6

nf
ω = rad/s. 

 

It can be seen that the rigid body mode exists since ends of the gear train is free. Mode shapes for 

each of these natural frequencies can be obtained as follows. 
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For 0
1

=nfω  with 
0

1
ABzϕ =  as a reference value, angular displacements at various disc locations can 

be written as 

 

0
1

ABzϕ = ;   11 1
nABz aϕ = = ;      

 

0

11 1
0.33

3CEz

BC

a

n
ϕ = − = − − ;  

0

12 21
11

22

0.33
nCE CEz z

c c
c

c
ϕ ϕ

 
= − = − 
 

;  

   

0

11 1
0.25

4DFz

BD

a

n
ϕ = − = − = − ;  

0

12 21
11

22

0.25
nDF DFz z

d d
d

d
ϕ ϕ

 
= − = − 
 

  

  

Figure 6.43 shows the mode shape. Similarly, for other natural frequencies displacements can be 

obtained to get mode shapes as in Figures 6.44 and 6.45. 
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Figure 6.43 Mode shape of the branched system for 
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Figure 6.44 Mode shape of the branched system for 
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Figure 6.45 Mode shape of the branched system for 
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6.8 TMM for Damped Torsional Vibrations 

In any real rotor systems damping is always present. Torsional damping may come from several 

sources, e.g. the shaft material, bearings, couplings, torsional vibration dampers, aerodynamic 

damping at discs, rubbing of the rotor with the stator, loose components mounted on shaft, etc. The 

shaft material or hysteretic damping comes due to intermolecular interaction in the shaft material, 

which results in increase in the temperature of the shaft material. The torsional vibration damper is a 

device which may be used to join together two-shaft section as shown in Fig. 6.46. It develops a 

damping torque, which is dependent upon of the angular velocity on one shaft relative to the other. 

These types of damping can be considered proportional to the relative angular velocity of discs to 

which the shaft is connected and it is represented as cs. The disc aerodynamic (or rubbing) damping, 

cd, comes due to interaction of the disc with the working fluid (like steam, gas, air, etc.), lubricant, and 

coolant; which results in dissipation of the energy in the form of heat. This type of damping is 

proportional to the angular velocity of the disc itself. 

 

 

Figure 6.46 A schematic of a torsional vibration damper 

                                                                                             

                                                                        

Torsional dampers can be used as a means of attenuating (decreasing) system vibrations and to tune 

system resonant frequencies to suit particular operating conditions. The damping in the system 

introduces phase lag between the system displacement and torque. 

 

 

Figure 6.47 General arrangement of multi-DOF rotor system with damping. 
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Figure 6.48 A free body diagram of r
th
 rotor. 

 

 

Figure 6.47 shows a general arrangement of torsional multi-DOF rotor system with the disc and the 

shaft damping. From the free body diagram of n
th
 rotor (Figure 6.48) the following governing 

equations can be written as 

 

n nL z R z
ϕ ϕ=          (6.95) 

and 

n n n nd L z p L zR n L nT T c Iϕ ϕ− − =� ��        (6.96) 

 

For free vibration, torques RTn and LTn may be written in the form 

 

 
j nf t

n n
T T e

ω
=          (6.97) 

  

where  
n

T  is the complex amplitude of the torque at n
th
 disc, and ωnf is the torsional natural frequency 

of the system. The angular displacement takes the form 

 
j nf

n n

t

z z e
ω

ϕ = Φ          (6.98) 

 

where 
nz

Φ  is the complex amplitude of angular displacement at n
th
 disc. Differentiating equations 

(6.97) and (6.98) with respect to time and substituting in equations (6.95) and (6.96) leads to  

 

 2

1 0

+j 1nf p nf dR n L nn
I cT Tω ω

 Φ Φ   
=    −    

      (6.99) 

 

which can be simplified as 
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{ } [ ] { }
L nR n n

S P S=        (6.100) 

 

with 

 [ ] 2

1 0

+j 1nf p nf d n

n
P

I cω ω

 
=  − 

;  { }
L n

L n

S
T

Φ 
=  

 
 

 

where [P]n  is a point matrix and [S]n is a state vector. 

 

 

 

                                                                                                                 

Figure 6.49 A free body diagram of n
th
 shaft segment 

 

 

The characteristics of the shaft element at station n (Fig. 6.49) are represented in the equation 

describing the torque applied to the shaft at the location of rotor n, as  

 

  ( ) ( )
1 1n n n n nL n n L z R z s L z R z

T k cϕ ϕ ϕ ϕ
− −

= − + −� �         (6.101) 

 

While the torque transmitted through the shaft is the same at both ends, i.e., 

 

  1L n R n
T T −=         (6.102) 

 

Substituting equations (6.97) and (6.98), in equations (6.101) and (6.102), we get 

 

( ) ( )
1 11 j

n n n n nR n n L z R z nf s L z R z
T k cω

− −− = Φ − Φ + Φ − Φ     (6.103) 

and 

 1L n R n
T T −=          (6.104) 

 

Combining equations (6.103)  and (6.104), we get 

 

 

1 1

j 0 j 1

0 1 0 1
n

nf s nf s

L n n R n

k c k c

T T

ω ω

− −

+ Φ + Φ       
=      

       
    (6.105) 
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which can be written as 

 

1[ ] { } [ ] { }
n L n n R n

L S M S −=  

 

which can be simplified as 

 

1

1 1{ } [ ] [ ] { } [ ] { }
L n n n R n n R n

S L M S F S
−

− −= =      (6.106)  

 

with   [ ] 1

1 1
0 1j 1

j j[ ] [ ]
0 1

0 1 0 0

nf s
nf s nf sn nn

k c
k c k cF L M

ω
ω ω−

   
+    + += = =    

       

 

 

where [F]n is a field matrix at station n. From equations (6.100) and (6.106), we get 

 

1 1{ } [ ] { } [ ] [ ] { } [ ] { }
R n n L n n n R n n R n

S P S P F S U S− −= = =    (6.107)  

with 

[ ] 2 2

2

1
11

j11 0
j

+j 1 +j
+j 10 0

j

nf s

nf sn
nf p nf d nf p nf dn

nf p nf dn

nf s n

k c
k cU

I c I c
I c

k c

ω
ω

ω ω ω ω
ω ω

ω

 
   +     += =     − −     − + 

+  

 

 

where [U]n is a transfer matrix between stations n and (n-1). Once we have the point and field 

matrices, remaining analysis will remain the same for obtaining natural frequencies, mode shapes, and 

forced responses. Only difference would be that now we need to handle the complex numbers. Such 

analysis with damped multi-DOF could be performed relatively simpler way with FEM and it will be 

discussed subsequently. 

 

 

6.9 Modelling of Reciprocating Machine Systems 

 
Till now we considered various machines that have components with pure rotary motions. Advantage 

such rotating machineries are that they do not have as such variable polar moment inertias. Another 

class of machineries that have possibility of torsional vibrations is reciprocating machines. A multi-

cylinder reciprocating machine contains many reciprocating and rotating parts such as pistons, 

connecting rods, crankshafts, flywheels, dampers, and couplings. The system is so complicated that it 

is difficult, if not impossible, to undertake an exact analysis of its torsional vibration characteristics. 

The actual system is characterised by the presence of unpredictable effects like variable inertia, 

internal dampings, fluid-film bearing forces, misalignments in the transmission units, uneven firing 

order, etc. (Wilson, 1956, 1963 and 1965; Rao, 1996) 
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The analysis can be best carried out, by lumping the inertias of rotating and reciprocating parts at 

discrete points on the main shaft. The problem then reduces to the forced torsional vibration study of 

an multi-DOF rotor system subjected to varying torques at different cylinder points. The crankshaft 

and the other drive or driven shafts are generally flexible in torsion, but have low polar moments of 

inertia, unlike in the case of some large turbines or compressors. On the other hand, parts mounted on 

the shafting, like the damper, flywheel, generator etc. are rigid and will have very high polar moments 

of inertia. The system containing the crankshaft, coupling, generator, auxiliary drive shaft, other 

driven shaft like pumps, and mounted parts can then be reduced to a simple system with a series of 

rigid rotor (representing the inertias) connected by the massless flexible shafts as shown in Figure 

6.50. Now simple procedures will be described to reduce reciprocating inertias to equivalent rotating 

inertias, the uneven crack shaft geometry to an equivalent uniform shaft system, and the conversion of 

periodic torque variation to its components. 

 

 
 

Figure 6.50 A rotor model with N-disc of a typical reciprocating engine installation 

 

 

6.9.1 An equivalent polar mass moment of inertia 

 

Determination of a polar mass moment of inertia is a straightforward matter for rotating parts, 

however, it is not quite so simple in the case of reciprocating parts. Consider the piston shown in two 

different positions in Figure 6.51 and let us imagine the crankshaft with a polar mass moment of 

inertia, mrev r
2

 , where mrev is the total revolving mass at the crack radius r (it is also called crack 

through). It includes all the revolving part of the crank
cr

m , and the only the revolving part of the 

connecting rod rev

cn
m  (when its two mass equivalent dynamic system is considered). Let us assume that 

the crack is not revolving, however, it is executing small torsional oscillations about the mean position 

shown in diagrams.  
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In first case (Fig. 6.51a) there is no motion for the piston, with small oscillations of the crank and 

hence the equivalent polar mass moment of inertia of the piston is zero. Whereas in second case (Fig. 

6.51(b)), the piston has practically the same acceleration as that of the crank pin and the equivalent 

polar moment inertia is mrec r
2
, where mrec is the mass of the reciprocating parts. It includes all the 

mass of the piston mp, and only the reciprocating part of the connecting rod rec

cn
m  when it is converted 

to a two-mass equivalent dynamic system. Hence, the total polar mass moment of inertia varies from 

mrev r
2
 to (mrev r

2
 + mrec r

2
), when the crankshaft is rotating.  

 

The inertia of connecting rod can be obtained by considering a two-mass equivalent dynamic system 

with mass one at piston, rec

cn
m , and other mass at crank pin, rev

cn
m . With some approximation (for more 

accuracy refer to Bevan, 1984) the mass of the connecting rod 
cn

m  can be considered as two mass 

system one at the piston of magnitude /rec

cn cn
m m a l= , and another at the crack radius of magnitude 

/rev

cn cn
m m c l= , where l is the length of the connecting rod, c is the distance from the piston pin to the 

center of gravity of the connecting rod, and a is the distance from the crack pin to the center of gravity 

of the connecting rod (i.e., l = a + c). It will contribute to both mrev and mrec by small amount. We 

consider as an approximation in the system to have an average inertia given by 

 

  2 20.5p rev recI m r m r= +       (6.108)  

 

with 

 rev

rev cr cn
m m m= +   and  rec

rec p cnm m m= +     (6.109) 

 

where r is crank radius. 

 

 

Figure 6.51 An equivalent mass moment of inertia of the piston and the connecting rod 
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6.9.2 Equivalent torsional stiffness of crack shafts 

In determining the torsional stiffness of shafts connecting rotors, the main difficulty arises from the 

crank webs. Considering a crank shaft into an equivalent ordinary shaft having the same flexibility as 

the original one, as shown in Figure 6.52. Through this idealisation is physically possible, but the 

calculations involved are extremely difficult. This is because the crank webs are subjected to bending 

and the crank pin to twisting, when the main shaft is subjected to twisting. Moreover, the beam 

formulae, if used will not very accurate, because of short stubs involved rather than long beams 

usually considered. Further torques applied at the free end also give rise to sidewise displacement, i.e. 

coupled beading-torsion exists; which is prevented in the machine. For high-speed lightweight 

engines, the crank webs are no more rectangular blocks and application of the theory becomes 

extremely difficult. Because of this uncertainties in analytical calculation to estimate the torsional 

stiffness of crank throws, several experiments have been carried out on a number of crank shafts of 

large slow speed engines, which have shown that the equivalent length le is nearly equal to the actual 

length, if the diameter of main shaft is equal to the crank pin diameter. 

 

 

                                        

 

 

Figure 6.52 Equivalent length of a crank 

 

In general the procedure that is applied to reduce the reciprocating machine system to a mathematical 

model, is to use a basic diameter, which corresponding to the journal diameter of the crankshaft. The 

torsional stiffness is all calculated based on the basic diameter, irrespective of their actual diameter. 

For the end rotors (i.e., the generator rotor) compute the stiffness of the shaft from the coupling up to 

the point of rigidity. In case where one part of the system is connected to the other part through gears, 

or other transmission units, it is convenient to reduce all the inertias and stiffness to one reference 

speed. Finite element methods can be used to obtain equivalent stiffness of the crackshafts. Once the 

mathematical model is developed, it can be used in illustrating the critical speed calculations, and 

forced vibration responses. 
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6.9.3 Torque variations in a reciprocating machinery 

 

Torsional oscillation in the crankshaft and in the shafting of driven machinery is vibration 

phenomenon of practical importance in the design of reciprocating engines. The average torque 

delivered by a cylinder in a reciprocating machine, is a small fraction of the maximum torque, which 

occurs during the firing period. Even though the torque is periodic the fact that it fluctuates so 

violently within the period, constitutes one of the inherent disadvantages of a reciprocating machine, 

from the dynamics point of view, as compared with a turbine where the torque is practically uniform. 

It is possible to express the torque by a reciprocating engine into its harmonic components of several 

orders of the engine speed, and these harmonic components can excite the engine driven installations 

into forced torsional vibrations. The engine and the driven unit such as generator or a pump are 

normally connected by a flexible coupling and thus the total installation has fairly low natural 

frequencies falling in the speed range of the engine and the harmonics of different order. It is a 

commonly known fact that failures can occur in reciprocating machine installations, when the running 

speed of the engine is at or near a dominant torsional critical speed of the system. High dynamic 

stresses can occur in the main shafting of such engine installations and to avoid these conditions, it is 

essential that the torsional vibration  characteristics of the entire installation be analysed before the 

unit is put into operation. Any analysis of torsional vibration characteristics of reciprocating 

machinery should finally predict the maximum dynamic stresses or torque developed in the shafting 

and couplings of the system, as accurately as possible, so that they can be compared with the 

permissible values, to check the safety of installation. 

 

Example 6.14 A marine reciprocating engine, flywheel and propeller are approximately equivalent to 

the following three-rotor system. The engine has a crack 50 cm long and a connecting rod 250 cm 

long. The engine revolving parts are equivalent to 50 kg at crank radius, and the piston and pin masses 

are 41 kg. The connecting rod mass is 52 kg and its center of gravity is 26 cm from the crankpin 

center. The mass of the flywheel is 200 kg with the radius of gyration of 25 cm. The propeller has the 

polar mass moment of inertia of 6 kg-m
2
. The equivalent shaft between the engine masses and the 

flywheel is 38 cm diameter and 5.3 m long and that between the flywheel and the propeller is 36 cm 

diameter and 1.5 m long. Find the natural frequencies of the torsional vibrations of the system. 

 

Solution: The main aim of the present solution procedure would be to first find the equivalent rotating 

mass of the reciprocating engine, once it has been done then the problem will reduce to obtaining the 

natural frequencies of a three-rotor system as shown in Figure 6.53. The three revolving masses are 

corresponding to the reciprocating engine, flywheel, and propeller. 
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Figure 6.53 A three-disc model of the engine, flywheel and propeller 

  

The equivalent rotating part of the engine can be obtained as follows. We have the following engine 

data:  

 

Crank radius, r = 0.5 m,   Mass of crank revolving parts, mcr = 50 kg at the crank radius 

 

Length of connecting rod l = 2.5 m, Mass of the connecting rod, mcn = 52 kg,       

 

Distance of center of gravity of the connecting rod from the crack pin, a = 0.26 m  

 

Distance of center of gravity of the connecting rod from the piston pin, c = 2.24 m  

 

Piston and pin masses, mp = 41 kg 

 

Hence, the equivalent (approximate) reciprocating and revolving masses of the connecting rod would 

be 

/ 52 0.26 / 2.5 5.41rec

cn cn
m m a l= = × = kg;  / 52 2.24 / 2.5 46.59rev

cn cn
m m c l= = × = kg 

 

The equivalent revolving and reciprocating masses are given as 

 

50 46.59 96.59rev

rev cr cn
m m m= + = + =  kg   

and 

  41 5.41 46.41rec

rec p cnm m m= + = + = kg 

 

Hence, the equivalent polar mass moment of inertia of the engine is obtained as 

 
2 2) (96.59 0.5 46.41) 0.5 29.95( 0.5

ep rev recI m m r+ = + × × == kg-m
2

 

 

Now, the polar mass moment of inertia of the flywheel  ( )
22 200 0.25 12.5

fp f
I mr= = × =  kg-m

2
 

 

For the propeller, the polar mass moment of inertia is given as 6
ppI = kg-m

2
. 
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The torsional stiffness of shaft segments (1) and (2) are given as 

 

 
1

9 4
71 1

1

78.9 10 0.38
3 10

32 5.3
t

G J
k

l

π× × ×
= = = ×

×
N-m/rad 

and 

  
2

9 4
72 2

2

78.9 10 0.36
8.67 10

32 1.5
t

G J
k

l

π× × ×
= = = ×

×
N-m/rad 

 

Natural frequencies of three-disc rotor system (with 
1ep pI I= , 

2fp pI I=  and 
3pp pI I= ) are given as 

(equation (6.110)) 

 

1
0nfω =  

and 

( )
1 2 1 2 32 3 2 31 2 1 2

2,3 1 2 1 2

1 2 2 3 1 2 2 3 1 2 3

2

2 1 1

2 4

t t p p pp p p pp p p p

nf t t t t

p p p p p p p p p p p

k k I I II I I II I I I
k k k k

I I I I I I I I I I I
ω

 + +   + ++ +
 = + ± + −   

          

 

which gives 

 

1
0nfω =   

2

31.58 10nfω = ×  rad/s  
3

34.72 10nfω = × rad/s 

 

Finding of mode shapes and the position of nodes is left to the reader as a practice problem. 
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Concluding remarks 

To summarise, now we have clear idea about torsional natural frequencies and mode shapes for 

simple rotor systems. We have obtained torsional natural frequencies and mode shapes using 

Newton’s second law of motion, and using the systematic transfer matrix method (TMM). The TMM 

is found to be quite versatile and easy in application especially for the multi-DOF rotor systems. The 

TMM is also developed for rotor system with damping in the disc due to aerodynamic forces and in 

the shaft due to material damping (both the damping models are taken as viscous damping). Apart 

form these simple rotor systems, we considered the geared and branched systems for obtaining 

torsional natural frequencies. For the multi-DOF geared and branched systems, the TMM is applied 

because of its simplicity in the application. At the end the procedure of obtaining the equivalent rotor 

system from multi-cylinder reciprocating engines is briefly discussed and for detailed analysis a brief 

literature review is given. 
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Exercise Problems 

 

Exercise 6.1 Find torsional natural frequencies and mode shapes of the two-disc rotor system shown 

in Figure E6.1 by using the transfer matrix method. B1 and B2 are frictionless bearings, and D1 and D2 

are rigid discs. The shaft is made of steel with the modulus of rigidity G = 0.8(10)
11

 N/m
2
, and a 

uniform diameter d = 10 mm. Various shaft lengths are as follows: B1D1 = 50 mm, D1D2 = 75 mm, 

and D2B2 = 50 mm. The polar mass moment of inertia of discs is: 
1pI = 0.0008 kg-m2 and 

2pI = 0.002 

kg-m
2
. Consider the shaft as massless. [Answer: 

1
0nfω = , 

2
1354nfω = rad/s] 

 

 

Figure E6.1 

 

Exercise 6.2 Obtain the torsional natural frequency of an overhung rotor system as shown in Figure 

E6.2. The end B1 of the shaft has a fixed end condition. The shaft diameter is 10 mm, and total length 

of the shaft is 0.2 m. The polar mass moment of inertia equal to 0.02 kg-m
2
.  Neglect the mass of the 

shaft. Use the transfer matrix method.       

 

Figure E6.2 

 

Exercise 6.3 Find the torsional natural frequencies and mode shapes of a rotor system as shown in 

Figure E6.3 by using the transfer matrix method. B1 and B2 are fixed supports, and D1 and D2 are rigid 

discs. The shaft is made of steel with the modulus of rigidity of G = 0.8 (10)
11

 N/m
2
 and has uniform 

diameter of d = 10 mm. Different shaft lengths are as follows: B1D1 = 50 mm, D1D2 = 75 mm, and 

D2B2 = 50 mm. The polar mass moment of inertia of discs is: 
1pI = 0.08 kg-m

2
 and 

2pI = 0.2 kg-m
2
. 

Consider the shaft as massless. [Answer: 
1nfω = 100.29 rad/s, {

z
ϕ }1 = {1  1.73}

T
;
 

2nfω = 189.05 rad/s, 

{
z

ϕ }2 = {1  1/4.33}
T
] 
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Figure E6.3 

 

Exercise 6.4 Find all torsional natural frequencies and draw corresponding mode shapes of the rotor 

system shown in Figure E6.4. B1 is fixed supported (with zero angular displacement about shaft axis) 

and B2 and B3 are simply supported (with non-zero angular displacements). The shaft is made of steel 

with G = 0.8×10
11

 N/m
2
, and uniform diameter d = 10mm. The various shaft lengths are as follows: 

1 1
50mmB D = ; 

1 2
50mmD B = ; 

2 2
25mmB D = ; 

2 3
25mmD B = ; 

3 3
30mmB D = . The polar mass 

moment of inertia of discs is: 
1

0.002pI =  kg-m
2
; 

2
0.001pI =  kg-m

2
, and 

3
0.008pI =  kg-m

2
; Use the 

transfer matrix method. Give all detailed steps involved in obtaining the final system of equation and 

application of boundary conditions. Consider the shaft as mass-less and discs are lumped masses.  

[Answer: 
1 2 3

518.1Hz, 1184.6Hz, 1977Hznf nf nfω ω ω= = =  

1

0

1

2

3

0

1

1.984

2.344
nf

z

z

z

z ω

ϕ

ϕ

ϕ

ϕ

   
   
   

=   
   
     

,   

2

0

1

2

3

0

1.000

1.791

0.835
nf

z

z

z

z ω

ϕ

ϕ

ϕ

ϕ

   
   
   

=   
−   

   −  

,   

3

0

1

2

3

0

1.000

2.95

2.49
nf

z

z

z

z ω

ϕ

ϕ

ϕ

ϕ

   
   
   

=   
−   

     

] 

 

 

 

Figure E6.4 A multi-support multi-disc rotor system 

 

 

Exercise 6.5 Obtain torsional natural frequencies of a turbine-coupling-generator rotor system as 

shown in Figure E6.5 by the transfer matrix method. The rotor is assumed to be supported on 

frictionless bearings. The polar mass moment of inertia of the turbine, coupling and generator is 
Tp

I = 

25 kg-m
2
, 

Cp
I = 5 kg-m

2
 and 

Gp
I = 50 kg-m

2
, respectively. Take the modulus of rigidity of the shaft as 

G = 0.8 × 10
11

 N/m
2
. Assume the shaft diameter throughout equal to 0.2 m, and lengths of shafts 

between the bearing-turbine-coupling-generator-bearing are 1 m each so that the total span is 4 m. The 

coupling also gives a point flexibility (inverse of stiffness) equivalent to 5 times that of a shaft with 1 

m of length and 0.2m of diameter. Consider the shaft as massless. 
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Figure E6.5 A turbine-generator set 

 

 

 

Exercise 6.6 Obtain the torsional natural frequency of an overhung rotor system as shown in Figure 

E6.6 Take the polar mass moment of inertia of the disc as, Ip = 0.04 kg-m
2
. The massless shaft has 

following properties: lengths are a = 0.3 m, b = 0.7 m, the uniform diameter is 10 mm, and the 

modulus of rigidity G = 0.8 × 10
11

 N/m
2
. Bearing ‘A’ is flexible and provides a torsional restoring 

toque with its torsional stiffness equal to 5 percent of the torsional stiffness of the shaft segment 

having length a. Consider bearing B is a fixed bearing.  Use both the direct and transfer matrix 

methods. [Hint: We need to find the effective torsional stiffness of the rotor system]. 

 

Figure E6.6 An overhung rotor system with an intermediate support 

 

 

Exercise 6.7 A small electric motor drives another through a long coil spring (n turns, wire diameter 

d, coil diameter D). The two motor rotors have inertias 
p

I
1
 and 

p
I

2
. Calculate torsional natural 

frequencies of the set-up. Assuming the ends of the spring to be “built-in” to the shafts. [Hint: 

Consider the system as a two-mass rotor system and the stiffness of a spring is given as       

4

38
t

Gd
k

D n
= , Answer: 

1
0nfω =  and 

( )
1 2

2

1 2

t p p

nf

p p

k I I

I I
ω

+
= ]. 
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Exercise 6.8 For a rotor system with a stepped circular shaft as shown in Figure E6.8 obtain the 

torsional natural frequencies, mode shapes, and nodal positions. Consider the free-free end conditions. 

Neglect the polar mass moment of inertia of the shaft and take G = 0.8 × 10
11 

N/m
2
. Use the direct 

method, the indirect method (based on the node location information of mode shapes), and the transfer 

matrix method.      

 

Figure E6.8 

 

Exercise 6.9 A marine reciprocating engine, flywheel, and propeller are approximately equivalent to 

the following three-rotor system. The engine has a crack 50 cm long and a connecting rod 250 cm 

long. The engine revolving parts are equivalent to 50 kg at crank radius and the piston and pin masses 

are 41 kg. The connecting rod mass is 52 kg and its center of gravity is 26 cm from the crankpin 

center. The mass of the flywheel is 200 kg with the radius of gyration of 25 cm. The propeller has the 

polar mass moment of inertia of 6 kg-m
2
. The equivalent shaft between the engine masses and the 

flywheel is 38 cm diameter and 5.3 m long, and that between the flywheel and the propeller is 36 cm 

diameter and 11.5 m long. Find torsional natural frequencies of the rotor system and the position of 

the nodes. 

            

Exercise 6.10 For a geared system as shown in Figure E6.10 find the torsional natural frequencies and 

mode shapes. Find also the location of nodal point on the shaft (if any). The shaft ‘A’ has 1.5 cm 

diameter and 0.3 m length and the shaft ‘B’ has 1 cm diameter and 0.4 m length. Take modulus of 

rigidity of the shaft G equals to 0.8 × 10
11

 N/m
2
, the polar mass moment of inertia of discs and gears 

are 0.1
ApI = Nm

2
, 0.08

BpI = Nm
2
, 0.003

gApI = Nm
2
, 0.002

gBpI = Nm
2
. Use (i) equivalent system 

approach and (ii) transfer matrix method. 
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Figure E6.10 A geared rotor system 

 

 

Exercise 6.11 Obtain torsional natural frequencies and mode shapes of an epi-cyclic gear train as 

shown in Figure E6.11. Find also the location of nodal point on the shaft. The gear mounted on shaft 

‘B’ is a planetary gear and the gear on shaft ‘A’ is a sun gear. Consider the polar mass moment of 

inertia of the shaft, the arm and gears as negligible. Shaft ‘A’ has 5 cm of diameter and 0.75 m of 

length and shaft ‘B’ has 4 cm of diameter and 1.0 m of length. Angular speeds of shaft A and the arm 

are 300 rpm and 100 rpm, respectively. Take the modulus of rigidity of the shaft G equals to 0.8 × 

10
11

 N/m
2
, the polar mass moment of inertia of discs are 

ApI = 24 Nm
2
 and 

BpI =  10 Nm
2
. State the 

assumptions made in the analysis. [nAB = 1, 
1

0nfω = , {u}1 = {1  1  -1}
T
;
 

2
53.34nfω =  rad/s, {u}2 = {1  

0.04  3.37}
T
; node location from left hand side x = 0.72 m]. 

 

 

Figure E6.11 An epi-cyclic geared system 

 

 

Exercise 6.12 For a gear train as shown in Figure E6.12, obtain torsional natural frequencies and the 

location of the node. Dimensions of shafts are as follows (i) motor shaft: 0.20 m length and 0.015 m 

diameter, (ii) flywheel shaft: 0.2 m of length and 0.01 m of diameter, and (iii) intermediate shaft: 0.4 

m of length and 0.012 m of diameter. The polar mass moment of inertia of the motor and flywheel are 



 

 

357

 

Flywheel 

Motor 

0.01
mpI = kg-m

2
 and 0.04

mpI = kg-m
2
, respectively. Gear ratio of the first and second gear pairs are 3 

and 4, respectively. Neglect inertias of gears and mass of shafts. Assume the free-free end conditions 

and all shafts are mounted on frictionless bearings. Take G = 0.8×10
11

 N/m
2
. Use the TMM. 

        

 

Figure E6.12 

 

 

 

 

 

 

 

 

 

Exercise 6.13 A stepped-shaft consists of three segments with lengths of 40 cm, 30 cm and 40 cm; 

and corresponding diameters as, d cm, 13 cm and d cm, where d is an unknown. The shaft has two 

flywheels (
1

11pI = kg-m
2
 and 

2
11pI = kg-m

2
, with radius of gyration of both flywheel equals to 0.5 

m) at the ends, and the shaft is supported on two frictionless rolling bearings at 20 cm away from the 

either ends. The operating speed of the shaft is 1500 rpm and due to rotation of the shaft it has 

external torque impulses such that it has period corresponding to the quarter of the shaft rotation. 

Obtain the diameter, d, such that the torsional critical speed may be 20% above the external torque 

frequency (fundamental harmonics). Obtain the transverse natural frequency of rotor system, so 

designed based on the dynamics of the rotor in torsion. Neglect the mass of the shaft, and take G = 

0.8×10
11

 N/m
2
, and E = 2.1×10

11
 N/m

2
. 

 

Exercise 6.14 A motor has rotating masses of the polar mass moment of inertia of 58 kg-m
2
, which is 

connected to one end of a shaft of 6 cm diameter and 2.30 m long. At the other end a flywheel and 

pinion are attached, with the effective polar mass moment of inertia of 220 kg-m
2
. The pinion is 

connected to a gear with a gear ratio of 4 and of the polar mass moment of inertia of 70 kg-m
2
, which 

drives a pump. The measured torsional vibration frequency of the rotor system is 60 Hz. Find the 

effective polar mass moment of inertia of the pump impeller and entrained water. Take G = 0.8×10
11

 

N/m
2
. 

 

Exercise 6.15 A cantilever shaft of 1 m length (l), and 30 mm diameter (d) has a thin disc of 5 kg 

mass (m) attached at its free end, with the disc radius of 5 cm. The shaft has a through hole parallel to 

the shaft axis of diameter 3 mm (di), which is vertically below the shaft center, with the distance 
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between the centres of the shaft and the hole as 6 mm (e). Consider no warping of the plane; and 

obtain the torsional natural frequencies of the shaft system. Consider the shaft as massless and 

modulus of rigidity G = 0.8× 10
11

 N/m
2
. [Hint: Find the equivalent stiffness of the shaft and then 

obtain natural frequencies: /
eqnf t p

k Iω =  
eqt

GJ
k

l
= , ( )4 4 2 2 8

1 2 8 7.926 10
32

i i
J I I d d d e

π −= + = − − = ×  

m
4
; 1007.23nfω = rad/s] 

 

Exercise 6.16 Find torsional natural frequencies and mode shapes of the rotor system shown in Figure 

E6.16. B is a fixed bearing, which provide fixed support end condition; and D1, D2, D3 and D4 are 

rigid discs. The shaft is made of the steel with the modulus of rigidity G = 0.8 (10)
11

 N/m
2
 and the 

uniform diameter d = 20 mm. Various shaft lengths are as follows: D1D2 = 50 mm, D2D3 = 50 mm, 

D3D4 = 50 mm and D4B2 = 150 mm. The mass of discs are: m1 = 4 kg, m2 = 5 kg, m3 = 6 kg and m4 = 7 

kg. Consider the shaft as mass-less. Consider discs as thin and take diameter of discs as d =
1

12 cm, 

d =
2

6 cm, and
 
d =

3
12 cm, d =

4
14 cm. 

 

 

Figure E6.16 A multi-disc overhung rotor 

 

Exercise 6.17 Find torsional natural frequencies and mode shapes of the rotor system shown in Figure 

E6.17. B is a fixed bearing, which provide fixed support end condition; and D1, D2, D3, D4 and D5 are 

rigid discs. The shaft is made of the steel with the modulus of rigidity G = 0.8 (10)
11

 N/m
2
 and the 

uniform diameter d = 20 mm. Various shaft lengths are as follows: D1D2 = 50 mm, D2D3 = 50 mm, 

D3D4 = 50 mm, D4D5 = 50 mm, and D5B2 = 50 mm. The mass of discs are: m1 = 4 kg, m2 = 5 kg, m3 = 

6 kg, m4 = 7 kg, and m4 = 8 kg. Consider the shaft as massless. Tow cases to be considered (i) 

Consider the disc as point masses, i.e., neglect the diametral and polar mass moment of inertia of all 

discs; (ii) consider discs as thin and take diameter of discs as d =
1

12 cm, d =
2

6 cm, and
 
d =

3
12 cm, 

d =
4

14 cm, and d =
5

16 , however, neglect the gyroscopic effects. 
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Figure E6.17 A multi-disc overhung rotor 

 

Exercise 6.18 Find torsional natural frequencies and mode shapes of the rotor system shown in Figure 

E6.18. B1 and B2 are bearings, which provide free-free end condition and D1, D2, D3, D4 and D5 are 

rigid discs. The shaft is made of the steel with the modulus of rigidity G = 0.8 (10)
11

 N/m
2
 and a 

uniform diameter d = 20 mm. Various shaft lengths are as follows: B1D1 = 150 mm, D1D2 = 50 mm, 

D2D3 = 50 mm, D3D4 = 50 mm, D4D5 = 50 mm, and D5B2 = 150 mm. The mass of discs are: m1 = 4 

kg, m2 = 5 kg, m3 = 6 kg, m4 = 7 kg, and m5 = 8 kg. Consider the shaft as massless. Consider discs as 

thin and take diameter of discs as d =
1

8 cm, d =
2

10 cm,
 
d =

3
12 cm, d =

4
14 cm, and d =

5
16 . 

 

 

Figure E6.18 A multi-disc rotor system with simply supported end conditions 

 

Exercise 6.19 Find torsional natural frequencies of an overhung rotor system as shown in Figure 

E6.19. Consider the shaft as massless and is made of steel with the modulus of rigidity of 0.8(10)
11

 

N/m
2
. A disc is mounted at the free end of the shaft with the polar mass moment of inertia 0.01 kg-m

2
. 

In the diagram all dimensions are in cm. Use the TMM.      

      

Figure E6.19 
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Exercise 6.20 Obtain torsional natural frequencies of a geared rotor system shown in Fig. E6.20. 

Consider the left hand side of shaft A and the right hand side of shaft B have rigid supports. Assume 

gears as thin discs with mass of 3 kg and 2 kg for gears of diameters 20 cm and 10 cm, respectively. 

The shaft A and B are respectively 2 cm and 1.5 cm diameters, respectively; with a length of 40 cm 

each. Neglect the inertia of shafts.  The gear tooth-pair provides an effective torsional stiffness of  1 

kN-m/rad between gears. Take G = 0.8×10
11

 N/m
2
. Use TMM.     

 

 

Figure E6.20 
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